Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 32(24): 3323-3341, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37676252

RESUMO

GM3 Synthase Deficiency (GM3SD) is a neurodevelopmental disorder resulting from pathogenic variants in the ST3GAL5 gene, which encodes GM3 synthase, a glycosphingolipid (GSL)-specific sialyltransferase. This enzyme adds a sialic acid to the terminal galactose of lactosylceramide (LacCer) to produce the monosialylated ganglioside GM3. In turn, GM3 is extended by other glycosyltransferases to generate nearly all the complex gangliosides enriched in neural tissue. Pathogenic mechanisms underlying the neural phenotypes associated with GM3SD are unknown. To explore how loss of GM3 impacts neural-specific glycolipid glycosylation and cell signaling, GM3SD patient fibroblasts bearing one of two different ST3GAL5 variants were reprogrammed to induced pluripotent stem cells (iPSCs) and then differentiated to neural crest cells (NCCs). GM3 and GM3-derived gangliosides were undetectable in cells carrying either variant, while LacCer precursor levels were elevated compared to wildtype (WT). NCCs of both variants synthesized elevated levels of neutral lacto- and globo-series, as well as minor alternatively sialylated GSLs compared to WT. Ceramide profiles were also shifted in GM3SD variant cells. Altered GSL profiles in GM3SD cells were accompanied by dynamic changes in the cell surface proteome, protein O-GlcNAcylation, and receptor tyrosine kinase abundance. GM3SD cells also exhibited increased apoptosis and sensitivity to erlotinib-induced inhibition of epidermal growth factor receptor signaling. Pharmacologic inhibition of O-GlcNAcase rescued baseline and erlotinib-induced apoptosis. Collectively, these findings indicate aberrant cell signaling during differentiation of GM3SD iPSCs and also underscore the challenge of distinguishing between variant effect and genetic background effect on specific phenotypic consequences.


Assuntos
Gangliosídeos , Glicoesfingolipídeos , Humanos , Cloridrato de Erlotinib , Glicoesfingolipídeos/metabolismo , Gangliosídeo G(M3)/genética , Gangliosídeo G(M3)/metabolismo , Sialiltransferases/genética , Sialiltransferases/metabolismo , Transdução de Sinais
2.
EMBO J ; 39(12): e101732, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32378734

RESUMO

Innate immune signaling via TLR4 plays critical roles in pathogenesis of metabolic disorders, but the contribution of different lipid species to metabolic disorders and inflammatory diseases is less clear. GM3 ganglioside in human serum is composed of a variety of fatty acids, including long-chain (LCFA) and very-long-chain (VLCFA). Analysis of circulating levels of human serum GM3 species from patients at different stages of insulin resistance and chronic inflammation reveals that levels of VLCFA-GM3 increase significantly in metabolic disorders, while LCFA-GM3 serum levels decrease. Specific GM3 species also correlates with disease symptoms. VLCFA-GM3 levels increase in the adipose tissue of obese mice, and this is blocked in TLR4-mutant mice. In cultured monocytes, GM3 by itself has no effect on TLR4 activation; however, VLCFA-GM3 synergistically and selectively enhances TLR4 activation by LPS/HMGB1, while LCFA-GM3 and unsaturated VLCFA-GM3 suppresses TLR4 activation. GM3 interacts with the extracellular region of TLR4/MD2 complex to modulate dimerization/oligomerization. Ligand-molecular docking analysis supports that VLCFA-GM3 and LCFA-GM3 act as agonist and antagonist of TLR4 activity, respectively, by differentially binding to the hydrophobic pocket of MD2. Our findings suggest that VLCFA-GM3 is a risk factor for TLR4-mediated disease progression.


Assuntos
Gangliosídeo G(M3)/metabolismo , Monócitos/metabolismo , Obesidade/metabolismo , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Animais , Gangliosídeo G(M3)/química , Gangliosídeo G(M3)/genética , Células HEK293 , Humanos , Camundongos , Camundongos Mutantes , Monócitos/química , Obesidade/genética , Multimerização Proteica , Receptor 4 Toll-Like/química , Receptor 4 Toll-Like/genética
3.
Arch Biochem Biophys ; 750: 109810, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37939867

RESUMO

Ganglioside GM3 is a simple monosialoganglioside (NeuAc-Gal-Glc-ceramide) that modulates cell adhesion, proliferation, and differentiation. Previously, we reported isolation of GM3-binding vascular endothelial growth factor receptor and transforming growth factor-ß receptor by the T7 phage display method (Chung et al., 2009; Kim et al., 2013). To further identify novel proteins interacting with GM3, we extended the T7 phage display method in this study. After T7 phage display biopanning combined with immobilized biotin-labeled 3'-sialyllactose prepared on a streptavidin-coated microplate, we isolated 100 candidate sequences from the human lung cDNA library. The most frequently detected clones from the blast analysis were the human nucleolar and coiled-body phosphoprotein 1 (NOLC1) sequences. We initially identified NOLC1 as a molecule that possibly binds to GM3 and confirmed this binding ability using the glutathione S-transferase fusion protein. Herein, we report another GM3-interacting protein, NOLC1, that can be isolated by the T7 phage display method. These results are expected to be helpful for elucidating the functional roles of ganglioside GM3 with NOLC1. When human breast cancer MCF-7 cells were examined for subcellular localization of NOLC1, immunofluorescence of NOLC1 was observed in the intracellular region. In addition, NOLC1 expression was increased in the nucleolus after treatment with the anticancer drug doxorubicin. GM3 and NOLC1 levels in the doxorubicin-treated MCF-7 cells were correlated, indicating possible associations between GM3 and NOLC1. Therefore, direct interactions between carbohydrates and cellular proteins can pave the path for new signaling phenomena in biology.


Assuntos
Bacteriófago T7 , Neoplasias da Mama , Humanos , Feminino , Bacteriófago T7/genética , Fator A de Crescimento do Endotélio Vascular , Gangliosídeo G(M3) , Células MCF-7 , Neoplasias da Mama/genética , Doxorrubicina , Proteínas Nucleares/metabolismo , Fosfoproteínas
4.
Glycoconj J ; 40(3): 333-341, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36939991

RESUMO

The alkyne tag, consisting of only two carbons, is widely used as a bioorthogonal functional group due to its compactness and nonpolar structure, and various probes consisting of lipids bearing an alkyne tag have been developed. Here, we designed and synthesized analogues of ganglioside GM3 bearing an alkyne tag in the fatty acid moiety and evaluated the effect of the alkyne tag on the biological activity. To eliminate the influence of other factors such as degradation of the glycan chain when evaluating biological activity in a cellular environment, we introduced the tag into sialidase-resistant (S)-CHF-linked GM3 analogues developed by our group. The designed analogues were efficiently synthesized by tuning the protecting group of the glucosylsphingosine acceptor. The growth-promoting effect of these analogues on Had-1 cells was dramatically altered depending upon the position of the alkyne tag.


Assuntos
Gangliosídeo G(M3) , Gangliosídeo G(M3)/análogos & derivados
5.
Glycoconj J ; 40(3): 315-322, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36933118

RESUMO

It has been clarified that pathogens bind to glycosphingolipid (GSL) receptors in mammals, but there have been very few reports on pathogen-binding GSLs in fish. Vibrios are facultative anaerobic bacteria ubiquitous in marine and brackish environments. They are members of the normal intestinal microflora of healthy fish, but some species can cause a disease called vibriosis in fish and shellfish when the hosts are physiologically or immunologically weakened. The adherence of vibrios to host intestinal tracts is a significant event not only for survival and growth but also in terms of pathogenicity. We show in this mini-review that sialic acid-containing GSLs (gangliosides), GM4 and GM3, are receptors to which vibrios adhere to epithelial cells in the intestinal tract of fish. We also describe the enzymes responsible for synthesizing these Vibrio-binding gangliosides in fish.


Assuntos
Gangliosídeos , Vibrio , Animais , Gangliosídeos/metabolismo , Glicoesfingolipídeos/metabolismo , Intestinos , Peixes/metabolismo , Vibrio/metabolismo , Mamíferos/metabolismo
6.
BMC Neurol ; 23(1): 199, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210504

RESUMO

BACKGROUND: We reported on a case involving an older patient with HSV-1 encephalitis who simultaneously experienced the onset of peripheral nerve symptoms associated with the presence of anti-GM3 immunoglobulin G (IgG). CASE PRESENTATION: A 77-year-old male was admitted to hospital with high fever, weakness of both lower limbs, and an unstable gait. A CSF test revealed a strikingly increased protein level (1,002 mg/L, normative values: 150-450 mg/L) and MRI revealed hyper-signal lesions in the right temporal lobe, right hippocampus, right insula, and right cingulate gyrus. The CSF was positive for HSV PCR (HSV-1,17870). In addition, the serum samples were positive for CASPR2 antibodies (antibody titer: 1/10) and anti-GM3 immunoglobulin G (IgG) (+). The patient was diagnosed with HSV-1-induced peripheral nerve symptoms that were associated with encephalitis and the presence of anti-GM3 IgG and anti-CASPR2 antibodies. The patient had received included intravenous immunoglobulin, intravenous acyclovir, and corticosteroids therapy. At the one-year follow-up examination, he had regained the necessary skills associated with daily life. CONCLUSIONS: Herpes simplex virus infection often induces encephalitis, and reaction to the virus may trigger an autoimmune response. Early diagnosis and treatment can avoid the progression of the disease to include autoimmune encephalitis.


Assuntos
Encefalite por Herpes Simples , Herpes Simples , Herpesvirus Humano 1 , Doenças do Sistema Nervoso Periférico , Masculino , Humanos , Idoso , Aciclovir/uso terapêutico , Encefalite por Herpes Simples/complicações , Encefalite por Herpes Simples/diagnóstico , Herpes Simples/diagnóstico , Imunoglobulina G
7.
Int J Mol Sci ; 24(14)2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37511118

RESUMO

We recently found that albuminuria levels in patients with minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS) inversely correlate with glycosphingolipid GM3 expression levels in glomerular podocytes. Moreover, we showed enhanced expression of GM3 via activation of the GM3 synthase gene upon administration of valproic acid (VPA) is effective in suppressing albuminuria and podocyte injury in mice with anti-nephrin antibody-induced podocytopathy. However, the therapeutic effect of GM3 on diabetic nephropathy, which is the most common underlying disease in patients undergoing dialysis and with podocyte injury, remains unclear. Here, we investigated the therapeutic effect of enhanced GM3 expression via VPA on podocyte injury using streptozotocin-induced diabetic nephropathy model mice. Administration of VPA clearly decreased levels of albuminuria and glomerular lesions and inhibited the loss of podocytes and expansion in the mesangial area. Furthermore, we found that albuminuria levels in patients with diabetic nephropathy inversely correlate with the expression of GM3 in podocytes. These results indicate that maintaining GM3 expression in podocytes by administration of VPA may be effective in treating not only podocyte injury, such as MCD and FSGS, but also the late stage of diabetic nephropathy.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Glomerulosclerose Segmentar e Focal , Podócitos , Camundongos , Animais , Nefropatias Diabéticas/metabolismo , Glomerulosclerose Segmentar e Focal/metabolismo , Albuminúria/metabolismo , Diálise Renal , Glomérulos Renais/metabolismo , Podócitos/metabolismo , Diabetes Mellitus/metabolismo
8.
Genet Med ; 24(2): 492-498, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34906476

RESUMO

PURPOSE: Biallelic loss-of-function variants in ST3GAL5 cause GM3 synthase deficiency (GM3SD) responsible for Amish infantile epilepsy syndrome. All Amish patients carry the homozygous p.(Arg288Ter) variant arising from a founder effect. To date only 10 patients from 4 non-Amish families have been reported. Thus, the phenotypical spectrum of GM3SD due to other variants and other genetic backgrounds is still poorly known. METHODS: We collected clinical and molecular data from 16 non-Amish patients with pathogenic ST3GAL5 variants resulting in GM3SD. RESULTS: We identified 12 families originating from Reunion Island, Ivory Coast, Italy, and Algeria and carrying 6 ST3GAL5 variants, 5 of which were novel. Genealogical investigations and/or haplotype analyses showed that 3 of these variants were founder alleles. Glycosphingolipids quantification in patients' plasma confirmed the pathogenicity of 4 novel variants. All patients (N = 16), aged 2 to 12 years, had severe to profound intellectual disability, 14 of 16 had a hyperkinetic movement disorder, 11 of 16 had epilepsy and 9 of 16 had microcephaly. Other main features were progressive skin pigmentation anomalies, optic atrophy or pale papillae, and hearing loss. CONCLUSION: The phenotype of non-Amish patients with GM3SD is similar to the Amish infantile epilepsy syndrome, which suggests that GM3SD is associated with a narrow and severe clinical spectrum.


Assuntos
Epilepsia , Epilepsia/complicações , Epilepsia/genética , Homozigoto , Humanos , Sialiltransferases/deficiência , Sialiltransferases/genética
9.
Mol Genet Metab ; 137(4): 342-348, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36335793

RESUMO

GM3 synthase (GM3S) deficiency is a rare neurodevelopmental disorder caused by an inability to synthesize gangliosides, for which there is currently no treatment. Gangliosides are brain-enriched, plasma membrane glycosphingolipids with poorly understood biological functions related to cell adhesion, growth, and receptor-mediated signal transduction. Here, we investigated the effects of GM3S deficiency on metabolism and mitochondrial function in a mouse model. By indirect calorimetry, GM3S knockout mice exhibited increased whole-body respiration and an increased reliance upon carbohydrate as an energy source. 18F-FDG PET confirmed higher brain glucose uptake in knockout mice, and GM3S deficient N41 neuronal cells showed higher glucose utilization in vitro. Brain mitochondria from knockout mice respired at a higher rate on Complex I substrates including pyruvate. This appeared to be due to higher expression of pyruvate dehydrogenase (PDH) and lower phosphorylation of PDH, which would favor pyruvate entry into the mitochondrial TCA cycle. Finally, it was observed that blocking glucose metabolism with the glycolysis inhibitor 2-deoxyglucose reduced seizure intensity in GM3S knockout mice following administration of kainate. In conclusion, GM3S deficiency may be associated with a hypermetabolic phenotype that could promote seizure activity.


Assuntos
Glucose , Sialiltransferases , Animais , Camundongos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Gangliosídeo G(M3)/metabolismo , Glucose/metabolismo , Camundongos Knockout , Ácido Pirúvico , Convulsões/genética , Sialiltransferases/genética , Sialiltransferases/metabolismo
10.
Neuropathol Appl Neurobiol ; 48(2): e12774, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34811795

RESUMO

AIMS: Astrocytes adapt to acute acid stress. Intriguingly, cancer cells with astrocytic differentiation thrive even better in an acidic microenvironment. How changes in extracellular pH (pHe) are sensed and measured by the cell surface assemblies that first intercept the acid stress, and how this information is relayed downstream for an appropriate survival response remains largely uncharacterized. METHODS: In vitro cell-based studies were combined with an in vivo animal model to delineate the machinery involved in pH microenvironment sensing and generation of mechanoadaptive responses in normal and neoplastic astrocytes. The data was further validated on patient samples from acidosis driven ischaemia and astrocytic tumour tissues. RESULTS: We demonstrate that low pHe is perceived and interpreted by cells as mechanical stress. GM3 acts as a lipid-based pH sensor, and in low pHe, its highly protonated state generates plasma membrane deformation stress which activates the IRE1-sXBP1-SREBP2-ACSS2 response axis for cholesterol biosynthesis and surface trafficking. Enhanced surface cholesterol provides mechanical tenacity and prevents acid-mediated membrane hydrolysis, which would otherwise result in cell leakage and death. CONCLUSIONS: In summary, activating these lipids or the associated downstream machinery in acidosis-related neurodegeneration may prevent disease progression, while specifically suppressing this key mechanical 'sense-respond' axis should effectively target astrocytic tumour growth.


Assuntos
Astrócitos/patologia , Astrocitoma/patologia , Estresse Mecânico , Microambiente Tumoral , Animais , Astrócitos/metabolismo , Astrocitoma/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/patologia , Humanos , Concentração de Íons de Hidrogênio
11.
Glycoconj J ; 39(5): 619-631, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35639196

RESUMO

A transition of sialic acid (Sia) species on GM3 ganglioside from N-acetylneuraminic acid (Neu5Ac) to N-glycolylneuraminic acid (Neu5Gc) takes place in mouse C2C12 myoblast cells during their differentiation into myotube cells. However, the meaning of this Sia transition remains unclear. This study thus aims to gain a functional insight into this phenomenon. The following lines of evidence show that the increased de novo synthesis of Neu5Gc residues in differentiating myoblast cells promotes adhesiveness of the cells, which is beneficial for promotion of differentiation. First, the Sia transition occurred even in the C2C12 cells cultured in serum-free medium, indicating that it happens through de novo synthesis of Neu5Gc. Second, GM3(Neu5Gc) was localized in myoblast cells, but not in myotube cells, and related to expression of the CMP-Neu5Ac hydroxylase (CMAH) gene. Notably, expression of CMAH precedes myotube formation not only in differentiating C2C12 cells, but also in mouse developing embryos. Since the myoblast cells were attached on the dish surface more strongly than the myotube cells, expression of GM3(Neu5Gc) may be related to the surface attachment of the myoblast cells. Third, exogenous Neu5Gc, but not Neu5Ac, promoted differentiation of C2C12 cells, thus increasing the number of cells committed to fuse with each other. Fourth, the CMAH-transfected C2C12 cells were attached on the gelatin-coated surface much more rapidly than the mock-cells, suggesting that the expression of CMAH promotes cell adhesiveness through the expression of Neu5Gc.


Assuntos
Ácido N-Acetilneuramínico , Ácidos Neuramínicos , Adesividade , Animais , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Ácidos Neuramínicos/metabolismo
12.
Glycoconj J ; 39(2): 167-176, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35089466

RESUMO

The glycosylation of cell surface receptors has been shown to regulate each step of signal transduction, including receptor trafficking to the cell surface, ligand binding, dimerization, phosphorylation, and endocytosis. In this review we focus on the role of glycosyltransferases that are involved in the modification of N-glycans, such as the effect of branching and elongation in signaling by various cell surface receptors. In addition, the role of those enzymes in the EMT/MET programs, as related to differentiation and cancer development, progress and therapy resistance is discussed.


Assuntos
Glicosiltransferases , N-Acetilglucosaminiltransferases , Carcinogênese , Glicosiltransferases/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , N-Acetilglucosaminiltransferases/metabolismo , Transdução de Sinais
13.
Clin Exp Nephrol ; 26(11): 1078-1085, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35804208

RESUMO

BACKGROUND: Glycolipids on cell membrane rafts play various roles by interacting with glycoproteins. Recently, it was reported that the glycolipid GM3 is expressed in podocytes and may play a role in podocyte protection. In this report, we describe the correlation between changes in GM3 expression in glomeruli and proteinuria in minimal change nephrotic syndrome (MCNS) and focal segmental glomerulosclerosis (FSGS) patients. METHODS: We performed a case-control study of the correlation between nephrin/GM3 expression levels and proteinuria in MCNS and FSGS patients who underwent renal biopsy at our institution between 2009 and 2014. Normal renal tissue sites were used from patients who had undergone nephrectomy at our institution and gave informed consent. RESULTS: Both MCNS and FSGS had decreased GM3 and Nephrin expression compared with the normal (normal vs. MCNS, FSGS; all p < 0.01). Furthermore, in both MCNS and FSGS, GM3 expression was negatively correlated with proteinuria (MCNS: r = - 0.61, p < 0.01, FSGS: r = - 0.56, p < 0.05). However, nephrin expression had a trend to correlate with proteinuria in FSGS (MCNS: r = 0.19, p = 0.58, FSGS: r = - 0.48, p = 0.06). Furthermore, in a simple linear regression analysis, GM3 expression also correlated with proteinuric change after 12 months of treatment (MCNS: r = 0.40, p = 0.38, FSGS: r = 0. 68, p < 0.05). CONCLUSION: We showed for the first time that decreased GM3 expression correlates with proteinuria in MCNS and FSGS patients. Further studies are needed on the podocyte-protective effects of GM3.


Assuntos
Glomerulosclerose Segmentar e Focal , Nefrose Lipoide , Síndrome Nefrótica , Podócitos , Estudos de Casos e Controles , Glomerulosclerose Segmentar e Focal/patologia , Glicolipídeos , Humanos , Nefrose Lipoide/patologia , Síndrome Nefrótica/patologia , Podócitos/metabolismo , Proteinúria/patologia
14.
Int J Mol Sci ; 23(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35628171

RESUMO

Gangliosides (glycosphingolipids containing one or more sialic acids) are highly expressed in neural tissues in vertebrates, and four species (GM1a, GD1a, GD1b, GT1b) are predominant in mammalian brains. GM3 is the precursor of each of these four species and is the major ganglioside in many nonneural tissues. GM3 synthase (GM3S), encoded by ST3GAL5 gene in humans, is a sialyltransferase responsible for synthesis of GM3 from its precursor, lactosylceramide. ST3GAL5 mutations cause an autosomal recessive form of severe infantile-onset neurological disease characterized by progressive microcephaly, intellectual disability, dyskinetic movements, blindness, deafness, intractable seizures, and pigment changes. Some of these clinical features are consistently present in patients with ST3GAL5 mutations, whereas others have variable expression. GM3S knockout (KO) mice have deafness and enhanced insulin sensitivity, but otherwise do not display the above-described neurological defects reported in ST3GAL5 patients. The authors present an overview of physiological functions and pathological aspects of gangliosides based on findings from studies of GM3S KO mice and discuss differential phenotypes of GM3S KO mice versus human GM3S-deficiency patients.


Assuntos
Surdez , Epilepsia , Sialiltransferases , Animais , Surdez/enzimologia , Modelos Animais de Doenças , Epilepsia/enzimologia , Humanos , Camundongos , Camundongos Knockout , Sialiltransferases/deficiência , Sialiltransferases/metabolismo
15.
Glycobiology ; 31(11): 1500-1509, 2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34735569

RESUMO

Tumor-associated glycolipids such as NeuGc GM3 are auspicious molecular targets in antineoplastic therapies and vaccine strategies. 14F7 is a monoclonal IgG1 with high clinical potential in cancer immunotherapy as it displays extraordinary specificity for NeuGc GM3, while it does not recognize the very similar, ubiquitous NeuAc GM3. Here we present the 2.3 Å crystal structure of the 14F7 antigen-binding domain (14F7 scFv) in complex with the NeuGc GM3 trisaccharide. Modeling analysis and previous mutagenesis data suggest that 14F7 may also bind to an alternative NeuGc GM3 conformation, not observed in the crystal structure. The most intriguing finding, however, was that a water molecule centrally placed in the complementarity-determining region directly mediates the specificity of 14F7 to NeuGc GM3. This has profound impact on the complexity of engineering in the binding site and provides an excellent example of the importance in understanding the water structure in antibody-antigen interactions.


Assuntos
Anticorpos Monoclonais/imunologia , Antineoplásicos/imunologia , Gangliosídeo G(M3)/imunologia , Água/química , Anticorpos Monoclonais/isolamento & purificação , Especificidade de Anticorpos , Reações Antígeno-Anticorpo , Gangliosídeo G(M3)/síntese química , Gangliosídeo G(M3)/química , Modelos Moleculares , Estrutura Molecular
16.
J Neurochem ; 158(2): 217-232, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33864399

RESUMO

Gangliosides are expressed on plasma membranes throughout the body and enriched in the nervous system. A critical role for complex a- and b-series gangliosides in central and peripheral nervous system ageing has been established through transgenic manipulation of enzymes in ganglioside biosynthesis. Disrupting GalNAc-transferase (GalNAc-T), thus eliminating all a- and b-series complex gangliosides (with consequent over-expression of GM3 and GD3) leads to an age-dependent neurodegeneration. Mice that express only GM3 ganglioside (double knockout produced by crossing GalNAc-T-/- and GD3 synthase-/- mice, Dbl KO) display markedly accelerated neurodegeneration with reduced survival. Degenerating axons and disrupted node of Ranvier architecture are key features of complex ganglioside-deficient mice. Previously, we have shown that reintroduction of both a- and b-series gangliosides into neurons on a global GalNAcT-/- background is sufficient to rescue this age-dependent neurodegenerative phenotype. To determine the relative roles of a- and b-series gangliosides in this rescue paradigm, we herein reintroduced GalNAc-T into neurons of Dbl KO mice, thereby reconstituting a-series but not b-series complex gangliosides. We assessed survival, axon degeneration, axo-glial integrity, inflammatory markers and lipid-raft formation in these Rescue mice compared to wild-type and Dbl KO mice. We found that this neuronal reconstitution of a-series complex gangliosides abrogated the adult lethal phenotype in Dbl KO mice, and partially attenuated the neurodegenerative features. This suggests that whilst neuronal expression of a-series gangliosides is critical for survival during ageing, it is not entirely sufficient to restore complete nervous system integrity in the absence of either b-series or glial a-series gangliosides.


Assuntos
Gangliosídeo G(M3)/metabolismo , Gangliosídeos/metabolismo , Genes Letais/genética , Neurônios/metabolismo , Animais , Axônios/patologia , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Transtornos Heredodegenerativos do Sistema Nervoso/patologia , Inflamação/metabolismo , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , N-Acetilgalactosaminiltransferases/genética , Fenótipo , Nós Neurofibrosos/patologia , Sialiltransferases/genética , Análise de Sobrevida , Polipeptídeo N-Acetilgalactosaminiltransferase
17.
Reprod Biol Endocrinol ; 19(1): 105, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34233713

RESUMO

BACKGROUND: It has been previously demonstrated that cholesterol content and cholesterol/phospholipid ratio were significantly higher in asthenozoospermia and oligoasthenoteratozoospermia. The majority of published studies have investigated the fatty acid composition of phospholipids rather than lipids themselves. This study evaluated the lipid composition of asthenozoospermic and normozoospermic spermatozoa, and identified the exact lipid species that correlated with sperm motility. METHODS: A total of 12 infertile asthenozoospermia patients and 12 normozoospermia subjects with normal sperm motility values were tested for semen volume, sperm concentration, count, motility, vitality and morphology. High-coverage targeted lipidomics with 25 individual lipid classes was performed to analyze the sperm lipid components and establish the exact lipid species that correlated with sperm motility. RESULTS: A total of 25 individual lipid classes and 479 lipid molecular species were identified and quantified. Asthenozoospermic spermatozoa showed an increase in the level of four lipid classes, including Cho, PE, LPI and GM3. A total of 48 lipid molecular species were significantly altered between normozoospermic and asthenozoospermic spermatozoa. Furthermore, the levels of total GM3 and six GM3 molecular species, which were altered in normozoospermic spermatozoa versus asthenozoospermic spermatozoa, were inversely correlated with sperm progressive and total motility. CONCLUSIONS: Several unique lipid classes and lipid molecular species were significantly altered between asthenozoospermic and normozoospermic spermatozoa, revealing new possibilities for further mechanistic pursuits and highlighting the development needs of culture medium formulations to improve sperm motility.


Assuntos
Astenozoospermia/metabolismo , Gangliosídeo G(M3)/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipidômica/métodos , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/metabolismo , Adulto , Astenozoospermia/diagnóstico , Gangliosídeo G(M3)/análise , Humanos , Lipídeos/análise , Masculino , Espermatozoides/química
18.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34948420

RESUMO

Recently, the atheroprotective role of endogenous GM3 and an atherogenesis-inhibiting effect of exogenous GM3 suggested a possibility of exogenous GM3 being recruited as an anti-atherosclerotic drug. This study seeks to endow exogenous GM3 with atherosclerotic targetability via reconstituted high-density lipoprotein (rHDL), an atherosclerotic targeting drug nanocarrier. Unloaded rHDL, rHDL loaded with exogenous GM3 at a low concentration (GM3L-rHDL), and rHDL carrying GM3 at a relatively high concentration (GM3H-rHDL) were prepared and characterized. The inhibitory effect of GM3-rHDL on lipid deposition in macrophages was confirmed, and GM3-rHDL did not affect the survival of red blood cells. In vivo experiments using ApoE-/- mice fed a high fat diet further confirmed the anti-atherosclerotic efficacy of exogenous GM3 and demonstrated that GM3 packed in HDL nanoparticles (GM3-rHDL) has an enhanced anti-atherosclerotic efficacy and a reduced effective dose of GM3. Then, the macrophage- and atherosclerotic plaque-targeting abilities of GM3-rHD, most likely via the interaction of ApoA-I on GM3-rHDL with its receptors (e.g., SR-B1) on cells, were certified via a microsphere-based method and an aortic fragment-based method, respectively. Moreover, we found that solution acidification enhanced GM3 release from GM3-rHDL nanoparticles, implying the pH-responsive GM3 release when GM3-rHDL enters the acidic atherosclerotic plaques from the neutral blood. The rHDL-mediated atherosclerotic targetability and pH-responsive GM3 release of GM3-rHDL enhanced the anti-atherosclerotic efficacy of exogenous GM3. The development of the GM3-rHDL nanoparticle may help with the application of exogenous GM3 as a clinical drug. Moreover, the data imply that the GM3-rHDL nanoparticle has the potential of being recruited as a drug nanocarrier with atherosclerotic targetability and enhanced anti-atherosclerotic efficacy.


Assuntos
Aterosclerose/tratamento farmacológico , Gangliosídeo G(M3)/farmacologia , Lipoproteínas HDL , Macrófagos/efeitos dos fármacos , Nanopartículas/química , Placa Aterosclerótica/tratamento farmacológico , Animais , Aterosclerose/imunologia , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Sistemas de Liberação de Medicamentos , Gangliosídeo G(M3)/uso terapêutico , Humanos , Concentração de Íons de Hidrogênio , Metabolismo dos Lipídeos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout para ApoE , Células RAW 264.7
19.
Glycobiology ; 30(10): 787-801, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32350512

RESUMO

O-Acetylation of carbohydrates such as sialic acids is common in nature, but its role is not clearly understood due to the lability of O-acetyl groups. We demonstrated previously that 9-acetamido-9-deoxy-N-acetylneuraminic acid (Neu5Ac9NAc) is a chemically and biologically stable mimic of the 9-O-acetyl-N-acetylneuraminic acid (Neu5,9Ac2) of the corresponding sialoglycans. Here, a systematic nuclear magnetic resonance (NMR) spectroscopic and molecular dynamics (MD) simulation study was undertaken for Neu5,9Ac2-containing GM3 ganglioside glycan (GM3-glycan) and its Neu5Ac9NAc analog. GM3-glycan with Neu5Ac as the non-O-acetyl form of Neu5,9Ac2 was used as a control. Complete 1H and 13C NMR chemical shift assignments, three-bond 1H-13C trans-glycosidic coupling constants (3JCH), accurate 1H-1H coupling constants (3JHH), nuclear Overhauser effects and hydrogen bonding detection were carried out. Results show that structural modification (O- or N-acetylation) on the C-9 of Neu5Ac in GM3 glycan does not cause significant conformational changes on either its glycosidic dihedral angles or its secondary structure. All structural differences are confined to the Neu5Ac glycerol chain, and minor temperature-dependent changes are seen in the aglycone portion. We also used Density Functional Theory (DFT) quantum mechanical calculations to improve currently used 3JHH Karplus relations. Furthermore, OH chemical shifts were assigned at -10°C and no evidence of an intramolecular hydrogen bond was observed. The results provide additional evidence regarding structural similarities between sialosides containing 9-N-acetylated and 9-O-acetylated Neu5Ac and support the opportunity of using 9-N-acetylated Neu5Ac as a stable mimic to study the biochemical role of 9-O-acetylated Neu5Ac.


Assuntos
Teoria da Densidade Funcional , Gangliosídeo G(M3)/química , Simulação de Dinâmica Molecular , Polissacarídeos/química , Ácidos Siálicos/química , Configuração de Carboidratos , Gangliosídeo G(M3)/biossíntese , Espectroscopia de Ressonância Magnética , Ácido N-Acetilneuramínico/química , Polissacarídeos/biossíntese
20.
Int J Mol Sci ; 21(15)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707880

RESUMO

Mucopolysaccharidosis type II is a lysosomal storage disorder caused by a deficiency of iduronate-2-sulfatase (IDS) and characterized by the accumulation of the primary storage substrate, glycosaminoglycans (GAGs). Understanding central nervous system (CNS) pathophysiology in neuronopathic MPS II (nMPS II) has been hindered by the lack of CNS biomarkers. Characterization of fluid biomarkers has been largely focused on evaluating GAGs in cerebrospinal fluid (CSF) and the periphery; however, GAG levels alone do not accurately reflect the broad cellular dysfunction in the brains of MPS II patients. We utilized a preclinical mouse model of MPS II, treated with a brain penetrant form of IDS (ETV:IDS) to establish the relationship between markers of primary storage and downstream pathway biomarkers in the brain and CSF. We extended the characterization of pathway and neurodegeneration biomarkers to nMPS II patient samples. In addition to the accumulation of CSF GAGs, nMPS II patients show elevated levels of lysosomal lipids, neurofilament light chain, and other biomarkers of neuronal damage and degeneration. Furthermore, we find that these biomarkers of downstream pathology are tightly correlated with heparan sulfate. Exploration of the responsiveness of not only CSF GAGs but also pathway and disease-relevant biomarkers during drug development will be crucial for monitoring disease progression, and the development of effective therapies for nMPS II.


Assuntos
Encéfalo/metabolismo , Glicosaminoglicanos/metabolismo , Iduronato Sulfatase/metabolismo , Metabolismo dos Lipídeos , Lisossomos/metabolismo , Mucopolissacaridose II/sangue , Mucopolissacaridose II/líquido cefalorraquidiano , Adolescente , Animais , Biomarcadores/metabolismo , Encéfalo/patologia , Criança , Pré-Escolar , Dermatan Sulfato/sangue , Dermatan Sulfato/líquido cefalorraquidiano , Dermatan Sulfato/metabolismo , Terapia de Reposição de Enzimas , Feminino , Gangliosídeos/metabolismo , Glicosaminoglicanos/líquido cefalorraquidiano , Transplante de Células-Tronco Hematopoéticas , Heparitina Sulfato/sangue , Heparitina Sulfato/líquido cefalorraquidiano , Heparitina Sulfato/metabolismo , Humanos , Iduronato Sulfatase/genética , Iduronato Sulfatase/farmacologia , Lactente , Inflamação/metabolismo , Lisossomos/patologia , Masculino , Espectrometria de Massas , Camundongos , Camundongos Knockout , Mucopolissacaridose II/metabolismo , Mucopolissacaridose II/terapia , Proteínas de Neurofilamentos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA