Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Circ Res ; 135(2): e24-e38, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38813686

RESUMO

BACKGROUND: Chronically elevated neurohumoral drive, and particularly elevated adrenergic tone leading to ß-adrenergic receptor (ß-AR) overstimulation in cardiac myocytes, is a key mechanism involved in the progression of heart failure. ß1-AR (ß1-adrenergic receptor) and ß2-ARs (ß2-adrenergic receptor) are the 2 major subtypes of ß-ARs present in the human heart; however, they elicit different or even opposite effects on cardiac function and hypertrophy. For example, chronic activation of ß1-ARs drives detrimental cardiac remodeling while ß2-AR signaling is protective. The underlying molecular mechanisms for cardiac protection through ß2-ARs remain unclear. METHODS: ß2-AR signaling mechanisms were studied in isolated neonatal rat ventricular myocytes and adult mouse ventricular myocytes using live cell imaging and Western blotting methods. Isolated myocytes and mice were used to examine the roles of ß2-AR signaling mechanisms in the regulation of cardiac hypertrophy. RESULTS: Here, we show that ß2-AR activation protects against hypertrophy through inhibition of phospholipaseCε signaling at the Golgi apparatus. The mechanism for ß2-AR-mediated phospholipase C inhibition requires internalization of ß2-AR, activation of Gi and Gßγ subunit signaling at endosome and ERK (extracellular regulated kinase) activation. This pathway inhibits both angiotensin II and Golgi-ß1-AR-mediated stimulation of phosphoinositide hydrolysis at the Golgi apparatus ultimately resulting in decreased PKD (protein kinase D) and histone deacetylase 5 phosphorylation and protection against cardiac hypertrophy. CONCLUSIONS: This reveals a mechanism for ß2-AR antagonism of the phospholipase Cε pathway that may contribute to the known protective effects of ß2-AR signaling on the development of heart failure.


Assuntos
Miócitos Cardíacos , Receptores Adrenérgicos beta 2 , Transdução de Sinais , Animais , Masculino , Camundongos , Ratos , Animais Recém-Nascidos , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Células Cultivadas , Endocitose , Complexo de Golgi/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Fosfoinositídeo Fosfolipase C/metabolismo , Proteína Quinase C/metabolismo , Ratos Sprague-Dawley , Receptores Adrenérgicos beta 2/metabolismo
2.
J Cell Physiol ; 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38946197

RESUMO

The small Rho GTP-binding proteins are important cell morphology, function, and apoptosis regulators. Unlike other Rho proteins, RhoB can be subjected to either geranylgeranylation (RhoB-GG) or farnesylation (RhoB-F), making that the only target of the farnesyltransferase inhibitor (FTI). Fluorescence resonance energy transfer experiments revealed that RhoB is activated by hyperosmolarity. By contrast, hyposmolarity did not affect RhoB activity. Interestingly, treatment with farnesyltransferase inhibitor-277 (FTI-277) decreased the cell size. To evaluate whether RhoB plays a role in volume reduction, renal collecting duct MCD4 cells and Human Kidney, HK-2 were transiently transfected with RhoB-wildtype-Enhance Green Fluorescence Protein (RhoB-wt-EGFP) and RhoB-CLLL-EGFP which cannot undergo farnesylation. A calcein-based fluorescent assay revealed that hyperosmolarity caused a significant reduction of cell volume in mock and RhoB-wt-EGFP-expressing cells. By contrast, cells treated with FTI-277 or expressing the RhoB-CLLL-EGFP mutant did not properly respond to hyperosmolarity with respect to mock and RhoB-wt-EGFP expressing cells. These findings were further confirmed by 3D-LSCM showing that RhoB-CLLL-EGFP cells displayed a significant reduction in cell size compared to cells expressing RhoB-wt-EGFP. Moreover, flow cytometry analysis revealed that RhoB-CLLL-EGFP expressing cells as well as FTI-277-treated cells showed a significant increase in cell apoptosis. Together, these data suggested that: (i) RhoB is sensitive to hyperosmolarity and not to hyposmolarity; (ii) inhibition of RhoB farnesylation associates with an increase in cell apoptosis, likely suggesting that RhoB might be a paramount player controlling apoptosis by interfering with responses to cell volume change.

3.
Physiol Rep ; 12(3): e15928, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38296461

RESUMO

The protein kinase Mechanistic Target of Rapamycin (mTOR) in Complex 1 (mTORC1) is regulated in part by the Ras-related GTP-binding proteins (Rag GTPases). Rag GTPases form a heterodimeric complex consisting of either RagA or RagB associated with either RagC or RagD and act to localize mTORC1 to the lysosomal membrane. Until recently, RagA and RagB were thought to be functionally redundant, as were RagC and RagD. However, recent research suggests that the various isoforms differentially activate mTORC1. Here, the mRNA expression and protein abundance of the Rag GTPases was compared across male rat skeletal muscle, heart, liver, kidney, and brain. Whereas mRNA expression of RagA was higher than RagB in nearly all tissues studied, RagB protein abundance was higher than RagA in all tissues besides skeletal muscle. RagC mRNA expression was more abundant or equal to RagD mRNA, and RagD protein was more abundant than RagC protein in all tissues. Moreover, the proportion of RagB in the short isoform was greater than the long in liver, whereas the opposite was true in brain. These results serve to further elucidate Rag GTPase expression and offer potential explanations for the differential responses to amino acids that are observed in different tissues.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , Transdução de Sinais , Masculino , Ratos , Animais , Transdução de Sinais/fisiologia , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Aminoácidos/metabolismo , RNA Mensageiro/genética
4.
Neurol Int ; 16(1): 33-61, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38251051

RESUMO

Recent discoveries suggest links between abnormalities in cell morphogenesis in the brain and the functional deficiency of molecules controlling signal transduction in glial cells such as oligodendroglia. Rnd2 is one such molecule and one of the Rho family monomeric GTP-binding proteins. Despite the currently known functions of Rnd2, its precise roles as it relates to cell morphogenesis and disease state remain to be elucidated. First, we showed that signaling through the loss of function of the rnd2 gene affected the regulation of oligodendroglial cell-like morphological differentiation using the FBD-102b cell line, which is often utilized as a differentiation model. The knockdown of Rnd2 using the clustered regularly interspaced palindromic repeats (CRISPR)/CasRx system or RNA interference was shown to slow morphological differentiation. Second, the knockdown of Prag1 or Fyn kinase, a signaling molecule acting downstream of Rnd2, slowed differentiation. Rnd2 or Prag1 knockdown also decreased Fyn phosphorylation, which is critical for its activation and for oligodendroglial cell differentiation and myelination. Of note, hesperetin, a citrus flavonoid with protective effects on oligodendroglial cells and neurons, can recover differentiation states induced by the knockdown of Rnd2/Prag1/Fyn. Here, we showed that signaling through Rnd2/Prag1/Fyn is involved in the regulation of oligodendroglial cell-like morphological differentiation. The effects of knocking down the signaling cascade molecule can be recovered by hesperetin, highlighting an important molecular structure involved in morphological differentiation.

5.
Biol. Res ; 46(3): 265-273, 2013. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-692193

RESUMO

Purpose: The G-protein β3-subunit gene C825T polymorphism (GNB3-C825T) has been reported to be associated with essential hypertension (EH), but results from previous studies are conflicting. The present study aimed at investigating the association between this polymorphism and risk of EH using a meta-analysis on the published studies. Materials and Methods: PubMed, Embase, CBM (China Biological Medicine Database), Wanfang and VIP databases were searched to identify eligible studies published in English and Chinese before March 2013. Data were extracted using standardized methods. The association was assessed by the odds ratio (OR) with 95% confidence intervals (CI). Begg's test was used to measure publication bias. Results: A total of 40 case-control studies containing 16,518 EH patients and 20,284 controls were involved in this meta-analysis. Overall, a significant association was found between GNB3 C825T polymorphism and risk of EH when all studies were pooled with a random-effects model for T versus C (OR=1.09, 95% CI: 1.04-1.19). In the subgroup analysis, the same association was found in overall Caucasian (T versus C, OR=1.16, 95% CI 1.08-1.24) and Chinese populations (TT versus CC, OR=1.23, 95% CI 1.06-1.57). No associations were detected between GNB3-C825T and the risk of EH overall in Asian and Japanese people. Conclusions: Meta-analysis results suggest that the GNB3-C825T polymorphism is associated with risk of EH in the overall population, the Caucasians and the Chinese. The effect of the variants on the expression levels and the possible functional role of the variants in EH should be addressed in further studies.


Assuntos
Humanos , Predisposição Genética para Doença/genética , Proteínas Heterotriméricas de Ligação ao GTP/genética , Hipertensão/genética , Polimorfismo Genético/genética , China , Frequência do Gene , Genótipo , Fatores de Risco
7.
Biomédica (Bogotá) ; 30(2): 283-308, jun. 2010. ilus
Artigo em Espanhol | LILACS | ID: lil-560969

RESUMO

En el fagosoma, Mycobacterium spp. altera la activación y reclutamiento de diferentes proteínas “del gen Ras de cerebro de rata”, comúnmente conocidas como Rab. En este manuscrito se revisa una serie de reportes que han demostrado que los fagosomas que contienen micobacterias tienen una expresión mayor y sostenida de Rab5, Rab11, Rab14 y Rab22a, y menor o ninguna expresión de Rab7, Rab9 y Rab6. Esto se correlaciona con aumento de la fusión de estos fagosomas con endosomas tempranos y de reciclaje, lo que les permite mantener ciertas características de compartimentos tempranos, permite que las bacterias obtengan acceso a nutrientes y previene la activación de mecanismos contra la micobacteria. La expresión de mutantes constitutivamente activos de las Rab de endosomas tempranos impide la maduración de fagosomas que contienen esferas de látex o micobacterias inactivadas por calor. Mientras que su silenciamiento, mediante ARN de interferencia o mediante dominantes negativos, induce la maduración de fagosomas micobacterianos. Los mecanismos exactos por los que las micobacterias alteran la dinámica de expresión de estas GTPasas, afectando la maduración fagolisosómica, no se han establecido. El problema podría explicarse por defectos en el reclutamiento de las proteínas que interactúan con Rab, como la cinasa-3 del fosfatidilinositol y el antígeno endosómico temprano 1. La identificación de los mecanismos empleados por Mycobacterium spp. para interrumpir el ciclo de activación de las Rab, será esencial para comprender la fisiopatología de la infección micobacteriana y útil como posibles blancos farmacológicos.


At the phagosome level, Mycobacterium spp. alters activation and recruitment of several “Ras gene from rat brain” proteins, commonly known as Rab. Mycobacterial phagosomes have a greater and sustained expression of Rab5, Rab11, Rab14 and Rab22a, and lowered or no expression of Rab7, Rab9 and Rab6. This correlates with increased fusion of the phagosomes with early and recycling endosomes acquiring some features of early phogosomes, allowing the bacteria to gain access to nutrients and preventing the activation of anti-mycobacterial mechanisms. The expression of constitutively active mutants of Rab from the early stage endosomes prevents the maturation of phagosomes containing latex beads or heat-inactivated mycobacteria. Silencing of these mutants by interference RNA or dominant negative forms induces the maturation of mycobacterial phagosomes. The mechanisms have not been established by which mycobacteria alter the expression of these GTPases and thereby shift the phagolysosomal maturation. The problem can be explained by alterations in the recruitment of proteins that interact with Rab, such as phosphoinositide 3-kinases and early endosomal antigen 1. Identifying the mechanisms used by Mycobacterium spp. to disrupt the cycle of Rab activation will be essential to understand the pathophysiology of mycobacterial infections and usefully to potential drug targets.


Assuntos
Mycobacterium tuberculosis , Fagossomos , Proteínas rab de Ligação ao GTP , Tuberculose , Endossomos , Proteínas SNARE
8.
São Paulo; s.n; 2014. 117 p. ilus, graf.
Tese em Português | LILACS | ID: lil-750113

RESUMO

O desenvolvimento das doenças neurodegenerativas, como a doença de Alzheimer, está associado à presença de agregados proteicos contendo Tau hiperfosforilada (p-Tau). Esta disfunção da Tau leva a prejuízos na homeostase celular. Um mecanismo chave para diminuir e/ou prevenir os danos promovidos pelos agregados contendo Tau seria o estímulo de sua degradação. Neste sentido, a proposta do presente estudo foi analisar a degradação da proteína Tau após aumento da expressão exógena da cochaperona Bag-2, a qual influencia o sistema proteassomal de degradação; bem como avaliar a ativação dos sistemas de degradação, a fim de correlacionar estes sistemas em cultura de células primárias e organotípica do hipocampo de ratos. Os resultados mostraram que a rotenona foi capaz de aumentar os níveis de p-Tau e que a superexpressão de Bag-2, foi eficiente em prevenir e degradar a p-Tau. O mecanismo envolvido neste processo envolve a coordenação dos sistemas proteassomal e lisossomal, já que a Rab7 e a Rab24 (envolvidas na via lisossomal) mostraram-se diminuídas na fase que antecede a agregação proteica, enquanto houve aumento da Rab24 na presença dos agregados proteicos. Com relação ao peptídeo beta amiloide, foi demonstrado tendência de aumento de p-Tau acompanhado de diminuição da atividade proteassomal e lisossomal. O tratamento com PADK (ativador lisossomal) foi capaz de reverter este efeito nestas diferentes condições. A análise da interrelação entre os sistemas mostrou que uma inibição do proteassoma favorece a via lisossomal e que o inverso não se repete. Os resultados sugerem que a modulação das vias de degradação pode ser interessante para o estudo, prevenção e tratamento das doenças neurodegenerativas associadas à agregação de proteínas...


Neurodegenerative diseases, such as Alzheimer's, are associated to protein inclusions containing hyperphosphorylated Tau (p-Tau). It is well established that Tau dysfunction impairs cell homeostasis. A key mechanism to prevent and/or reduce the damage promoted by aggregates of Tau might be its degradation. In view of this, the aims of the present study are to evaluate p- Tau clearance following exogenous expression of Bag-2, which stimulates proteasome; as well as to analyze the activation of both lysosome and proteasome pathways in order to understand the crosstalk between these two systems in primary and organotypic cultures of rat hippocampus. Results showed that rotenone was able of increasing p-Tau that was prevented and degraded by Bag-2 overexpression. Mechanisms involved in this process involve the coordination of cell degradation systems, depending upon aggregation status, since Rab7 and Rab24 (involved in lysosomal pathway) were decreased before protein aggregation, while Rab24 increased in the presence of protein inclusions. Amyloid-beta peptide also increased p-Tau accompanied by decreased proteasome and lysosome activity. PADK (lysosomal activator) treatment reverted the inhibition promoted by amyloidbeta peptide. Inhibition of proteasome leads to activation of lysosome, but lysosome inhibition does not affect proteasome. Overall, results suggest that targeting degradation pathways might be useful to understand, prevent and treat neurodegenerative diseases associated with protein deposits...


Assuntos
Animais , Ratos , Doença de Alzheimer , Peptídeos beta-Amiloides , Lisossomos , Chaperonas Moleculares , Doenças Neurodegenerativas , Emaranhados Neurofibrilares , Proteínas rab de Ligação ao GTP , Rotenona/farmacologia , Proteínas tau , Tauopatias/fisiopatologia , Envelhecimento , Hipocampo , Modelos Animais , Ratos Endogâmicos Lew , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA