Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
BMC Vet Res ; 19(1): 224, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37891597

RESUMO

BACKGROUND: Sheep and goat pox (SGP) caused by sheep poxvirus (SPV) and goat poxvirus (GPV) respectively; are transboundary and World Organisation for Animal Health (WOAH)-notifiable viral diseases. There is barely any coherent information about the distribution and prevalence of SGP for Uganda. We therefore conducted this study to describe the temporal and spatial distribution of SGP suspected outbreaks in Uganda for the period 2011-2020 as well as serologically confirm presence of SGP antibodies in suspected SGP outbreaks reported in 2021-2022. RESULTS: Thirty-seven [37] SGP outbreaks were reported across the country during the study period. North-eastern region [that comprises of Karamoja region] had the highest number of outbreaks [n = 17, 45%]; followed by Central [n = 9, 2.4%], Northern [n = 8, 2.2%] and Western region [n = 3, 0.08%]. Reports from district veterinary personnel indicate that the prevalence of; and mortality rate and case fatality rate associated with SGP were 0.06%, 0.02% and 32% respectively. There was a steady increase in the number of reported SGP outbreaks [x̄ = 4] over the study period. Seropositivity of SGPV antibodies in outbreak sheep and goats that were investigated during the study period [2021-2022] was [n = 41, 27%, 95 CI;] CONCLUSION: Our analyses of SGPV passive and active reports indicate that SGP is present in Uganda with a decade long average of four outbreaks per annum. During this period, about a third of all SGPV-clinically infected animals died. SPG is therefore a major constraint to small ruminant health and productivity in Uganda. Introduction of animals from infected herds and breach in farm biosecurity were the most important predictors of SGP outbreaks. In addition to the already existing SGP commercial vaccines, small ruminant screening for SGPV before introducing them to naïve herds and ensuring on farm biosecurity should be part of the SGP control tool pack for Ugandan small ruminant farmers.


Assuntos
Capripoxvirus , Doenças das Cabras , Infecções por Poxviridae , Doenças dos Ovinos , Ovinos , Animais , Uganda/epidemiologia , Doenças das Cabras/epidemiologia , Doenças dos Ovinos/epidemiologia , Infecções por Poxviridae/epidemiologia , Infecções por Poxviridae/veterinária , Cabras , Surtos de Doenças/veterinária , Análise Espaço-Temporal
2.
J Virol ; 92(18)2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29950422

RESUMO

Goatpox virus (GTPV) is an important member of the Capripoxvirus genus of the Poxviridae Capripoxviruses have large and complex DNA genomes encoding many unknown proteins that may contribute to virulence. We identified that the 135 open reading frame of GTPV is an early gene that encodes an ∼18-kDa protein that is nonessential for viral replication in cells. This protein functioned as an inhibitor of NF-κB activation and apoptosis and is similar to the N1L protein of vaccinia virus. In the natural host, sheep, deletion of the 135 gene from the GTPV live vaccine strain AV41 resulted in less attenuation than that induced by deletion of the tk gene, a well-defined nonessential gene in the poxvirus genome. Using the 135 gene as the insertion site, a recombinant AV41 strain expressing hemagglutinin of peste des petits ruminants virus (PPRV) was generated and elicited stronger neutralization antibody responses than those obtained using the traditional tk gene as the insertion site. These results suggest that the 135 gene of GTPV encodes an immunomodulatory protein to suppress host innate immunity and may serve as an optimized insertion site to generate capripoxvirus-vectored live dual vaccines.IMPORTANCE Capripoxviruses are etiological agents of important diseases in sheep, goats, and cattle. There are rare reports about viral protein function related to capripoxviruses. In the present study, we found that the 135 protein of GTPV plays an important role in inhibition of innate immunity and apoptosis in host cells. Use of the 135 gene as the insertion site to generate a vectored vaccine resulted in stronger adaptive immune responses than those obtained using the tk locus as the insertion site. As capripoxviruses are promising virus-vectored vaccines against many important diseases in small ruminants and cattle, the 135 gene may serve as an improved insertion site to generate recombinant capripoxvirus-vectored live dual vaccines.


Assuntos
Apoptose/genética , Capripoxvirus/genética , NF-kappa B/antagonistas & inibidores , Proteínas Virais/genética , Vacinas Virais/genética , Animais , Capripoxvirus/imunologia , Capripoxvirus/patogenicidade , Vetores Genéticos , Células HEK293 , Hemaglutininas/genética , Hemaglutininas/imunologia , Humanos , Imunidade Inata , Fatores Imunológicos/imunologia , Mutagênese Insercional , NF-kappa B/genética , Fases de Leitura Aberta/genética , Vírus da Peste dos Pequenos Ruminantes/química , Vírus da Peste dos Pequenos Ruminantes/genética , Vírus da Peste dos Pequenos Ruminantes/imunologia , Ovinos , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Proteínas Virais/química , Proteínas Virais/isolamento & purificação , Vacinas Virais/imunologia
3.
Viruses ; 16(7)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39066289

RESUMO

Sheeppox virus (SPPV), goatpox virus (GTPV), and lumpy skin disease virus (LSDV) are the three members of the genus Capripoxvirus within the Poxviridae family and are the etiologic agents of sheeppox (SPP), goatpox (GTP), and lumpy skin disease (LSD), respectively. LSD, GTP, and SPP are endemic in Africa and Asia, causing severe disease outbreaks with significant economic losses in livestock. Incursions of SPP and LSD have occurred in Europe. Vaccination with live attenuated homologous and heterologous viruses are routinely implemented to control these diseases. Using the gold standard virus neutralization test, we studied the ability of homologous and heterologous sera to neutralize the SPPV and LSDV. We found that LSD and SPP sera effectively neutralize their homologous viruses, and GTP sera can neutralize SPPV. However, while LSD sera effectively neutralizes SPPV, SPP and GTP sera cannot neutralize the LSDV to the same extent. We discuss the implications of these observations in disease assay methodology and heterologous vaccine efficacy.


Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Capripoxvirus , Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Testes de Neutralização , Infecções por Poxviridae , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Vírus da Doença Nodular Cutânea/imunologia , Vírus da Doença Nodular Cutânea/genética , Capripoxvirus/imunologia , Capripoxvirus/genética , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Ovinos , Doença Nodular Cutânea/prevenção & controle , Doença Nodular Cutânea/imunologia , Doença Nodular Cutânea/virologia , Infecções por Poxviridae/veterinária , Infecções por Poxviridae/imunologia , Infecções por Poxviridae/prevenção & controle , Infecções por Poxviridae/virologia , Doenças dos Ovinos/virologia , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/prevenção & controle , Cabras
4.
Front Vet Sci ; 10: 1175391, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37448583

RESUMO

Introduction: Three members of Capripoxvirus (CaPV) genus, including lumpy skin disease virus (LSDV), goatpox virus (GTPV), and sheeppox virus (SPPV), are mentioned as notifiable forms by World Organization for Animal Health. These viruses have negatively impacted ruminant farming industry worldwide, causing great economic losses. Although SPPV and GTPV cause more severe clinical disease in only one animal species, they can transfer between sheep and goats. Both homologous and heterologous immunization strategies are used to protect animals against CaPVs. However, development of accurate and rapid methods to distinguish these three viruses is helpful for the early detection, disease surveillance, and control of CaPV infection. Therefore, we developed a novel triplex real-time PCR (qPCR) for the differentiation of LSDV, GTPV, and SPPV. Methods: Universal primers were designed to detect pan-CaPV sequences. Species-specific minor groove binder (MGB)-based probes were designed, which were labeled with FAM for LSDV, HEX for GTPV, and ROX for SPPV. The sensitivity, specificity, reproducibility, and ability of detecting mixed infections were evaluated for the triplex qPCR. Further, 226 clinical samples of the infection and negative controls were subjected to the triplex qPCR, and the results were verified using PCR-restriction fragment length polymorphism (PCR-RFLP) and sequencing methods for PRO30 gene. Results: The triplex qPCR could successfully distinguish LSDV, GTPV, and SPPV in one reaction, and the assay sensitivity was 5.41, 27.70, and 17.28 copies/µL, respectively. No cross-reactivity was observed with other viruses causing common ruminant diseases, including des petits ruminants virus, foot-and-mouth disease virus, bluetongue virus, ovine contagious pustular dermatitis virus, infectious bovine rhinotracheitis virus, and bovine viral diarrhea-mucosal disease virus. Inter-and intra-assay variabilities were < 2.5%. The results indicated that the triplex qPCR was highly specific, sensitive, and reproducible. Simulation experiments revealed that this assay could successfully distinguish two or three viruses in case of mixed infections without any cross-reaction. For clinical samples, the results were completely consistent with the results of PCR-RFLP and sequencing. This demonstrated that the assay was reliable for clinical application. Discussion: The triplex qPCR is a robust, rapid, and simple tool for identifying various types of CaPV as it can successfully distinguish LSDV, GTPV, and SPPV in one reaction. Furthermore, the assay can facilitate more accurate disease diagnosis and surveillance for better control of CaPV infection.

5.
Viruses ; 15(12)2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-38140559

RESUMO

Sheeppox, goatpox, and lumpy skin disease caused by the sheeppox virus (SPPV), goatpox virus (GTPV), and lumpy skin disease virus (LSDV), respectively, are diseases that affect millions of ruminants and many low-income households in endemic countries, leading to great economic losses for the ruminant industry. The three viruses are members of the Capripoxvirus genus of the Poxviridae family. Live attenuated vaccines remain the only efficient means for controlling capripox diseases. However, serological tools have not been available to differentiate infected from vaccinated animals (DIVA), though crucial for proper disease surveillance, control, and eradication efforts. We analysed the sequences of variola virus B22R homologue gene for SPPV, GTPV, and LSDV and observed significant differences between field and vaccine strains in all three capripoxvirus species, resulting in the truncation and absence of the B22R protein in major vaccines within each of the viral species. We selected and expressed a protein fragment present in wildtype viruses but absent in selected vaccine strains of all three species, taking advantage of these alterations in the B22R gene. An indirect ELISA (iELISA) developed using this protein fragment was evaluated on well-characterized sera from vaccinated, naturally and experimentally infected, and negative cattle and sheep. The developed wildtype-specific capripox DIVA iELISA showed >99% sensitivity and specificity for serum collected from animals infected with the wildtype virus. To the best of our knowledge, this is the first wildtype-specific, DIVA-capable iELISA for poxvirus diseases exploiting changes in nucleotide sequence alterations in vaccine strains.


Assuntos
Capripoxvirus , Vírus da Doença Nodular Cutânea , Infecções por Poxviridae , Doenças dos Ovinos , Vacinas Virais , Ovinos , Bovinos , Animais , Capripoxvirus/genética , Mutação , Genoma Viral , Vírus da Doença Nodular Cutânea/genética , Infecções por Poxviridae/diagnóstico , Infecções por Poxviridae/prevenção & controle , Infecções por Poxviridae/veterinária , Vacinas Virais/genética , Doenças dos Ovinos/epidemiologia , Cabras
6.
Anal Chim Acta ; 1267: 341391, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37257965

RESUMO

Capripoxvirus (CaPV) contains three viruses that have caused massive losses in the livestock and dairy industries. Accurate CaPV differentiation has far-reaching implications for effectively controlling outbreaks. However, it has a great challenge to distinguishing three viruses due to high homology of 97%. Here, we established a sensitive CRISPR/Cas12a array based on Multiple-recombinase polymerase amplification (M-RPA) for CaPV differentiation, which provided a more comprehensive and accurate differentiation mode targeting VARV B22R and RPO30 genes. By sensitive CRISPR/Cas12a and M-RPA, the actual detection limits of three viruses were as low as 50, 40 and 60 copies, respectively. Moreover, Lateral flow dipstick (LFD) array based on CRISPR/Cas12a achieved portable and intuitive detection, making it suitable for point-of-care testing. Therefore, CRISPR/Cas12a array and LFD array paved the way for CaPV differentiation in practice. Additionally, we constructed a real-time quantitative PCR (qPCR) array to fill the qPCR technical gap in differentiation and to facilitate the quarantine departments.


Assuntos
Capripoxvirus , Infecções por Poxviridae , Animais , Capripoxvirus/genética , Infecções por Poxviridae/diagnóstico , Cabras/genética , Reação em Cadeia da Polimerase em Tempo Real , Técnicas de Amplificação de Ácido Nucleico , Sensibilidade e Especificidade
7.
Microorganisms ; 10(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36296232

RESUMO

Sheeppox (SPP), goatpox (GTP), and lumpy skin disease (LSD) are economically significant pox diseases of ruminants, caused by sheeppox virus (SPPV), goatpox virus (GTPV), and lumpy skin disease virus (LSDV), respectively. SPPV and GTPV can infect both sheep and goats, while LSDV mainly affects cattle. The recent emergence of LSD in Asia and Europe and the repeated incursions of SPP in Greece, Bulgaria, and Russia highlight how these diseases can spread outside their endemic regions, stressing the urgent need to develop high-throughput serological surveillance tools. We expressed and tested two recombinant truncated proteins, the capripoxvirus homologs of the vaccinia virus C-type lectin-like protein A34 and the EEV glycoprotein A36, as antigens for an indirect ELISA (iELISA) to detect anti-capripoxvirus antibodies. Since A34 outperformed A36 by showing no cross-reactivity to anti-parapoxvirus antibodies, we optimized an A34 iELISA using two different working conditions, one for LSD in cattle and one for SPP/GTP in sheep and goats. Both displayed sound sensitivities and specificities: 98.81% and 98.72%, respectively, for the LSD iELISA, and 97.68% and 95.35%, respectively, for the SPP/GTP iELISA, and did not cross-react with anti-parapoxvirus antibodies of cattle, sheep, and goats. These assays could facilitate the implementation of capripox control programs through serosurveillance and the screening of animals for trade.

8.
Microorganisms ; 9(4)2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33923417

RESUMO

Goatpox virus (GTPV) belongs to the genus Capripoxvirus, together with sheeppox virus (SPPV) and lumpy skin disease virus (LSDV). GTPV primarily affects sheep, goats and some wild ruminants. Although GTPV is only present in Africa and Asia, the recent spread of LSDV in Europe and Asia shows capripoxviruses could escape their traditional geographical regions to cause severe outbreaks in new areas. Therefore, it is crucial to develop effective source tracing of capripoxvirus infections. Earlier, conventional phylogenetic methods, based on limited samples, identified three different nucleotide sequence profiles in the G-protein-coupled chemokine receptor (GPCR) gene of GTPVs. However, this method did not differentiate GTPV strains by their geographical origins. We have sequenced the GPCR gene of additional GTPVs and analyzed them with publicly available sequences, using conventional alignment-based methods and an alignment-free approach exploiting k-mer frequencies. Using the alignment-free method, we can now classify GTPVs based on their geographical origin: African GTPVs and Asian GTPVs, which further split into Western and Central Asian (WCA) GTPVs and Eastern and Southern Asian (ESA) GTPVs. This approach will help determine the source of introduction in GTPV emergence in disease-free regions and detect the importation of additional strains in disease-endemic areas.

9.
Anim Dis ; 1(1): 28, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34806086

RESUMO

Sheep pox, goat pox, and lumpy skin diseases are economically significant and contagious viral diseases of sheep, goats and cattle, respectively, caused by the genus Capripoxvirus (CaPV) of the family Poxviridae. Currently, CaPV infection of small ruminants (sheep and goats) has been distributed widely and are prevalent in Central Africa, the Middle East, Europe and Asia. This disease poses challenges to food production and distribution, affecting rural livelihoods in most African countries, including Ethiopia. Transmission occurs mainly by direct or indirect contact with infected animals. They cause high morbidity (75-100% in endemic areas) and mortality (10-85%). Additionally, the mortality rate can approach 100% in susceptible animals. Diagnosis largely relies on clinical symptoms, confirmed by laboratory testing using real-time PCR, electron microscopy, virus isolation, serology and histology. Control and eradication of sheep pox virus (SPPV), goat pox virus (GTPV), and lumpy skin disease (LSDV) depend on timely recognition of disease eruption, vector control, and movement restriction. To date, attenuated vaccines originating from KSGPV O-180 strains are effective and widely used in Ethiopia to control CaPV throughout the country. This vaccine strain is clinically safe to control CaPV in small ruminants but not in cattle which may be associated with insufficient vaccination coverage and the production of low-quality vaccines.

10.
Microorganisms ; 9(4)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917525

RESUMO

Outbreaks of the three capripox virus species, namely lumpy skin disease virus, sheeppox virus, and goatpox virus, severely affect animal health and both national and international economies. Therefore, the World Organization for Animal Health (OIE) classified them as notifiable diseases. Until now, discrimination of capripox virus species was possible by using different conventional PCR protocols. However, more sophisticated probe-based real-time qPCR systems addressing this issue are, to our knowledge, still missing. In the present study, we developed several duplex qPCR assays consisting of different types of fluorescence-labelled probes that are highly sensitive and show a high analytical specificity. Finally, our assays were combined with already published diagnostic methods to a diagnostic workflow that enables time-saving, reliable, and robust detection, differentiation, and characterization of capripox virus isolates.

11.
Virusdisease ; 31(4): 526-533, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33381625

RESUMO

Sheeppox virus (SPPV) and goatpox virus (GTPV) are two pathogens of host specificity. Previous studies have hypothesized that ankyrin (ANK) family may play an important role in determining host range of SPPV and GTPV. In order to verify the function of ANK proteins, it is critical to generate and purify the ANK gene deleted GTPV. In this study, the GFP gene as a reporter gene was connected with two homologous arms of ANK gene by fusion PCR. The ANK gene deleted transfer vectors were generated by inserting the PCR products into PET42b, and were transfected into testicular primary cells which were infected by GTPV. The rGTPV were identified as green fluorescence positive and properly purified. The results showed that GFP gene and two homologous arms of ANK gene were connected. The sequence was inserted in PET42b to form ANK deleted transfer vector. ANK deleted rGTPV was generated successfully by transferring vector and GTPV in cells. The ANK deleted rGTPV was purified and identified in this study. The study successfully generated the ANK deleted rGTPV. It overcomes the technical barrier for future studies about the function of ANK genes.

12.
Microorganisms ; 8(12)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371463

RESUMO

Capripox viruses (CaPVs) cause a highly contagious poxvirus disease of livestock animals. Working with CaPVs requires laboratories with a high biosecurity level (BSL 3), and reliable inactivation of these viruses is therefore necessary for working in areas or laboratories with a lower biosecurity status. Heat treatment provides a simple and well-established tool for the inactivation due to its substantial advantages (e.g., easy to perform, fast, cheap, and robust). In our study, we determined the time-temperature profiles needed for a fail-safe inactivation procedure using four different CaPV isolates in aqueous solution with and without the addition of protective serum. All four tested CaPV isolates were completely inactivated after 30 min at 56 °C or 10 min at 60 °C. Since different thermal stabilities of other CaPV isolates could not be fully excluded, we recommend an inactivation procedure of 1 h at 56 °C for safe shipment or working in laboratories with lower biosecurity levels than BSL 3.

13.
Viruses ; 12(10)2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998423

RESUMO

Capripox viruses, with their members "lumpy skin disease virus (LSDV)", "goatpox virus (GTPV)" and "sheeppox virus (SPPV)", are described as the most serious pox diseases of production animals. A GTPV isolate and a SPPV isolate were sequenced in a combined approach using nanopore MinION sequencing to obtain long reads and Illumina high throughput sequencing for short precise reads to gain full-length high-quality genome sequences. Concomitantly, sheep and goats were inoculated with SPPV and GTPV strains, respectively. During the animal trial, varying infection routes were compared: a combined intravenous and subcutaneous infection, an only intranasal infection, and the contact infection between naïve and inoculated animals. Sheep inoculated with SPPV showed no clinical signs, only a very small number of genome-positive samples and a low-level antibody reaction. In contrast, all GTPV inoculated or in-contact goats developed severe clinical signs with high viral genome loads observed in all tested matrices. Furthermore, seroconversion was detected in nearly all goats and no differences concerning the severity of the disease depending on the inoculation route were observed. Conclusively, the employed SPPV strain has the properties of an attenuated vaccine strain, consistent with the genetic data, whereas the GTPV strain represents a highly virulent field strain.


Assuntos
Capripoxvirus/genética , Infecções por Poxviridae/veterinária , Infecções por Poxviridae/virologia , Ruminantes/virologia , Animais , Capripoxvirus/classificação , DNA Viral , Feminino , Genoma Viral , Doenças das Cabras/imunologia , Doenças das Cabras/virologia , Cabras/virologia , Masculino , Filogenia , Infecções por Poxviridae/imunologia , Ovinos/virologia , Doenças dos Ovinos/imunologia , Doenças dos Ovinos/virologia , Vacinas Atenuadas
14.
J Virol Methods ; 266: 58-64, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30703412

RESUMO

Mixed infections with different pathogens are common in sheep and goats under intensive production conditions. Quick and accurate detection and differentiation of different pathogens is necessary for epidemiological surveillance, disease management and import and export controls. Multiplex TaqMan qPCR protocols were developed and subsequently evaluated as effective tools in simultaneously detecting single and mixed infections in sheep and goats. Four pairs of primers and four probes labeled with Rox/BHQ2, Cy5/BHQ2, Hex/BHQ1 and Fam/BHQ1 for peste des petits ruminants virus (PPRV), foot and mouth disease virus (FMDV), goat pox virus (GTPV) and orf virus (ORFV), respectively, were used in the multiplex TaqMan qPCR assay. The assay was shown to be sensitive with detection limits of 9.17 × 101, 1.69 × 102, 9.41 × 101 and 7.46 × 101 copies/µL for PPRV, FMDV, GTPV and ORFV from a mixture of four viruses in a reaction, respectively. The assay was highly specific in its ability to detect one or more viruses in various combinations in the specimens. 38 clinical samples collected from sheep and goats were detected among 43 samples tested by multiplex TaqMan qPCR, showing highly effective identification. Overall, the multiplex TaqMan qPCR panel provides a fast, specific, and sensitive diagnostic tool for the accurate detection of multiple viral pathogens in sheep and goats.


Assuntos
Infecções por Vírus de DNA/veterinária , Vírus de DNA/isolamento & purificação , Reação em Cadeia da Polimerase Multiplex/veterinária , Infecções por Vírus de RNA/veterinária , Vírus de RNA/isolamento & purificação , Animais , Infecções por Vírus de DNA/diagnóstico , Doenças das Cabras/diagnóstico , Doenças das Cabras/virologia , Cabras/virologia , Infecções por Vírus de RNA/diagnóstico , RNA Viral/genética , Sensibilidade e Especificidade , Ovinos/virologia , Doenças dos Ovinos/diagnóstico , Doenças dos Ovinos/virologia
15.
J Virol Methods ; 243: 44-49, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28111057

RESUMO

Multiplex reverse transcription-polymerase chain reaction (RT-PCR) and PCR protocols were developed and subsequently evaluated for its effectiveness in detecting simultaneously single and mixed infections in sheep and goats. Specific primers for three DNA viruses and three RNA viruses, including foot and mouth disease virus (FMDV), Bluetongue virus (BTV), peste des petits ruminants virus (PPRV), sheeppox virus (SPPV), goatpox virus (GTPV) and orf virus (ORFV) were used for testing procedure. A single nucleic acid extraction protocol was adopted for the simultaneous extraction of both RNA and DNA viruses. The multiplex PCR consisted with two-step procedure which included reverse transcription of RNA virus and multiplex PCR of viral cDNA and DNA. The multiplex PCR assay was shown to be sensitive because it could detect at least 100pg of viral genomic DNA or RNA from a mixture of six viruses in a reaction. The assay was also highly specific in detecting one or more of the same viruses in various combinations in specimens. Thirty seven clinical samples collected from sheep and goats were detected among forty three samples tested by both uniplex and multiplex PCR, showing highly identification. As results of the sensitivity and specificity, the multiplex PCR is a useful approach for clinical diagnosis of mixed infections of DNA and RNA viruses in sheep and goats with a reaction.


Assuntos
Vírus de DNA/isolamento & purificação , Doenças das Cabras/diagnóstico , Reação em Cadeia da Polimerase Multiplex/métodos , Vírus de RNA/isolamento & purificação , Doenças dos Ovinos/diagnóstico , Viroses/veterinária , Animais , Vírus de DNA/classificação , Vírus de DNA/genética , Doenças das Cabras/virologia , Cabras , Vírus de RNA/classificação , Vírus de RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Sensibilidade e Especificidade , Ovinos , Doenças dos Ovinos/virologia , Viroses/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA