Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 377(2143): 20180206, 2019 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-30827220

RESUMO

The fundamental mechanisms governing macroscopic freckle defect formation during directional solidification are studied experimentally in a Hele-Shaw cell for a low-melting point Ga-25 wt.% In alloy and modelled numerically in three dimensions using a microscopic parallelized Cellular Automata Lattice Boltzmann Method. The size and distribution of freckles (long solute channels, or chimneys) are shown to be strongly dependent on the thermal profile of the casting, with flat, concave and convex isotherms being considered. For the flat isotherm case, no large-scale freckles form, while for concave or convex isotherms, large freckles appear but in different locations. The freckle formation mechanism is as expected buoyancy-driven, but the chimney stability, its long-term endurance and its location are shown to depend critically on the detailed convective transport through the inter-dendritic region. Flow is generated by curved isopleths of solute concentration. As solute density is different from that of the bulk fluid, gravity causes 'uphill' or 'downhill' lateral flow from the sample centre to the edges through the mush, feeding the freckle. An excellent agreement is obtained between the numerical model and real-time X-ray observations of a solidifying sample under strictly controlled temperature conditions. This article is part of the theme issue 'Heterogeneous materials: metastable and non-ergodic internal structures'.

2.
Nanomaterials (Basel) ; 13(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37110943

RESUMO

Nanolattices can play the role of templates for metals and metallic alloys to produce functional nanocomposites with particular properties affected by nanoconfinement. To imitate the impact of nanoconfinement on the structure of solid eutectic alloys, we filled porous silica glasses with the Ga-In alloy, which is widely used in applications. Small-angle neutron scattering was observed for two nanocomposites, which comprised alloys of close compositions. The results obtained were treated using different approaches: the common Guinier and extended Guinier models, the recently suggested computer simulation method based on the initial formulae for neutron scattering, and ordinary estimates of the scattering hump positions. All of the approaches predicted a similar structure of the confined eutectic alloy. The formation of ellipsoid-like indium-rich segregates was demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA