Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 70, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519936

RESUMO

BACKGROUND: Eriophyoid mites (Eriophyoidea) are among the largest groups in the Acariformes; they are strictly phytophagous. The higher-level phylogeny of eriophyoid mites, however, remains unresolved due to the limited number of available morphological characters-some of them are homoplastic. Nevertheless, the eriophyoid mites sequenced to date showed highly variable mitochondrial (mt) gene orders, which could potentially be useful for resolving the higher-level phylogenetic relationships. RESULTS: Here, we sequenced and compared the complete mt genomes of 153 eriophyoid mite species, which showed 54 patterns of rearranged mt gene orders relative to that of the hypothetical ancestor of arthropods. The shared derived mt gene clusters support the monophyly of eriophyoid mites (Eriophyoidea) as a whole and the monophylies of six clades within Eriophyoidea. These monophyletic groups and their relationships were largely supported in the phylogenetic trees inferred from mt genome sequences as well. Our molecular dating results showed that Eriophyoidea originated in the Triassic and diversified in the Cretaceous, coinciding with the diversification of angiosperms. CONCLUSIONS: This study reveals multiple molecular synapomorphies (i.e. shared derived mt gene clusters) at different levels (i.e. family, subfamily or tribe level) from the complete mt genomes of 153 eriophyoid mite species. We demonstrated the use of derived mt gene clusters in unveiling the higher-level phylogeny of eriophyoid mites, and underlines the origin of these mites and their co-diversification with angiosperms.


Assuntos
Genoma Mitocondrial , Magnoliopsida , Ácaros , Animais , Filogenia , Ácaros/genética , Genes Mitocondriais , Família Multigênica , Magnoliopsida/genética
2.
Mol Biol Rep ; 51(1): 298, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38341808

RESUMO

BACKGROUND: Brachiopods are a phylum of marine invertebrates with over 10,000 fossil species. Today, there are fewer than 500 extant species assigned to the class Articulata or Inarticulata and for which knowledge of evolutionary genetics and genomics is still poor. Until now, complete mitogenome sequences of two inarticulate species and four articulate species were available. METHODS AND RESULTS: The complete mitogenome of the inarticulate brachiopod species Lingula reevii (20,778 bp) was obtained by using next generation sequencing. It contains 12 protein-coding genes (the annotation of atp8 is unsure), two ribosomal RNA genes, 26 transfer RNA genes, and one supernumerary ORF that is also conserved in the inarticulate species Lingula anatina. It is hypothesized that this ORF could represent a Lingula-specific mtORFan gene (without obvious homology to other genes). Comparative mitogenomics indicate the mitochondrial gene order of L. reevii is unique among brachiopods, and that compared to articulate species, inarticulate species exhibit massive mitogenome rearrangements, deviant ATP8 protein sequences and supernumerary ORFs, possibly representing species- or lineage-specific mtORFan genes. CONCLUSION: The results of this study enrich genetics knowledge of extant brachiopods, which may eventually help to test hypotheses about their decline.


Assuntos
Genoma Mitocondrial , Invertebrados , Animais , Invertebrados/genética , Evolução Biológica , Genômica , Genes Mitocondriais , Sequência de Aminoácidos , Genoma Mitocondrial/genética , Filogenia
3.
Mol Biol Evol ; 38(3): 981-985, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33027524

RESUMO

The mitochondrial genetic code is much more varied than the standard genetic code. The invertebrate mitochondrial code, for instance, comprises six initiation codons, including five alternative start codons. However, only two initiation codons are known in the echinoderm and flatworm mitochondrial code, the canonical ATG and alternative GTG. Here, we analyzed 23 Asteroidea mitogenomes, including ten newly sequenced species and unambiguously identified at least two other start codons, ATT and ATC, both of which also initiate translation of mitochondrial genes in other invertebrates. These findings underscore the diversity of the genetic code and expand upon the suite of initiation codons among echinoderms to avoid erroneous annotations. Our analyses have also uncovered the remarkable conservation of gene order among asteroids, echinoids, and holothuroids, with only an interchange between two gene positions in asteroids over ∼500 Ma of echinoderm evolution.


Assuntos
Códon de Iniciação , Equinodermos/genética , Ordem dos Genes , Genoma Mitocondrial , Animais
4.
BMC Plant Biol ; 22(1): 557, 2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36456919

RESUMO

Containing the largest number of species, the orchid family provides not only materials for studying plant evolution and environmental adaptation, but economically and culturally important ornamental plants for human society. Previously, we collected genome and transcriptome information of Dendrobium catenatum, Phalaenopsis equestris, and Apostasia shenzhenica which belong to two different subfamilies of Orchidaceae, and developed user-friendly tools to explore the orchid genetic sequences in the OrchidBase 4.0. The OrchidBase 4.0 offers the opportunity for plant science community to compare orchid genomes and transcriptomes and retrieve orchid sequences for further study.In the year 2022, two whole-genome sequences of Orchidoideae species, Platanthera zijinensis and Platanthera guangdongensis, were de novo sequenced, assembled and analyzed. In addition, systemic transcriptomes from these two species were also established. Therefore, we included these datasets to develop the new version of OrchidBase 5.0. In addition, three new functions including synteny, gene order, and miRNA information were also developed for orchid genome comparisons and miRNA characterization.OrchidBase 5.0 extended the genetic information to three orchid subfamilies (including five orchid species) and provided new tools for orchid researchers to analyze orchid genomes and transcriptomes. The online resources can be accessed at https://cosbi.ee.ncku.edu.tw/orchidbase5/.


Assuntos
MicroRNAs , Orchidaceae , Ordem dos Genes , Bases de Conhecimento , MicroRNAs/genética , Orchidaceae/genética , Sintenia
5.
Mol Phylogenet Evol ; 175: 107565, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35787457

RESUMO

Molecularly, the family Caryophylliidae is polyphyletic and different sets of genetic data converge towards a consensus that a taxonomic review of this family is necessary. Overall, the order of genes in the mitochondrial genome (mitogenome) together with DNA sequences have been used to successfully untangle evolutionary relationships in several groups of organisms. Published mitogenomes of two caryophylliid genera (Desmophyllum and Solenosmilia) present a transposition of the gene block containing cob, nad2, and nad6, which is located between nad5 5' exon and trnW, while that of Polycyathus chaishanensis presents the same gene order as the majority of scleractinian corals. In molecular-based evolutionary reconstructions, caryophylliids that have the mitochondrial gene rearrangement were recovered as a monophyletic lineage ("true" caryophylliids), while members of the genus Polycyathus were placed in a different position. In this study, additional mitogenomes of this family were assembled and included in evolutionary reconstructions of Scleractinia in order to improve our understanding on whether the mitogenome gene rearrangement is limited to and, therefore, could be a synapomorphy of the actual members of Caryophylliidae. Specimens of Caryophyllia scobinosa, Premocyathus sp., Heterocyathus sulcatus, and Trochocyathus caryophylloides, as well as Desmophyllum pertusum and Solenosmilia variabilis from the Southwest Atlantic were sequenced using Illumina platforms. Then, mitochondrial genomes were assembled and annotated, and nuclear datasets were recovered in-silico from assembled contigs using a previously published set of baits. Evolutionary reconstructions were performed using mitochondrial and nuclear datasets and based on Maximum Likelihood and Bayesian Inference. Obtained mitogenomes are circular and range between 15,816 and 18,225 bp in size and from 30.76% to 36.63% in GC content. The gene rearrangement is only seen in C. scobinosa, D. pertusum, Premocyathus sp., and S. variabilis, which were recovered as a monophyletic clade in both mitochondrial and nuclear phylogenies. On the other hand, the "caryophylliids" with the canonical mitogenome gene order were not recovered within this clade. Differences in features of the skeleton of "true" caryophylliids in comparison to traditional members of the family were observed and offer further support that the gene rearrangement might be seen as a synapomorphy of family Caryophylliidae.


Assuntos
Antozoários , Genoma Mitocondrial , Animais , Antozoários/genética , Teorema de Bayes , Ordem dos Genes , Genes Mitocondriais , Filogenia
6.
Mol Biol Rep ; 49(12): 12269-12273, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36264418

RESUMO

BACKGROUND: Caryophylliidae is one of the most diverse scleractinian families, however it was recovered as polyphyletic in multiple molecular studies. Recently, the mitochondrial gene order was proposed as a character for a taxonomic revision of the family. Here we describe the first mitogenome of the caryophylliid genus Crispatotrochus, whose phylogenetic position remains uncertain. METHODS AND RESULTS: The complete mitochondrial genomes of Crispatotrochus rubescens and Crispatotrochus rugosus were sequenced, assembled, and annotated. The two mitogenomes are identical and circular, have a length of 16,536 bp, a GC content of 35.9%, and contain 13 protein-coding genes, 2 ribosomal RNAs and 2 transfer RNAs. Both species have a transposition of a three gene block - cob, nad2, and nad6 - similarly to a group of caryophylliid genera that were recovered as monophyletic, including the type genus (Caryophyllia) of the family. The phylogenetic analyses recovered Crispatotrochus within the clade that presents the gene rearrangement and specifically as sister taxa of the genus Caryophyllia, a result consistent with previous studies and the similar gross morphology of the two genera. CONCLUSIONS: We determined the mitochondrial genomes of the genus Crispatotrochus to investigate their relations within Scleractinia. Results from this study provide insights on the phylogenetic position of the genus and corroborate that the mitochondrial gene order could be used as taxonomic character for the family Caryophylliidae.


Assuntos
Antozoários , Genoma Mitocondrial , Animais , Antozoários/genética , Ordem dos Genes , Genes Mitocondriais , Genoma Mitocondrial/genética , Filogenia
7.
Appl Microbiol Biotechnol ; 106(7): 2587-2601, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35318523

RESUMO

Gongronella is a genus of fungi in Mucorales (Mucoromycota). Some of its members have important biotechnological applications, but until now, not a single mitogenome has been characterized in Gongronella. Here, we present the complete mitogenome assembly of Gongronella sp. w5, a soil isolate known to interact with plants and several fungi. Its 36,593-bp circular mitogenome encodes the large and small subunit rRNAs, 14 standard mitochondrial proteins, 24 tRNAs, three free-standing ORF proteins, and the RNA subunit of RNase P (rnpB). These genes arrange in an order novel to known fungal mitogenomes. Three group I introns are present in the cob, cox1, and nad5 genes, respectively, and they are probably acquired by horizontal gene transfer. Phylogenetic analysis based on mitochondrion-encoded proteins supports the grouping of Gongronella sp. w5 with Absidia glauca, forming the Cunninghamellaceae clade within Mucoromycota. Gongronella and most other Mucoromycota species are predicted to use the standard genetic code in mitochondrial translation, rather than code 4 assigned by GenBank. A comparison among seven publicly available mitogenomes in Mucoromycota reveals the presence of the same 14 typical protein-coding genes plus rnpB, yet substantial variation in mitogenome size, intron number, gene order, and orientation. In this comparison, the uniqueness of Gongronella is evident from similarly large differences to its closest phylogenetic neighbor, A. glauca. This study promotes our understanding of fungal evolution in Mucoromycota. KEY POINTS: • This study reports the first mitogenome in Gongronella, which presents a novel gene order. • Different Mucoromycota mitogenomes show substantial variation of gene organizations. • Most Mucoromycota species use the standard genetic code to translate mitochondrial genes.


Assuntos
Genoma Mitocondrial , Mucorales , Ordem dos Genes , Genes Mitocondriais , Filogenia
8.
Biochem Genet ; 60(4): 1177-1188, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34800202

RESUMO

The complete mitogenome sequence of the Great Frigatebird, Fregata minor was sequenced for the first time in this study. The mitogenome (16,899 bp) comprises of 13 protein-coding genes (PCGs), two ribosomal RNA (rRNA) genes, and 22 transfer RNA (tRNA) genes, and a control region (CR). The mitogenome was AT-rich (55.60%) with 11 overlapping and 18 intergenic spacer regions. Most of the PCGs were started by a typical ATG initiation codon except for cox1 and nad3. A maximum-likelihood phylogeny of concatenated PCGs resulted in a well-resolved phylogeny of all the species of Suliformes and illuminates the sister relationship of F. minor with F. magnificens. The present mitogenome-based phylogeny clearly enlightens the evolutionary position of Suliformes and Pelecaniformes species. Unique tandem repeats were identified in both F. minor and F. magnificens, which can be employed as a species-specific marker. To illuminate the population structure of this migratory seabirds, the present study advocate more sampling and the generation of additional molecular data to clarify their genetic diversity. The present study also rejects an earlier hypothesis on the mitochondrial gene order of Suliformes and corroborated the typical avian gene order in frigatebirds.


Assuntos
Genoma Mitocondrial , Animais , Aves/genética , Rearranjo Gênico , Filogenia , RNA Ribossômico/química , RNA Ribossômico/genética , RNA de Transferência/química , RNA de Transferência/genética
9.
Genomics ; 113(1 Pt 2): 831-839, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33091547

RESUMO

The mitochondrial genome has become commonly used for the molecular phylogenetic analysis of animals. Most phylogenetic studies on brachyurans using mitogenome sequences have indicated the paraphyly of superfamilies Grapsoidea and Ocypodoidea but taxon sampling remains limited. The phylogenetic position of Scopimera has been tested in several previous studies using nuclear and/or mitochondrial DNA sequences, but the phylogenetic relationship within the family remains to be resolved. We newly sequenced the complete mitochondrial genome of the sand bubbler crab Scopimera globosa (Ocypodoidea: Dotillidae). Scopimera globosa was clustered with Ilyoplax despite the morphological similarity between Scopimera and Dotilla. The mitochondrial gene order of S. globosa was unique, whereas that of other genera in the family was the same. These results suggest that phylogenetic analysis based on mitogenome sequences and gene order comparison would provide a more robust phylogeny of Dotillidae.


Assuntos
Braquiúros/genética , Genoma Mitocondrial , Filogenia , Animais , Braquiúros/classificação
10.
Mol Biol Evol ; 37(5): 1470-1479, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31845962

RESUMO

The dramatic decrease in time and cost for generating genetic sequence data has opened up vast opportunities in molecular systematics, one of which is the ability to decipher the evolutionary history of strains of a species. Under this fine systematic resolution, the standard markers are too crude to provide a phylogenetic signal. Nevertheless, among prokaryotes, genome dynamics in the form of horizontal gene transfer (HGT) between organisms and gene loss seem to provide far richer information by affecting both gene order and gene content. The "synteny index" (SI) between a pair of genomes combines these latter two factors, allowing comparison of genomes with unequal gene content, together with order considerations of their common genes. Although this approach is useful for classifying close relatives, no rigorous statistical modeling for it has been suggested. Such modeling is valuable, as it allows observed measures to be transformed into estimates of time periods during evolution, yielding the "additivity" of the measure. To the best of our knowledge, there is no other additivity proof for other gene order/content measures under HGT. Here, we provide a first statistical model and analysis for the SI measure. We model the "gene neighborhood" as a "birth-death-immigration" process affected by the HGT activity over the genome, and analytically relate the HGT rate and time to the expected SI. This model is asymptotic and thus provides accurate results, assuming infinite size genomes. Therefore, we also developed a heuristic model following an "exponential decay" function, accounting for biologically realistic values, which performed well in simulations. Applying this model to 1,133 prokaryotes partitioned to 39 clusters by the rank of genus yields that the average number of genome dynamics events per gene in the phylogenetic depth of genus is around half with significant variability between genera. This result extends and confirms similar results obtained for individual genera in different manners.


Assuntos
Transferência Genética Horizontal , Técnicas Genéticas , Modelos Genéticos , Sintenia , Genoma Microbiano , Filogenia
11.
Mol Phylogenet Evol ; 160: 107124, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33610649

RESUMO

Mitochondrial genomes are frequently applied in phylogenetic and evolutionary studies across metazoans, yet they are still poorly represented in many groups of invertebrates, including annelids. Here, we report ten mitochondrial genomes from the annelid genus Hydroides (Serpulidae) and compare them with all available annelid mitogenomes. We detected all 13 protein coding genes in Hydroides spp., including the atp8 which was reported as a missing gene in the Christmas Tree worm Spirobranchus giganteus, another annelid of the family Serpulidae. All available mitochondrial genomes of Hydroides show a highly positive GC skew combined with a highly negative AT skew - a feature consistent with that found only in the mitogenome of S. giganteus. In addition, amino acid sequences of the 13 protein-coding genes showed a high genetic distance between the Hydroides clade and S. giganteus, suggesting a fast rate of mitochondrial sequence evolution in Serpulidae. The gene order of protein-coding genes within Hydroides exhibited extensive rearrangements at species level, and were different from the arrangement patterns of other annelids, including S. giganteus. Phylogenetic analyses based on protein-coding genes recovered Hydroides as a monophyletic group sister to Spirobranchus with a long branch, and sister to the fan worm Sabellidae. Yet the Serpulidae + Sabellidae clade was unexpectedly grouped with Sipuncula, suggesting that mitochondrial genomes alone are insufficient to resolve the phylogenetic position of Serpulidae within Annelida due to its high base substitution rates. Overall, our study revealed a high variability in the gene order arrangement of mitochondrial genomes within Serpulidae, provided evidence to question the conserved pattern of the mitochondrial gene order in Annelida and called for caution when applying mitochondrial genes to infer their phylogenetic relationships.


Assuntos
Evolução Molecular , Ordem dos Genes , Genoma Mitocondrial/genética , Filogenia , Poliquetos/citologia , Poliquetos/genética , Animais , Poliquetos/classificação
12.
Biochem Genet ; 59(3): 617-636, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33415669

RESUMO

Brachyuran crabs comprise the most species-rich clades among extant Decapoda and are divided into several major superfamilies. However, the phylogeny of Brachyuran remains controversial, comprehensive analysis of the overall phylogeny is still lacking. Complete mitochondrial genome (mitogenome) can indicate phylogenetic relationships, as well as useful information for gene rearrangement mechanisms and molecular evolution. In this study, we firstly sequenced and annotated the complete mitogenome of Macrophthalmus abbreviatus (Brachyura; Macrophthalmidae). The mitogenome length of M. abbreviatus is 16,322 bp, containing the entire set of 37 genes and a control region typically observed in Brachyuran mitogenomes. The genome composition of M. abbreviatus was highly A+T biased 76.3% showing positive AT-skew (0.033) and negative GC-skew (- 0.351). In M. abbreviatus mitogenome, most tRNA genes were folded into the clover-leaf secondary structure except trnH, trnS1 and trnC, which was similar to the other species in Macrophthalmidae. Phylogenetic analysis showed that all families form a monophyletic, and Varunidae and Macrophthalmidae clustered into a monophyletic clade as sister groups. Comparative analyses of rearrangement among Brachyura revealed that Varunidae (Grapsoidea) and Macrophthalmidae (Ocypodoidea) had the same gene order, which reinforced the result of phylogeny. The combined results of two aspects revealed that the polyphyly of Ocypodoidea and Grapsoidea were well supported. In general, the results obtained in this research will contribute to further studies on molecular based for the classification and gene rearrangements of Macrophthalmidae or even Brachyura.


Assuntos
Braquiúros/genética , Rearranjo Gênico , Genoma Mitocondrial/genética , Filogenia , Animais , Sequência de Bases , Braquiúros/classificação , Códon , Evolução Molecular , Anotação de Sequência Molecular , Conformação de Ácido Nucleico , RNA Ribossômico/química , RNA Ribossômico/genética , RNA de Transferência/química , RNA de Transferência/genética
13.
Genomics ; 112(6): 4577-4584, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32758539

RESUMO

Mitochondrial genomes (mitogenomes) have been widely used for studies on phylogenetic relationships and molecular evolutionary biology. Here, the complete mitogenome sequence of Spilosoma lubricipedum (Noctuoidea: Erebidae: Arctiinae) was determined (total length 15,375 bp) and phylogenetic analyses S. lubricipedum were inferred from available noctuid sequence data. The mitogenome of S. lubricipedum was found to be highly A + T-biased (81.39%) and exhibited negative AT- and GC-skews. All 13 protein-coding genes (PCGs) were initiated by ATN codons, except for cox1 with CGA. All tRNAs exhibited typical clover-leaf secondary structures, except for trnS1. The gene order of the S. lubricipedum mitogenome was trnM-trnI-trnQ-nad2. The A + T-rich region of S. lubricipedum contained several conservative features common to noctuid insects. Phylogenetic analysis within Noctuoidea was carried out based on mitochondrial data. Results showed that S. lubricipedum belonged to Erebidae and the Noctuoidea insects could be divided into five well-supported families (Notodontidae + (Erebidae + (Nolidae + (Euteliidae + Noctuidae)))).


Assuntos
Genoma Mitocondrial , Mariposas/genética , Sequência Rica em At , Animais , Genes de RNAr , Proteínas de Insetos/genética , Lepidópteros/classificação , Mariposas/classificação , Filogenia , RNA de Transferência/genética
14.
Int J Mol Sci ; 22(24)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34948138

RESUMO

Stachybotrys chartarum is one of the world's ten most feared fungi within the family Stachybotryaceae, although to date, not a single mitogenome has been documented for Stachybotryaceae. Herein, six mitogenomes of four different species in Stachybotryaceae are newly reported. The S. chartarum mitogenome was 30.7 kb in length and contained two introns (one each in rnl and cox1). A comparison of the mitogenomes of three different individuals of S. chartarum showed few nucleotide variations and conservation of gene content/order and intron insertion. A comparison of the mitogenomes of four different Stachybotryaceae species (Memnoniella echinata, Myrothecium inundatum, S. chartarum, and S. chlorohalonata), however, revealed variations in intron insertion, gene order/content, and nad2/nad3 joining pattern. Further investigations on all Hypocreales species with available mitogenomes showed greater variabilities in gene order (six patterns) and nad2/nad3 joining pattern (five patterns) although a dominant pattern always existed in each case. Ancestral state estimation showed that in each case the dominant pattern was always more ancestral than those rare patterns. Phylogenetic analyses based on mitochondrion-encoded genes supported the placement of Stachybotryaceae in Hypocreales. The crown age of Stachybotryaceae was estimated to be approximately the Early Cretaceous (141-142 Mya). This study greatly promotes our understanding of the evolution of fungal species in Hypocreales.


Assuntos
Evolução Molecular , Genoma Fúngico , Genoma Mitocondrial , Hypocreales/genética , Filogenia , Stachybotrys/genética
15.
BMC Genomics ; 21(Suppl 1): 106, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32138652

RESUMO

BACKGROUND: Horizontal gene transfer (HGT) is the event of a DNA sequence being transferred between species not by inheritance. HGT is a crucial factor in prokaryotic evolution and is a significant source for genomic novelty resulting in antibiotic resistance or the outbreak of virulent strains. Detection of HGT and the mechanisms responsible and enabling it, is hence of prime importance.Existing algorithms rely on a strong phylogenetic signal distinguishing the transferred sequence from its recipient genome. Closely related species pose an even greater challenge as most genes are very similar and therefore, the phylogenetic signal is weak anyhow. Notwithstanding, the importance of detecting HGT between such organisms is extremely high for the role of HGT in the emergence of new highly virulent strains. RESULTS: In a recent work we devised a novel technique that relies on loss of synteny around a gene as a witness for HGT. We used a novel heuristic for synteny measurement, SI (Syntent Index), and the technique was tested on both simulated and real data and was found to provide a greater sensitivity than other HGT techniques. This synteny-based approach suffers low specificity, in particular more closely related species. Here we devise an adaptive approach to cope with this by varying the criteria according to species distance. The new approach is doubly adaptive as it also considers the lengths of the genes being transferred. In particular, we use Chernoff bound to decree HGT both in simulations and real bacterial genomes taken from EggNog database. CONCLUSIONS: Here we show empirically that this approach is more conservative than the previous χ2 based approach and provides a lower false positive rate, especially for closely related species and under wide range of genome parameters.


Assuntos
Bactérias/genética , Biologia Computacional/métodos , Transferência Genética Horizontal , Vírus/genética , Algoritmos , Evolução Molecular , Especiação Genética , Filogenia
16.
BMC Genomics ; 21(1): 442, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32590931

RESUMO

BACKGROUND: Order Chaetophorales currently includes six families, namely Schizomeridaceae, Aphanochaetaceae, Barrancaceae, Uronemataceae, Fritschiellaceae, and Chaetophoraceae. The phylogenetic relationships of Chaetophorales have been inferred primarily based on short and less informative rDNA sequences. This study aimed to phylogenetically reconstruct order Chaetophorales and determine the taxonomic scheme, and to further understand the evolution of order Chaetophorales. RESULTS: In the present study, seven complete and five fragmentary chloroplast genomes were harvested. Phylogenomic and comparative genomic analysis were performed to determine the taxonomic scheme within Chaetophorales. Consequently, Oedogoniales was found to be a sister to a clade linking Chaetophorales and Chaetopeltidales. Schizomeriaceae, and Aphanochaetaceae clustered into a well-resolved basal clade in Chaetophorales, inconsistent with the results of phylogenetic analysis based on rDNA sequences. Comparative genomic analyses revealed that the chloroplast genomes of Schizomeriaceae and Aphanochaetaceae were highly conserved and homologous, highlighting the closest relationship in this order. Germination types of zoospores precisely correlated with the phylogenetic relationships. CONCLUSIONS: chloroplast genome structure analyses, synteny analyses, and zoospore germination analyses were concurrent with phylogenetic analyses based on the chloroplast genome, and all of them robustly determined the unique taxonomic scheme of Chaetophorales and the relationships of Oedogoniales, Chaetophorales, and Chaetopeltidales.


Assuntos
Clorofíceas/classificação , Cloroplastos/genética , Análise de Sequência de DNA/métodos , Clorofíceas/genética , Clorofíceas/crescimento & desenvolvimento , DNA Ribossômico/genética , Evolução Molecular , Genoma de Cloroplastos , Genômica , Germinação , Filogenia , Sintenia
17.
Mol Phylogenet Evol ; 150: 106879, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32512195

RESUMO

Arcidae is a diverse group of ark shells with over 260 described species. The phylogenetic relationships and the evolution of the mitochondrial genomes in this family were poorly understood. Comparisons of mitogenomes have been widely used to explore the phylogenetic relationship among animal taxa. We described the complete mitogenomes of Arca navicularis, Scapharca gubernaculum and one nearly complete mitogenome of Anadara consociata. The mitogenome of A. navicularis (18,103 bp) is currently the smallest known Arcidae mitogenome, while the mitogenomes of S. gubernaculum (45,697 bp) and A. consociata (44,034 bp) are relatively large. The mitochondrial gene orders of the three taxa were substantially different from each other, as well as the patterns found in other ark shells. The relationships among Arcidae species recovered from different mitochondrial characters (nucleotide sequence versus gene order) were in disagreement. The phylogeny based on nucleotide sequences did not support the monophyly of Arcidae, as Cucullaea labiata (Cucullaeidae) appeared as a subgroup within Arcinae, rather than sister group to the family Arcidae. In addition, we presented the first time-calibrated evolutionary tree of Arcidae based on mitochondrial DNA (mtDNA) sequences, which placed the deepest divergence within Arcidae at 342.36 million years ago (Mya), around the Carboniferous (360-300 Mya).


Assuntos
Arcidae/classificação , Evolução Molecular , Mitocôndrias/genética , Animais , Arcidae/genética , Ordem dos Genes , Fases de Leitura Aberta/genética , Filogenia
18.
Genomics ; 111(4): 799-807, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-29752988

RESUMO

Mitochondrial DNA (mtDNA) is an extrachromosomal genome which can provide important information for evolution and phylogenetic analysis. In this study, we assembled a complete mitogenome of a crab Parasesarma pictum (Brachyura: Grapsoidea: Sesarmidae) from next generation sequencing reads at the first time. P. pictum is a mudflat crab, belonging to the Sesarmidae family (subfamily Sesarminae), which is perched on East Asia. The 15,716 bp mitogenome covers 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and one control region (CR). The control region spanns 420 bp. The genome composition was highly A+T biased 75.60% and showed negative AT-skew (-0.03) and negative GC-skew (-0.47). Compared with the ancestor of Brachyura, the gene order of Sesarmidae has several differences and the gene order of P. pictum is typical for mitogenomes of Sesarmidae. Phylogenetic tree based on nucleotide sequences of mitochondrial 13 PCGs using BI and ML determined that P. pictum has a sister group relationship with Parasesarma tripectinis and belongs to Sesarmidae.


Assuntos
Braquiúros/genética , Genoma Mitocondrial , Filogenia , Animais , Composição de Bases , Braquiúros/classificação , Evolução Molecular , Fases de Leitura Aberta , RNA Ribossômico/genética , RNA de Transferência/genética
19.
Genomics ; 111(5): 1059-1065, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31533898

RESUMO

The taxonomic status and phylogenetic affinities of Mymaridae and Scelionidae are controversial, based on similarities between these families in the characteristics of adults, larvae, and eggs. In this study, we sequenced the mitochondrial (mt) genomes of representatives from these two families and found that the derived secondary structure of tRNA-Arg was the same in each family due to the absence of the D-stem. The segment of "cox1 trnL2cox2 trnK trnD atp8 atp6 cox3" in Gonatocerus sp. (Mymaridae) is conserved and distinct from those of four other species of Chalcidoidea but similar to that in Proctotrupoidea and Platygastroidea. However, phylogenetic analysis indicated that Gonatocerus sp. was sister group to other species of Chalcidoidea. Comparisons based on complete gene orders may be more useful in a phylogenetic and systematic context, as different branches may exhibit partially homoplastic gene orders.


Assuntos
Genes de Insetos , Genoma Mitocondrial , Himenópteros/genética , Filogenia , Animais , Ordem dos Genes , Himenópteros/classificação , RNA de Transferência/química , RNA de Transferência/genética , Homologia de Sequência
20.
BMC Bioinformatics ; 20(Suppl 23): 631, 2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31881830

RESUMO

BACKGROUND: Genomes are subjected to rearrangements that change the orientation and ordering of genes during evolution. The most common rearrangements that occur in uni-chromosomal genomes are inversions (or reversals) to adapt to the changing environment. Since genome rearrangements are rarer than point mutations, gene order with sequence data can facilitate more robust phylogenetic reconstruction. Helicobacter pylori is a good model because of its unique evolution in niche environment. RESULTS: We have developed a method to identify genome rearrangements by comparing almost-conserved genes among closely related strains. Orthologous gene clusters, rather than the gene sequences, are used to align the gene order so that comparison of large number of genomes becomes easier. Comparison of 72 Helicobacter pylori strains revealed shared as well as strain-specific reversals, some of which were found in different geographical locations. CONCLUSION: Degree of genome rearrangements increases with time. Therefore, gene orders can be used to study the evolutionary relationship among species and strains. Multiple genome comparison helps to identify the strain-specific as well as shared reversals. Identification of the time course of rearrangements can provide insights into evolutionary events.


Assuntos
Rearranjo Gênico/genética , Genoma Bacteriano , Inversão Cromossômica/genética , Ordem dos Genes , Família Multigênica , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA