Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Infect Dis ; 24(1): 610, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902649

RESUMO

BACKGROUND: Blood-based transcriptional gene signatures for tuberculosis (TB) have been developed with potential use to diagnose disease. However, an unresolved issue is whether gene set enrichment analysis of the signature transcripts alone is sufficient for prediction and differentiation or whether it is necessary to use the original model created when the signature was derived. Intra-method comparison is complicated by the unavailability of original training data and missing details about the original trained model. To facilitate the utilization of these signatures in TB research, comparisons between gene set scoring methods cross-data validation of original model implementations are needed. METHODS: We compared the performance of 19 TB gene signatures across 24 transcriptomic datasets using both rrebuilt original models and gene set scoring methods. Existing gene set scoring methods, including ssGSEA, GSVA, PLAGE, Singscore, and Zscore, were used as alternative approaches to obtain the profile scores. The area under the ROC curve (AUC) value was computed to measure performance. Correlation analysis and Wilcoxon paired tests were used to compare the performance of enrichment methods with the original models. RESULTS: For many signatures, the predictions from gene set scoring methods were highly correlated and statistically equivalent to the results given by the original models. In some cases, PLAGE outperformed the original models when considering signatures' weighted mean AUC values and the AUC results within individual studies. CONCLUSION: Gene set enrichment scoring of existing gene sets can distinguish patients with active TB disease from other clinical conditions with equivalent or improved accuracy compared to the original methods and models. These data justify using gene set scoring methods of published TB gene signatures for predicting TB risk and treatment outcomes, especially when original models are difficult to apply or implement.


Assuntos
Perfilação da Expressão Gênica , Tuberculose , Humanos , Tuberculose/diagnóstico , Tuberculose/genética , Tuberculose/microbiologia , Perfilação da Expressão Gênica/métodos , Mycobacterium tuberculosis/genética , Transcriptoma , Curva ROC , Reprodutibilidade dos Testes
2.
BMC Bioinformatics ; 20(Suppl 8): 289, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31182017

RESUMO

BACKGROUND: Gene selection is one of the critical steps in the course of the classification of microarray data. Since particle swarm optimization has no complicated evolutionary operators and fewer parameters need to be adjusted, it has been used increasingly as an effective technique for gene selection. Since particle swarm optimization is apt to converge to local minima which lead to premature convergence, some particle swarm optimization based gene selection methods may select non-optimal genes with high probability. To select predictive genes with low redundancy as well as not filtering out key genes is still a challenge. RESULTS: To obtain predictive genes with lower redundancy as well as overcome the deficiencies of traditional particle swarm optimization based gene selection methods, a hybrid gene selection method based on gene scoring strategy and improved particle swarm optimization is proposed in this paper. To select the genes highly related to out samples' classes, a gene scoring strategy based on randomization and extreme learning machine is proposed to filter much irrelevant genes. With the third-level gene pool established by multiple filter strategy, an improved particle swarm optimization is proposed to perform gene selection. In the improved particle swarm optimization, to decrease the likelihood of the premature of the swarm the Metropolis criterion of simulated annealing algorithm is introduced to update the particles, and the half of the swarm are reinitialized when the swarm is trapped into local minima. CONCLUSIONS: Combining the gene scoring strategy with the improved particle swarm optimization, the new method could select functional gene subsets which are significantly sensitive to the samples' classes. With the few discriminative genes selected by the proposed method, extreme learning machine and support vector machine classifiers achieve much high prediction accuracy on several public microarray data, which in turn verifies the efficiency and effectiveness of the proposed gene selection method.


Assuntos
Algoritmos , Genes , Bases de Dados Genéticas , Humanos , Aprendizado de Máquina , Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA