RESUMO
Central nervous system (CNS) lymphoma consists of primary central nervous system lymphoma (PCNSL) and secondary CNS involvement by systemic lymphoma. This chapter focuses on the former. PCNSL is a relative rare disease, accounting for approximately 2.4-4.9% of all primary CNS tumors. It is an extra-nodal variant of non-Hodgkin's lymphoma (NHL), confined to the brain, leptomeninges, spinal cord, and eyes, with no systemic involvement. Recently, elderly patients (≥ 60 years) are increasing. Histologically, B cell blasts, which originate from late germinal center exit B cell, are growing and homing in CNS. Immunohistochemically, these cells are positive for PAX5, CD19, CD20, CD22, and CD79a. PCNSL shows relatively characteristic appearances on CT, MR imaging, and PET. Treatment first line of PCNSL is HD-MTX-based chemotherapy with or without rituximab and irradiation. Severe side-effect of this treatment is delayed onset neurotoxicity, which cause of cognitive impairment. Therefore, combined chemotherapy alone or chemotherapy with reduced-dose irradiation is more recommended for elderly patients. There is no established standard care for relapse of the PCNSLs. Temsirolimus, lenalidomide, temozolomide, and Bruton's tyrosine kinase (BTK) inhibitor ibrutinib are candidates for refractory patients. The prognosis of PCNSL has significantly improved over the last decades (median OS: 26 months, 5-year survival: 31%). Younger than 60 age and WHO performance status less than < or = 1 are associated with a significantly better overall survival.
Assuntos
Neoplasias do Sistema Nervoso Central , Linfoma não Hodgkin , Linfoma , Humanos , Idoso , Neoplasias do Sistema Nervoso Central/diagnóstico por imagem , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Recidiva Local de Neoplasia/tratamento farmacológico , Linfoma/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica , Sistema Nervoso CentralRESUMO
Broad phenotypic variations were induced in derivatives of an asymmetric somatic hybridization of bread wheat (Triticum aestivum) and tall wheatgrass (Thinopyrum ponticum Podp); however, how these variations occurred was unknown. We explored the nature of these variations by cytogenetic assays and DNA profiling techniques to characterize six genetically stable somatic introgression lines. Karyotyping results show the six lines similar to their wheat parent, but GISH analysis identified the presence of a number of short introgressed tall wheatgrass chromatin segments. DNA profiling revealed many genetic and epigenetic differences, including sequences deletions, altered regulation of gene expression, changed patterns of cytosine methylation, and the reactivation of retrotransposons. Phenotypic variations appear to result from altered repetitive sequences combined with the epigenetic regulation of gene expression and/or retrotransposon transposition. The extent of genetic and epigenetic variation due to the maintenance of parent wheat cells in tissue culture was assessed and shown to be considerably lower than had been induced in the introgression lines. Asymmetric somatic hybridization provides appropriate material to explore the nature of the genetic and epigenetic variations induced by genomic shock.