Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.447
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 176(6): 1265-1281.e24, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30827681

RESUMO

Acute myeloid leukemia (AML) is a heterogeneous disease that resides within a complex microenvironment, complicating efforts to understand how different cell types contribute to disease progression. We combined single-cell RNA sequencing and genotyping to profile 38,410 cells from 40 bone marrow aspirates, including 16 AML patients and five healthy donors. We then applied a machine learning classifier to distinguish a spectrum of malignant cell types whose abundances varied between patients and between subclones in the same tumor. Cell type compositions correlated with prototypic genetic lesions, including an association of FLT3-ITD with abundant progenitor-like cells. Primitive AML cells exhibited dysregulated transcriptional programs with co-expression of stemness and myeloid priming genes and had prognostic significance. Differentiated monocyte-like AML cells expressed diverse immunomodulatory genes and suppressed T cell activity in vitro. In conclusion, we provide single-cell technologies and an atlas of AML cell states, regulators, and markers with implications for precision medicine and immune therapies. VIDEO ABSTRACT.


Assuntos
Leucemia Mieloide Aguda/genética , Transcriptoma/genética , Adulto , Sequência de Bases/genética , Medula Óssea , Células da Medula Óssea/citologia , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Genótipo , Humanos , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/fisiopatologia , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Mutação , Prognóstico , RNA , Transdução de Sinais , Análise de Célula Única/métodos , Microambiente Tumoral , Sequenciamento do Exoma/métodos
2.
Hum Mol Genet ; 33(6): 543-551, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38073250

RESUMO

The UK Biobank is the most used dataset for genome-wide association studies (GWAS). GWAS of sex, essentially sex differences in minor allele frequencies (sdMAF), has identified autosomal SNPs with significant sdMAF, including in the UK Biobank, but the X chromosome was excluded. Our recent report identified multiple regions on the X chromosome with significant sdMAF, using short-read sequencing of other datasets. We performed a whole genome sdMAF analysis, with ~410 k white British individuals from the UK Biobank, using array genotyped, imputed or exome sequencing data. We observed marked sdMAF on the X chromosome, particularly at the boundaries between the pseudo-autosomal regions (PAR) and the non-PAR (NPR), as well as throughout the NPR, consistent with our earlier report. A small fraction of autosomal SNPs also showed significant sdMAF. Using the centrally imputed data, which relied mostly on low-coverage whole genome sequence, resulted in 2.1% of NPR SNPs with significant sdMAF. The whole exome sequencing also displays sdMAF on the X chromosome, including some NPR SNPs with heterozygous genotype calls in males. Genotyping, sequencing and imputation of X chromosomal SNPs requires further attention to ensure the integrity for downstream association analysis.


Assuntos
Bancos de Espécimes Biológicos , Biobanco do Reino Unido , Feminino , Humanos , Masculino , Estudo de Associação Genômica Ampla , Caracteres Sexuais , Cromossomos Humanos X/genética , Genótipo , Frequência do Gene/genética
3.
Hum Mol Genet ; 33(14): 1207-1214, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38643062

RESUMO

Genotype imputation is widely used in genome-wide association studies (GWAS). However, both the genotyping chips and imputation reference panels are dependent on next-generation sequencing (NGS). Due to the nature of NGS, some regions of the genome are inaccessible to sequencing. To date, there has been no complete evaluation of these regions and their impact on the identification of associations in GWAS remains unclear. In this study, we systematically assess the extent to which variants in inaccessible regions are underrepresented on genotyping chips and imputation reference panels, in GWAS results and in variant databases. We also determine the proportion of genes located in inaccessible regions and compare the results across variant masks defined by the 1000 Genomes Project and the TOPMed program. Overall, fewer variants were observed in inaccessible regions in all categories analyzed. Depending on the mask used and normalized for region size, only 4%-17% of the genotyped variants are located in inaccessible regions and 52 to 581 genes were almost completely inaccessible. From the Cooperative Health Research in South Tyrol (CHRIS) study, we present a case study of an association located in an inaccessible region that is driven by genotyped variants and cannot be reproduced by imputation in GRCh37. We conclude that genotyping, NGS, genotype imputation and downstream analyses such as GWAS and fine mapping are systematically biased in inaccessible regions, due to missed variants and spurious associations. To help researchers assess gene and variant accessibility, we provide an online application (https://gab.gm.eurac.edu).


Assuntos
Genoma Humano , Estudo de Associação Genômica Ampla , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Humanos , Estudo de Associação Genômica Ampla/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único/genética
4.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38305453

RESUMO

Target enrichment sequencing techniques are gaining widespread use in the field of genomics, prized for their economic efficiency and swift processing times. However, their success depends on the performance of probes and the evenness of sequencing depth among each probe. To accurately predict probe coverage depth, a model called Deqformer is proposed in this study. Deqformer utilizes the oligonucleotides sequence of each probe, drawing inspiration from Watson-Crick base pairing and incorporating two BERT encoders to capture the underlying information from the forward and reverse probe strands, respectively. The encoded data are combined with a feed-forward network to make precise predictions of sequencing depth. The performance of Deqformer is evaluated on four different datasets: SNP panel with 38 200 probes, lncRNA panel with 2000 probes, synthetic panel with 5899 probes and HD-Marker panel for Yesso scallop with 11 000 probes. The SNP and synthetic panels achieve impressive factor 3 of accuracy (F3acc) of 96.24% and 99.66% in 5-fold cross-validation. F3acc rates of over 87.33% and 72.56% are obtained when training on the SNP panel and evaluating performance on the lncRNA and HD-Marker datasets, respectively. Our analysis reveals that Deqformer effectively captures hybridization patterns, making it robust for accurate predictions in various scenarios. Deqformer leads to a novel perspective for probe design pipeline, aiming to enhance efficiency and effectiveness in probe design tasks.


Assuntos
Aprendizado Profundo , RNA Longo não Codificante , Sondas de DNA/genética , Hibridização de Ácido Nucleico , Genômica
5.
Proc Natl Acad Sci U S A ; 120(30): e2221797120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459519

RESUMO

Human cytomegalovirus (CMV) has infected humans since the origin of our species and currently infects most of the world's population. Variability between CMV genomes is the highest of any human herpesvirus, yet large portions of the genome are conserved. Here, we show that the genome encodes 74 regions of relatively high variability each with 2 to 8 alleles. We then identified two patterns in the CMV genome. Conserved parts of the genome and a minority (32) of variable regions show geographic population structure with evidence for African or European clustering, although hybrid strains are present. We find no evidence that geographic segregation has been driven by host immune pressure affecting known antigenic sites. Forty-two variable regions show no geographical structure, with similar allele distributions across different continental populations. These "nongeographical" regions are significantly enriched for genes encoding immunomodulatory functions suggesting a core functional importance. We hypothesize that at least two CMV founder populations account for the geographical differences that are largely seen in the conserved portions of the genome, although the timing of separation and direction of spread between the two are not clear. In contrast, the similar allele frequencies among 42 variable regions of the genome, irrespective of geographical origin, are indicative of a second evolutionary process, namely balancing selection that may preserve properties critical to CMV biological function. Given that genetic differences between CMVs are postulated to alter immunogenicity and potentially function, understanding these two evolutionary processes could contribute important information for the development of globally effective vaccines and the identification of novel drug targets.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Humanos , Citomegalovirus/genética , Frequência do Gene , Genômica
6.
Am J Hum Genet ; 109(9): 1653-1666, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35981533

RESUMO

Understanding the genetic basis of human diseases and traits is dependent on the identification and accurate genotyping of genetic variants. Deep whole-genome sequencing (WGS), the gold standard technology for SNP and indel identification and genotyping, remains very expensive for most large studies. Here, we quantify the extent to which array genotyping followed by genotype imputation can approximate WGS in studies of individuals of African, Hispanic/Latino, and European ancestry in the US and of Finnish ancestry in Finland (a population isolate). For each study, we performed genotype imputation by using the genetic variants present on the Illumina Core, OmniExpress, MEGA, and Omni 2.5M arrays with the 1000G, HRC, and TOPMed imputation reference panels. Using the Omni 2.5M array and the TOPMed panel, ≥90% of bi-allelic single-nucleotide variants (SNVs) are well imputed (r2 > 0.8) down to minor-allele frequencies (MAFs) of 0.14% in African, 0.11% in Hispanic/Latino, 0.35% in European, and 0.85% in Finnish ancestries. There was little difference in TOPMed-based imputation quality among the arrays with >700k variants. Individual-level imputation quality varied widely between and within the three US studies. Imputation quality also varied across genomic regions, producing regions where even common (MAF > 5%) variants were consistently not well imputed across ancestries. The extent to which array genotyping and imputation can approximate WGS therefore depends on reference panel, genotype array, sample ancestry, and genomic location. Imputation quality by variant or genomic region can be queried with our new tool, RsqBrowser, now deployed on the Michigan Imputation Server.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Frequência do Gene/genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Polimorfismo de Nucleotídeo Único/genética , Sequenciamento Completo do Genoma
7.
Am J Hum Genet ; 109(9): 1680-1691, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36007525

RESUMO

Neisseria meningitidis protects itself from complement-mediated killing by binding complement factor H (FH). Previous studies associated susceptibility to meningococcal disease (MD) with variation in CFH, but the causal variants and underlying mechanism remained unknown. Here we attempted to define the association more accurately by sequencing the CFH-CFHR locus and imputing missing genotypes in previously obtained GWAS datasets of MD-affected individuals of European ancestry and matched controls. We identified a CFHR3 SNP that provides protection from MD (rs75703017, p value = 1.1 × 10-16) by decreasing the concentration of FH in the blood (p value = 1.4 × 10-11). We subsequently used dual-luciferase studies and CRISPR gene editing to establish that deletion of rs75703017 increased FH expression in hepatocyte by preventing promotor inhibition. Our data suggest that reduced concentrations of FH in the blood confer protection from MD; with reduced access to FH, N. meningitidis is less able to shield itself from complement-mediated killing.


Assuntos
Fator H do Complemento , Infecções Meningocócicas , Proteínas Sanguíneas/genética , Fator H do Complemento/genética , Proteínas do Sistema Complemento/genética , Predisposição Genética para Doença , Genótipo , Humanos , Infecções Meningocócicas/genética
8.
Plant J ; 113(1): 174-185, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36394447

RESUMO

To improve our understanding of genetic mechanisms underlying complex traits in plants, a comprehensive analysis of gene variants is required. Eucalyptus is an important forest plantation genus that is highly outbred. Trait dissection and molecular breeding in eucalypts currently relies on biallelic single-nucleotide polymorphism (SNP) markers. These markers fail to capture the large amount of haplotype diversity in these species, and thus multi-allelic markers are required. We aimed to develop a gene-based haplotype mining panel for Eucalyptus species. We generated 17 999 oligonucleotide probe sets for targeted sequencing of selected regions of 6293 genes implicated in growth and wood properties, pest and disease resistance, and abiotic stress responses. We identified and phased 195 834 SNPs using a read-based phasing approach to reveal SNP-based haplotypes. A total of 8915 target regions (at 4637 gene loci) passed tests for Mendelian inheritance. We evaluated the haplotype panel in four Eucalyptus species (E. grandis, E. urophylla, E. dunnii and E. nitens) to determine its ability to capture diversity across eucalypt species. This revealed an average of 3.13-4.52 haplotypes per target region in each species, and 33.36% of the identified haplotypes were shared by at least two species. This haplotype mining panel will enable the analysis of haplotype diversity within and between species, and provide multi-allelic markers that can be used for genome-wide association studies and gene-based breeding approaches.


Assuntos
Eucalyptus , Haplótipos/genética , Eucalyptus/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Fenótipo , Polimorfismo de Nucleotídeo Único/genética
9.
Plant J ; 113(1): 26-46, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36377929

RESUMO

The advent of the pangenome era has unraveled previously unknown genetic variation existing within diverse crop plants, including rice. This untapped genetic variation is believed to account for a major portion of phenotypic variation existing in crop plants. However, the use of conventional single reference-guided genotyping often fails to capture a large portion of this genetic variation leading to a reference bias. This makes it difficult to identify and utilize novel population/cultivar-specific genes for crop improvement. Thus, we developed a Rice Pangenome Genotyping Array (RPGA) harboring probes assaying 80K single-nucleotide polymorphisms (SNPs) and presence-absence variants spanning the entire 3K rice pangenome. This array provides a simple, user-friendly and cost-effective (60-80 USD per sample) solution for rapid pangenome-based genotyping in rice. The genome-wide association study (GWAS) conducted using RPGA-SNP genotyping data of a rice diversity panel detected a total of 42 loci, including previously known as well as novel genomic loci regulating grain size/weight traits in rice. Eight of these identified trait-associated loci (dispensable loci) could not be detected with conventional single reference genome-based GWAS. A WD repeat-containing PROTEIN 12 gene underlying one of such dispensable locus on chromosome 7 (qLWR7) along with other non-dispensable loci were subsequently detected using high-resolution quantitative trait loci mapping confirming authenticity of RPGA-led GWAS. This demonstrates the potential of RPGA-based genotyping to overcome reference bias. The application of RPGA-based genotyping for population structure analysis, hybridity testing, ultra-high-density genetic map construction and chromosome-level genome assembly, and marker-assisted selection was also demonstrated. A web application (http://www.rpgaweb.com) was further developed to provide an easy to use platform for the imputation of RPGA-based genotyping data using 3K rice reference panel and subsequent GWAS.


Assuntos
Estudo de Associação Genômica Ampla , Oryza , Mapeamento Cromossômico , Oryza/genética , Genótipo , Locos de Características Quantitativas/genética , Polimorfismo de Nucleotídeo Único/genética
10.
Clin Infect Dis ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38513236

RESUMO

A case of a male with human immunodeficiency virus with plasma genotyping detecting no resistance and a CRF02_AG subtype had a controlled HIV RNA on antiretroviral therapy since 2010. We introduced intramuscular therapy with cabotegravir and rilpivirine. One month later, his HIV RNA was 1500 copies/mL; genotyping found a subtype B with many mutations.

11.
BMC Genomics ; 25(1): 525, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807041

RESUMO

BACKGROUND: The Rh blood group system is characterized by its complexity and polymorphism, encompassing 56 different antigens. Accurately predicting the presence of the C antigen using genotyping methods has been challenging. The objective of this study was to evaluate the accuracy of various genotyping methods for predicting the Rh C and to identify a suitable method for the Chinese Han population. METHODS: In total, 317 donors, consisting 223 D+ (including 20 with the Del phenotype) and 94 D- were randomly selected. For RHC genotyping, 48C and 109bp insertion were detected on the Real-time PCR platform and -292 substitution was analyzed via restriction fragment length polymorphism (RFLP). Moreover, the promoter region of the RHCE gene was sequenced to search for other nucleotide substitutions between RHC and RHc. Agreement between prediction methods was evaluated using the Kappa statistic, and comparisons between methods were conducted via the χ2 test. RESULTS: The analysis revealed that the 48C allele, 109bp insertion, a specific pattern observed in RFLP results, and wild-type alleles of seven single nucleotide polymorphisms (SNPs) were in strong agreement with the Rh C, with Kappa coefficients exceeding 0.8. However, there were instances of false positives or false negatives (0.6% false negative rate for 109bp insertion and 5.4-8.2% false positive rates for other methods). The 109bp insertion method exhibited the highest accuracy in predicting the Rh C, at 99.4%, compared to other methods (P values≤0.001). Although no statistical differences were found among other methods for predicting Rh C (P values>0.05), the accuracies in descending order were 48C (94.6%) > rs586178 (92.7%) > rs4649082, rs2375313, rs2281179, rs2072933, rs2072932, and RFLP (92.4%) > rs2072931 (91.8%). CONCLUSIONS: None of the methods examined can independently and accurately predict the Rh C. However, the 109bp insertion test demonstrated the highest accuracy for predicting the Rh C in the Chinese Han population. Utilizing the 109bp insertion test in combination with other methods may enhance the accuracy of Rh C prediction.


Assuntos
Povo Asiático , Técnicas de Genotipagem , Polimorfismo de Nucleotídeo Único , Sistema do Grupo Sanguíneo Rh-Hr , Humanos , Sistema do Grupo Sanguíneo Rh-Hr/genética , Povo Asiático/genética , Técnicas de Genotipagem/métodos , China , Genótipo , Alelos , Polimorfismo de Fragmento de Restrição , Frequência do Gene , Regiões Promotoras Genéticas , População do Leste Asiático
12.
Lab Invest ; 104(4): 100325, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38220043

RESUMO

Formalin-fixed paraffin-embedded (FFPE) tissues stored in biobanks and pathology archives are a vast but underutilized source for molecular studies on different diseases. Beyond being the "gold standard" for preservation of diagnostic human tissues, FFPE samples retain similar genetic information as matching blood samples, which could make FFPE samples an ideal resource for genomic analysis. However, research on this resource has been hindered by the perception that DNA extracted from FFPE samples is of poor quality. Here, we show that germline disease-predisposing variants and polygenic risk scores (PRS) can be identified from FFPE normal tissue (FFPE-NT) DNA with high accuracy. We optimized the performance of FFPE-NT DNA on a genome-wide array containing 657,675 variants. Via a series of testing and validation phases, we established a protocol for FFPE-NT genotyping with results comparable with blood genotyping. The median call rate of FFPE-NT samples in the validation phase was 99.85% (range 98.26%-99.94%) and median concordance with matching blood samples was 99.79% (range 98.85%-99.9%). We also demonstrated that a rare pathogenic PALB2 genetic variant predisposing to cancer can be correctly identified in FFPE-NT samples. We further imputed the FFPE-NT genotype data and calculated the FFPE-NT genome-wide PRS in 3 diseases and 4 disease risk variables. In all cases, FFPE-NT and matching blood PRS were highly concordant (all Pearson's r > 0.95). The ability to precisely genotype FFPE-NT on a genome-wide array enables translational genomics applications of archived FFPE-NT samples with the possibility to link to corresponding phenotypes and longitudinal health data.


Assuntos
Formaldeído , Estratificação de Risco Genético , Humanos , Genótipo , Fixação de Tecidos/métodos , DNA/genética , Inclusão em Parafina/métodos
13.
Emerg Infect Dis ; 30(8)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38941965

RESUMO

Since 1998, notifiable bluetongue virus (BTV) serotypes 1-4, 6, 8, 9, 11, and 16 have been reported in Europe. In August 2006, a bluetongue (BT) outbreak caused by BTV serotype 8 began in northwestern Europe. The Netherlands was declared BT-free in February 2012, and annual monitoring continued. On September 3, 2023, typical BT clinical manifestations in sheep were notified to the Netherlands Food and Product Safety Consumer Authority. On September 6, we confirmed BTV infection through laboratory diagnosis; notifications of clinical signs in cattle were also reported. We determined the virus was serotype 3 by whole-genome sequencing. Retrospective analysis did not reveal BTV circulation earlier than September. The virus source and introduction route into the Netherlands remains unknown. Continuous monitoring and molecular diagnostic testing of livestock will be needed to determine virus spread, and new prevention strategies will be required to prevent BTV circulation within the Netherlands and Europe.

14.
Emerg Infect Dis ; 30(7): 1467-1471, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38916721

RESUMO

We detected malaria vector Anopheles stephensi mosquitoes in the Al Hudaydah governorate in Yemen by using DNA sequencing. We report 2 cytochrome c oxidase subunit I haplotypes, 1 previously found in Ethiopia, Somalia, Djibouti, and Yemen. These findings provide insight into invasive An. stephensi mosquitoes in Yemen and their connection to East Africa.


Assuntos
Anopheles , Mosquitos Vetores , Animais , Anopheles/genética , Anopheles/parasitologia , Anopheles/classificação , Iêmen , Mosquitos Vetores/genética , Humanos , Complexo IV da Cadeia de Transporte de Elétrons/genética , Haplótipos , Malária/transmissão , Malária/epidemiologia , Filogenia
15.
Int J Cancer ; 155(1): 81-92, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38507581

RESUMO

Methylation markers have shown potential for triaging high-risk HPV-positive (hrHPV+) women to identify those at increased risk of invasive cervical cancer (ICC). Our aim was to assess the performance of the S5 DNA methylation classifier for predicting incident high-grade cervical intraepithelial neoplasia (CIN) and ICC among hrHPV+ women in the ARTISTIC screening trial cohort. The S5 classifier, comprising target regions of tumour suppressor gene EPB41L3 and L1 and L2 regions of HPV16, HPV18, HPV31, and HPV33, was assayed by pyrosequencing in archived hrHPV+ liquid-based samples from 343 women with high-grade disease (139 CIN2, 186 CIN3, and 18 ICC) compared to 800 hrHPV+ controls. S5 DNA methylation correlated directly with increasing severity of disease and inversely with lead time to diagnosis. S5 could discriminate between hrHPV+ women who developed CIN3 or ICC and hrHPV+ controls (p <.0001) using samples taken on average 5 years before diagnosis. This relationship was independent of cytology at baseline. The S5 test showed much higher sensitivity than HPV16/18 genotyping for identifying prevalent CIN3 (93% vs. 61%, p = .01) but lower specificity (50% vs. 66%, p <.0001). The S5 classifier identified most women at high risk of developing precancer and missed very few prevalent advanced lesions thus appearing to be an objective test for triage of hrHPV+ women. The combination of methylation of host and HPV genes enables S5 to combine the predictive power of methylation with HPV genotyping to identify hrHPV-positive women who are at highest risk of developing CIN3 and ICC in the future.


Assuntos
Metilação de DNA , Infecções por Papillomavirus , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Humanos , Feminino , Displasia do Colo do Útero/virologia , Displasia do Colo do Útero/genética , Displasia do Colo do Útero/diagnóstico , Displasia do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/diagnóstico , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/complicações , Adulto , Pessoa de Meia-Idade , Estudos de Coortes , Detecção Precoce de Câncer/métodos , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/isolamento & purificação
16.
Int J Cancer ; 154(3): 538-547, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855030

RESUMO

Clinical validation of human papillomavirus (HPV) assays according to international criteria is prerequisite for their implementation in cervical cancer screening. OncoPredict HPV Quantitative Typing (QT) assay (Hiantis Srl, Milan, Italy) is a novel full-genotyping multiplex real-time PCR quantitative assay targeting E6/E7 genes, allowing individual viral load determination of 12 high-risk (HR) HPV types. Quality controls for sample adequacy, efficiency of nucleic acid extraction and PCR inhibition are included in the assay. Clinical performance of OncoPredict HPV QT test was assessed as part of the "Validation of HPV Genotyping Tests" (VALGENT-2) framework, consisting of 1300 cervical liquid-based cytology (LBC) samples of women aged between 20 and 60 years who had originally attended for routine cervical screening in Scotland. The clinical accuracy of the OncoPredict HPV QT (index test) for the detection of CIN2+ was assessed relative to the GP5+/6+ Enzyme ImmunoAssay (GP5+/6+ EIA) (comparator test), using noninferiority criteria. Intra- and interlaboratory reproducibility of the assay was assessed on a subpopulation, comprising 526 samples. The relative sensitivity and specificity for OncoPredict HPV QT vs GP5+/6+-PCR-EIA were 1.01 (95% CI: 0.99-1.03) and 1.03 (95% CI: 1.0-1.06) respectively. The P-values for noninferiority were ≤0.001. The intra- and inter-laboratory reproducibility demonstrated a high concordance (>98.7%) with kappas for individual types ranging from 0.66 to 1.00. OncoPredict HPV QT fulfills the international validation criteria for the use of HPV tests in cervical cancer screening.


Assuntos
Infecções por Papillomavirus , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Feminino , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Neoplasias do Colo do Útero/diagnóstico , Genótipo , Detecção Precoce de Câncer , Técnicas de Genotipagem , Infecções por Papillomavirus/diagnóstico , Reprodutibilidade dos Testes , Papillomaviridae/genética , Sensibilidade e Especificidade
17.
Curr Issues Mol Biol ; 46(6): 5454-5466, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38920998

RESUMO

A single nucleotide variant in mitochondrial DNA (mtDNA) 1555A>G is associated with drug-induced hearing loss. For the 1555A>G mutation site, 1555A wild-type and 1555G mutant-type plasmids were constructed, respectively. In this study, a PCR method based on the TaqMan amplification refractory mutation system was proposed to detect mtDNA 1555A>G. A common upstream primer, a common TaqMan probe, and two downstream allele-specific primers with mismatched bases were designed. One-step amplification and detection of the wild-type and mutant type at the 1555 site were realized for the deafness-related gene through two reactions. Based on this detection method, the minimum detection limit of the wild-type and mutant type detection systems for plasmids was 50 copies/µL. The minimum sensitivity for the detection of nucleic acids in real dried blood spot (DBS) samples was 0.1 ng/µL. In the normal DBS DNA sample, the detection limit of the mutation abundance reached 0.78%. The specificity of the detection method was 100%, and the coefficient of variation was less than 3.36%. This approach was validated using clinical DNA extracted from 113 DBS samples of newborns. Additionally, it showed 100% agreement with bi-directional Sanger sequencing. It can be used as an optional method for the clinical detection of deafness-related genes.

18.
Am J Physiol Gastrointest Liver Physiol ; 326(4): G473-G481, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38410866

RESUMO

Genetically engineered mouse models play a pivotal role in the modeling of diseases, exploration of gene functions, and the development of novel therapies. In recent years, clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated genome editing technology has revolutionized the process of developing such models by enabling precise genome modifications of the multiple interested genes simultaneously. Following genome editing, an efficient genotyping methodology is crucial for subsequent characterization. However, current genotyping methods are laborious, time-consuming, and costly. Here, using targeting the mouse trypsinogen genes as an example, we introduced common applications of CRISPR-Cas9 editing and a streamlined cost-effective genotyping workflow for CRISPR-edited mouse models, in which Sanger sequencing is required only at the initial steps. In the F0 mice, we focused on identifying the presence of positive editing by PCR followed by Sanger sequencing without the need to know the exact sequences, simplifying the initial screening. In the F1 mice, Sanger sequencing and algorithms decoding were used to identify the precise editing. Once the edited sequence was established, a simple and effective genotyping strategy was established to distinguish homozygous and heterozygous status by PCR from tail DNA. The genotyping workflow applies to deletions as small as one nucleotide, multiple-gene knockout, and knockin studies. This simplified, efficient, and cost-effective genotyping shall be instructive to new investigators who are unfamiliar with characterizing CRISPR-Cas9-edited mouse strains.NEW & NOTEWORTHY This study presents a streamlined, cost-effective genotyping workflow for clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) edited mouse models, focusing on trypsinogen genes. It simplifies initial F0 mouse screening using PCR and Sanger sequencing without needing exact sequences. For F1 mice, precise editing is identified through Sanger sequencing and algorithm decoding. The workflow includes a novel PCR strategy for distinguishing homozygous and heterozygous statuses in subsequent generations, effective for small deletions, multiple-gene knockouts, and knockins.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Camundongos , Animais , Edição de Genes/métodos , Proteína 9 Associada à CRISPR/genética , Genótipo , Tripsinogênio , Fluxo de Trabalho
19.
BMC Plant Biol ; 24(1): 306, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38644480

RESUMO

Linkage maps are essential for genetic mapping of phenotypic traits, gene map-based cloning, and marker-assisted selection in breeding applications. Construction of a high-quality saturated map requires high-quality genotypic data on a large number of molecular markers. Errors in genotyping cannot be completely avoided, no matter what platform is used. When genotyping error reaches a threshold level, it will seriously affect the accuracy of the constructed map and the reliability of consequent genetic studies. In this study, repeated genotyping of two recombinant inbred line (RIL) populations derived from crosses Yangxiaomai × Zhongyou 9507 and Jingshuang 16 × Bainong 64 was used to investigate the effect of genotyping errors on linkage map construction. Inconsistent data points between the two replications were regarded as genotyping errors, which were classified into three types. Genotyping errors were treated as missing values, and therefore the non-erroneous data set was generated. Firstly, linkage maps were constructed using the two replicates as well as the non-erroneous data set. Secondly, error correction methods implemented in software packages QTL IciMapping (EC) and Genotype-Corrector (GC) were applied to the two replicates. Linkage maps were therefore constructed based on the corrected genotypes and then compared with those from the non-erroneous data set. Simulation study was performed by considering different levels of genotyping errors to investigate the impact of errors and the accuracy of error correction methods. Results indicated that map length and marker order differed among the two replicates and the non-erroneous data sets in both RIL populations. For both actual and simulated populations, map length was expanded as the increase in error rate, and the correlation coefficient between linkage and physical maps became lower. Map quality can be improved by repeated genotyping and error correction algorithm. When it is impossible to genotype the whole mapping population repeatedly, 30% would be recommended in repeated genotyping. The EC method had a much lower false positive rate than did the GC method under different error rates. This study systematically expounded the impact of genotyping errors on linkage analysis, providing potential guidelines for improving the accuracy of linkage maps in the presence of genotyping errors.


Assuntos
Mapeamento Cromossômico , Genótipo , Triticum , Triticum/genética , Mapeamento Cromossômico/métodos , Locos de Características Quantitativas , Ligação Genética , Técnicas de Genotipagem/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos
20.
BMC Plant Biol ; 24(1): 416, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760676

RESUMO

BACKGROUND: Phytophthora root rot, a major constraint in chile pepper production worldwide, is caused by the soil-borne oomycete, Phytophthora capsici. This study aimed to detect significant regions in the Capsicum genome linked to Phytophthora root rot resistance using a panel consisting of 157 Capsicum spp. genotypes. Multi-locus genome wide association study (GWAS) was conducted using single nucleotide polymorphism (SNP) markers derived from genotyping-by-sequencing (GBS). Individual plants were separately inoculated with P. capsici isolates, 'PWB-185', 'PWB-186', and '6347', at the 4-8 leaf stage and were scored for disease symptoms up to 14-days post-inoculation. Disease scores were used to calculate disease parameters including disease severity index percentage, percent of resistant plants, area under disease progress curve, and estimated marginal means for each genotype. RESULTS: Most of the genotypes displayed root rot symptoms, whereas five accessions were completely resistant to all the isolates and displayed no symptoms of infection. A total of 55,117 SNP markers derived from GBS were used to perform multi-locus GWAS which identified 330 significant SNP markers associated with disease resistance. Of these, 56 SNP markers distributed across all the 12 chromosomes were common across the isolates, indicating association with more durable resistance. Candidate genes including nucleotide-binding site leucine-rich repeat (NBS-LRR), systemic acquired resistance (SAR8.2), and receptor-like kinase (RLKs), were identified within 0.5 Mb of the associated markers. CONCLUSIONS: Results will be used to improve resistance to Phytophthora root rot in chile pepper by the development of Kompetitive allele-specific markers (KASP®) for marker validation, genomewide selection, and marker-assisted breeding.


Assuntos
Capsicum , Resistência à Doença , Estudo de Associação Genômica Ampla , Phytophthora , Doenças das Plantas , Raízes de Plantas , Polimorfismo de Nucleotídeo Único , Phytophthora/fisiologia , Phytophthora/patogenicidade , Capsicum/genética , Capsicum/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Resistência à Doença/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/genética , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA