Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255796

RESUMO

The TP-84 bacteriophage, which infects Geobacillus stearothermophilus strain 10 (G. stearothermophilus), has a genome size of 47.7 kilobase pairs (kbps) and contains 81 predicted protein-coding ORFs. One of these, TP84_26 encodes a putative tail fiber protein possessing capsule depolymerase activity. In this study, we cloned the TP84_26 gene into a high-expression Escherichia coli (E. coli) system, modified its N-terminus with His-tag, expressed both the wild type gene and His-tagged variant, purified the recombinant depolymerase variants, and further evaluated their properties. We developed a direct enzymatic assay for the depolymerase activity toward G. stearothermophilus capsules. The recombinant TP84_26 protein variants effectively degraded the existing bacterial capsules and inhibited the formation of new ones. Our results provide insights into the novel TP84_26 depolymerase with specific activity against thermostable G. stearothermophilus and its role in the TP-84 life cycle. The identification and characterization of novel depolymerases, such as TP84_26, hold promise for innovative strategies to combat bacterial infections and improve various industrial processes.


Assuntos
Bacteriófagos , Escherichia coli , Escherichia coli/genética , Geobacillus stearothermophilus/genética , Cápsulas Bacterianas , Bacteriófagos/genética , Ensaios Enzimáticos
2.
Indian J Microbiol ; 62(4): 618-626, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36458220

RESUMO

Geobacillus thermoleovorans MTCC 13131, an amide hydrolyzing bacteria was isolated from a hot spring in Himachal Pradesh and identified through 16S rRNA gene sequence analysis. The amidase derived from this bacterium exhibited hydrolyzing catalytic ability against aliphatic and aromatic amides. The isolate was characterized for morphological and biochemical properties. Further, the production of amidase enzyme from this isolate was evaluated using approach of one-variable-at-a-time and response surface method. The Response Surface Methodology based study indicated the importance of nitrogen sources and growth period for amidase production. Optimal production was achieved at a temperature 55 °C, and production pH 7.5 in the production medium comprising diammonium hydrogen phosphate (0.4%), peptone (0.45%) and yeast extract (0.3%). The wide substrate affinity of the strain suggests its potential role in biotransformation of amides to corresponding acids of industrial significance along with its strong capacity to degrade the toxic amide in polluted environmental samples. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-022-01042-9.

3.
Molecules ; 26(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34946651

RESUMO

Immobilization of enzymes has many advantages for their application in biotechnological processes. In particular, the cross-linked enzyme aggregates (CLEAs) allow the production of solid biocatalysts with a high enzymatic loading and the advantage of obtaining derivatives with high stability at low cost. The purpose of this study was to produce cross-linked enzymatic aggregates (CLEAs) of LipMatCCR11, a 43 kDa recombinant solvent-tolerant thermoalkaliphilic lipase from Geobacillus thermoleovorans CCR11. LipMatCCR11-CLEAs were prepared using (NH4)2SO4 (40% w/v) as precipitant agent and glutaraldehyde (40 mM) as cross-linker, at pH 9, 20 °C. A U10(56) uniform design was used to optimize CLEA production, varying protein concentration, ammonium sulfate %, pH, glutaraldehyde concentration, temperature, and incubation time. The synthesized CLEAs were also analyzed using scanning electron microscopy (SEM) that showed individual particles of <1 µm grouped to form a superstructure. The cross-linked aggregates showed a maximum mass activity of 7750 U/g at 40 °C and pH 8 and retained more than 20% activity at 100 °C. Greater thermostability, resistance to alkaline conditions and the presence of organic solvents, and better durability during storage were observed for LipMatCCR11-CLEAs in comparison with the soluble enzyme. LipMatCCR11-CLEAs presented good reusability by conserving 40% of their initial activity after 9 cycles of reuse.


Assuntos
Proteínas de Bactérias/química , Geobacillus/enzimologia , Lipase/química , Agregados Proteicos , Proteínas de Bactérias/genética , Reagentes de Ligações Cruzadas/química , Estabilidade Enzimática , Geobacillus/genética , Lipase/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
4.
Biochem Biophys Res Commun ; 508(1): 145-151, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30471860

RESUMO

Thermo-alkalophilic bacterium, Geobacillus thermoleovorans secrets many enzymes including a 43 kDa extracellular lipase. Significant thermostability, organic solvent stability and wide substrate preferences for hydrolysis drew our attention to solve its structure by crystallography. The structure was solved by molecular replacement method and refined up to 2.14 Šresolution. Structure of the lipase showed an alpha-beta fold with 19 α-helices and 10 ß-sheets. The active site remains covered by a lid. One calcium and one zinc atom was found in the crystal. The structure showed a major difference (rmsd 5.6 Å) from its closest homolog in the amino acid region 191 to 203. Thermal unfolding of the lipase showed that the lipase is highly stable with Tm of 76 °C. 13C NMR spectra of products upon triglyceride hydrolysate revealed that the lipase hydrolyses at both sn-1 and sn-2 positions with equal efficiency.


Assuntos
Proteínas de Bactérias/química , Geobacillus/enzimologia , Lipase/química , Temperatura , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Estabilidade Enzimática , Lipase/isolamento & purificação , Lipase/metabolismo , Modelos Moleculares , Conformação Proteica
5.
Int J Mol Sci ; 20(23)2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31771094

RESUMO

The toxin-antitoxin (TA) systems have been attracting attention due to their role in regulating stress responses in prokaryotes and their biotechnological potential. Much recognition has been given to type II TA system of mesophiles, while thermophiles have received merely limited attention. Here, we are presenting the putative type II TA families encoded on the genomes of four Geobacillus strains. We employed the TA finder tool to mine for TA-coding genes and manually curated the results using protein domain analysis tools. We also used the NCBI BLAST, Operon Mapper, ProOpDB, and sequence alignment tools to reveal the geobacilli TA features. We identified 28 putative TA pairs, distributed over eight TA families. Among the identified TAs, 15 represent putative novel toxins and antitoxins, belonging to the MazEF, MNT-HEPN, ParDE, RelBE, and XRE-COG2856 TA families. We also identified a potentially new TA composite, AbrB-ParE. Furthermore, we are suggesting the Geobacillus acetyltransferase TA (GacTA) family, which potentially represents one of the unique TA families with a reverse gene order. Moreover, we are proposing a hypothesis on the xre-cog2856 gene expression regulation, which seems to involve the c-di-AMP. This study aims for highlighting the significance of studying TAs in Geobacillus and facilitating future experimental research.


Assuntos
Evolução Molecular , Regulação Bacteriana da Expressão Gênica/fisiologia , Geobacillus , Família Multigênica/fisiologia , Sistemas Toxina-Antitoxina/fisiologia , Geobacillus/genética , Geobacillus/metabolismo
6.
Indian J Microbiol ; 59(3): 351-355, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31388213

RESUMO

In the present study, we report the draft genome sequence of an obligate thermophile Geobacillus thermoleovorans strain RL isolated from Manikaran hot water spring located atop the Himalayan ranges, India. Strain RL grew optimally at 70 °C but not below 45 °C. The draft genome (3.39 Mb) obtained by Illumina sequencing contains 138 contigs with an average G + C content of 52.30%. RAST annotation showed that amino acid metabolism pathways were most dominant followed by carbohydrate metabolism. Genome-wide analysis using NCBI's Prokaryotic Genome Annotation Pipeline revealed that strain RL encodes for a cocktail of industrially important hydrolytic enzymes glycoside hydrolase, α-and ß-glucosidase, xylanase, amylase, neopullulanase, pullulanase and lipases required for white biotechnology. In addition, the presence of genes encoding green biocatalyst multicopper polyphenol oxidase (laccase) and an anticancer enzyme l-glutaminase reflects the significance of strain RL in gray and red biotechnology, respectively. Strain RL is a thermophilic multi-enzyme encoding bacterium which could be the source for the recombinant production of biotechnologically significant enzymes. In, addition whole cells of strain RL may be used in bioremediation studies.

7.
Appl Microbiol Biotechnol ; 101(6): 2357-2369, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27924363

RESUMO

The 3'-deleted amylopullulanase gene from the extreme thermophile Geobacillus thermoleovorans (Gt-apuΔC) was expressed extracellularly in Pichia pastoris under both methanol-inducible AOX1 and constitutive GAP promoters. The expression of the gene (Gt-apuΔC) was higher under GAP promoter (36.2 U ml-1, α-amylase; 33.5 U ml-1, pullulanase) than that under AOX1 promoter (32.5 and 28.6 U ml-1). The heavily glycosylated Gt-apuΔC from the recombinant P. pastoris displays higher substrate specificity, thermal stability and starch saccharification efficiency than that expressed in Escherichia coli. The enzyme hydrolyses maltotriose and maltotetraose unlike that expressed in E. coli. The enzyme action on wheat bran liberates maltose and glucose without detectable amount(s) of maltooligosaccharides. The sugars released from wheat bran (glucose and maltose) could be fractionated by ultrafiltration, as confirmed by TLC and HPLC analysis. This is the first report on the production of recombinant amylopullulanase extracellularly in P. pastoris.


Assuntos
Proteínas de Bactérias/química , Geobacillus/química , Glucose/química , Glicosídeo Hidrolases/química , Maltose/química , Pichia/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fibras na Dieta/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Geobacillus/enzimologia , Glucose/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Glicosilação , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Maltose/metabolismo , Pichia/genética , Regiões Promotoras Genéticas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade da Espécie , Especificidade por Substrato
8.
Biotechnol Appl Biochem ; 64(1): 62-69, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26339949

RESUMO

Production of recombinant thermo-alkali-stable lipase LipMatCCR11, expressed in Escherichia coli BL21 (DE3), was investigated via response surface methodology by using a face-centered design with three levels of each factor. Additionally, improvement of the catalytic performance of expressed lipase was assessed by immobilization on microporous polypropylene. Results showed that inducer (isopropyl ß-d-1-thiogalactopyranoside [IPTG]) concentration and temperature were found to be the significant factors (P < 0.05). The maximum lipase expression was obtained at IPTG 0.6 mM, 16 °C, and 18 H, with a specific lipase activity of 7.29 × 106  U/mg, which was 36.4 times higher (over 1,300-fold increase) than lipase activity measured under nonoptimized conditions. On the other hand, immobilized lipase showed a high biocatalytic activity, particularly in the synthesis of aroma esters.


Assuntos
Proteínas de Bactérias , Expressão Gênica , Geobacillus/enzimologia , Lipase , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Enzimas Imobilizadas/biossíntese , Enzimas Imobilizadas/química , Enzimas Imobilizadas/genética , Enzimas Imobilizadas/isolamento & purificação , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Geobacillus/genética , Lipase/biossíntese , Lipase/química , Lipase/genética , Lipase/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
9.
OMICS ; 24(12): 756-765, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33085568

RESUMO

Thermophilic microorganisms that thrive in extreme environments are of great importance because they express heat-resistant enzymes with the potential to serve as biocatalysts in industrial applications. Thermal proteome profiling (TPP) is a multiplexed quantitative mass spectrometry method for analyses of structural information and melting behavior of thousands of proteins, simultaneously determining the thermal denaturation profiles of each protein. We report, in this study, TPP applied to a thermophilic bacterial proteome, a recently isolated strain of Geobacillus thermoleovorans named as ARTRW1. The proteome was investigated in terms of thermostable enzymes that are relevant to industrial applications. In this study, we present the thermostability profiles of its 868 proteins. The majority of G. thermoleovorans proteome was observed to melt between 62.5°C and 72°C, with melting point (Tm) mean value of 68.1°C ± 6.6°C. Unfolding characteristics of several enzymes, including amylase, protease, and lipase, were demonstrated which are highly informative in terms of their applicability to specific industrial processes. A significant correlation was observed between protein melting temperature and the structural features such as molecular weight and abundance, whereas correlations were modest or weak in relation to the α-helix structure percentages. Taken together, we demonstrated a system-wide melting profile analysis of a thermal proteome and listed proteins with elevated Tm values that are highly promising for applications in medicine, food engineering, and cosmetics in particular. The extracted Tm values were found similar to those obtained by biophysical methods applied to purified proteins. TPP analysis has significant industrial and biomedical potentials to accelerate thermophilic enzyme research and innovation.


Assuntos
Proteínas de Bactérias/metabolismo , Geobacillus/metabolismo , Proteoma , Proteômica , Proteínas de Bactérias/química , Espectrometria de Massas , Desnaturação Proteica , Engenharia de Proteínas , Estabilidade Proteica , Proteômica/métodos , Temperatura
10.
Int J Biol Macromol ; 79: 570-6, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25881956

RESUMO

Maltogenic amylase of Geobacillus thermoleovorans (Gt-MamyIII), which has the highest thermostability among bacterial maltogenic amylases, has been used as a model enzyme to understand the role of networked salt bridges in thermoadaptation. The role of intra-chain cross-domain salt bridge networks in the thermostabilization of maltogenic amylase of G. thermoleovorans was confirmed by site-directed mutagenesis and CD analysis. The amino acid pairs in seven salt bridges have been mutated singly and pair-wise, and their free energy of thermal inactivation has been calculated. Among seven, single and double mutations in the amino acids corresponding to four salt bridges (lys306.glu336, arg403.asp65, arg497.glu523 and lys524.glu523) decrease T1/2 and Tm of Gt-MamyIII significantly. Moreover, glu523 forms networked salt bridges with arg497 and lys524. OE1 of glu523 forms electrostatic interactions with NH1 of arg497, NH2 of arg497 and NZ of lys524 at a distance of 2.33, 2.02 and 0.33Å, respectively. The mutations in three buried amino acids led to a decline in T1/2 and Tm. The buried as well as networked cross-domain salt bridges thus appear to play a significant role in the thermostabilization of Gt-MamyIII. The salt bridges lys306.glu336 and arg403.asp65, which are isolated and partially accessible, play a minor role in its thermostabilization.


Assuntos
Proteínas de Bactérias/química , Geobacillus/enzimologia , Glicosídeo Hidrolases/química , Sequência de Aminoácidos , Domínio Catalítico , Estabilidade Enzimática , Cinética , Modelos Moleculares , Especificidade por Substrato , Temperatura
11.
J Microbiol Biotechnol ; 25(7): 1070-83, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25791847

RESUMO

A gene (GT-SM3B) encoding a thermostable secreted oligoendopeptidase (GT-SM3B) was cloned from the thermophile Geobacillus thermoleovorans DSM 15325. GT-SM3B is 1,857 bp in length and encodes a single-domain protein of 618 amino acids with a 23-residue signal peptide having a calculated mass of 67.7 kDa after signal cleavage. The deduced amino acid sequence of GT-SM3B contains a conservative zinc metallopeptidase motif (His(400)-Glu(401)-X-XHis (404)). The described oligopeptidase belongs to the M3B subfamily of metallopeptidases and displays the highest amino acid sequence identity (40.3%) to the oligopeptidase PepFBa from mesophilic Bacillus amyloliquefaciens 23-7A among the characterized oligopeptidases. Secretory production of GT-SM3B was used, exploiting successful oligopeptidase signal peptide recognition by Escherichia coli BL21 (DE3). The recombinant enzyme was purified from the culture fluid. Homodimerization of GT-SM3B was determined by SDS-PAGE. Both the homodimer and monomer were catalytically active within a pH range of 5.0-8.0, at pH 7.3 and 40°C, showing the Km, Vmax, and kcat values for carbobenzoxy-Gly-Pro-Gly-Gly-Pro-Ala-OH peptidolysis to be 2.17 ± 0.04 × 10(-6) M, 2.65 ± 0.03 × 10(-3) micrometer/min, and 5.99 ± 0.07 s(-1), respectively. Peptidase remained stable at a broad pH range of 5.0-8.0. GT-SM3B was thermoactive, demonstrating 84% and 64% of maximum activity at 50°C and 60°C, respectively. The recombinant oligopeptidase is one of the most thermostable M3B peptidase, retaining 71% residual activity after incubation at 60°C for 1 h. GT-SM3B was shown to hydrolyze a collagenous peptide mixture derived from various types of collagen, but less preferentially than synthetic hexapeptide. This study is the first report on an extracellular thermostable metallo-oligopeptidase.


Assuntos
Geobacillus/enzimologia , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Clonagem Molecular , DNA Bacteriano/química , DNA Bacteriano/genética , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Geobacillus/genética , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Peso Molecular , Peptídeo Hidrolases/química , Multimerização Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA