Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 496
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 73(2): 264-277.e5, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30503773

RESUMO

Type ΙΙΙ CRISPR-Cas systems provide robust immunity against foreign RNA and DNA by sequence-specific RNase and target RNA-activated sequence-nonspecific DNase and RNase activities. We report on cryo-EM structures of Thermococcus onnurineus CsmcrRNA binary, CsmcrRNA-target RNA and CsmcrRNA-target RNAanti-tag ternary complexes in the 3.1 Å range. The topological features of the crRNA 5'-repeat tag explains the 5'-ruler mechanism for defining target cleavage sites, with accessibility of positions -2 to -5 within the 5'-repeat serving as sensors for avoidance of autoimmunity. The Csm3 thumb elements introduce periodic kinks in the crRNA-target RNA duplex, facilitating cleavage of the target RNA with 6-nt periodicity. Key Glu residues within a Csm1 loop segment of CsmcrRNA adopt a proposed autoinhibitory conformation suggestive of DNase activity regulation. These structural findings, complemented by mutational studies of key intermolecular contacts, provide insights into CsmcrRNA complex assembly, mechanisms underlying RNA targeting and site-specific periodic cleavage, regulation of DNase cleavage activity, and autoimmunity suppression.


Assuntos
Autoimunidade , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Desoxirribonucleases/metabolismo , Estabilidade de RNA , RNA Bacteriano/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/ultraestrutura , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/imunologia , Proteínas Associadas a CRISPR/ultraestrutura , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/imunologia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/imunologia , Microscopia Crioeletrônica , Desoxirribonucleases/genética , Desoxirribonucleases/imunologia , Desoxirribonucleases/ultraestrutura , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/imunologia , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Complexos Multiproteicos , Mutação , Conformação de Ácido Nucleico , Conformação Proteica , RNA Bacteriano/genética , RNA Bacteriano/imunologia , RNA Bacteriano/ultraestrutura , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Proteínas de Ligação a RNA/ultraestrutura , Relação Estrutura-Atividade , Thermococcus/enzimologia , Thermococcus/genética , Thermococcus/imunologia
2.
Plant J ; 2024 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-39154347

RESUMO

Seeds are initiated from the carpel margin meristem (CMM) and high seed yield is top one of breeding objectives for many crops. ß-1,3-glucanases play various roles in plant growth and developmental processes; however, whether it participates in CMM development and seed formation remains largely unknown. Here, we identified a ß-1,3-glucanase gene (GLU19) as a determinant of CMM callose deposition and seed yield in cotton. GLU19 was differentially expressed in carpel tissues between Gossypium barbadense (Gb) and Gossypium hirsutum (Gh). Based on resequencing data, one interspecies-specific InDel in the promoter of GLU19 was further detected. The InDel was involved in the binding site of the CRABS CLAW (CRC) transcription factor, a regulator of carpel development. We found that the CRC binding affinity to the GLU19 promoter of G. barbadense was higher than that of G. hirsutum. Since G. barbadense yields fewer seeds than G. hirsutum, we speculated that stronger CRC binding to the GLU19 promoter activated higher expression of GLU19 which in turn suppressed seed production. Consistent with this hypothesis was that the overexpression of GhGLU19 caused reduced seed number, boll weight and less callose formation in CMM. Conversely, GhGLU19-knockdown (GhGLU19-KD) cotton led to the opposite phenotypes. By crossing GhGLU19-KD lines with several G. hirsutum and G. barbadense cotton accessions, all F1 and F2 plants carrying GhGLU19-KD transgenic loci exhibited higher seed yield than control plants without the locus. The increased seed effect was also found in the down-regulation of Arabidopsis orthologs lines, indicating that this engineering strategy may improve the seed yield in other crops.

3.
Cell Mol Life Sci ; 81(1): 170, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597976

RESUMO

In our prior investigation, we discerned loss-of-function variants within the gene encoding glutamine-rich protein 2 (QRICH2) in two consanguineous families, leading to various morphological abnormalities in sperm flagella and male infertility. The Qrich2 knockout (KO) in mice also exhibits multiple morphological abnormalities of the flagella (MMAF) phenotype with a significantly decreased sperm motility. However, how ORICH2 regulates the formation of sperm flagella remains unclear. Abnormal glutamylation levels of tubulin cause dysplastic microtubules and flagella, eventually resulting in the decline of sperm motility and male infertility. In the current study, by further analyzing the Qrich2 KO mouse sperm, we found a reduced glutamylation level and instability of tubulin in Qrich2 KO mouse sperm flagella. In addition, we found that the amino acid metabolism was dysregulated in both testes and sperm, leading to the accumulated glutamine (Gln) and reduced glutamate (Glu) concentrations, and disorderly expressed genes responsible for Gln/Glu metabolism. Interestingly, mice fed with diets devoid of Gln/Glu phenocopied the Qrich2 KO mice. Furthermore, we identified several mitochondrial marker proteins that could not be correctly localized in sperm flagella, which might be responsible for the reduced mitochondrial function contributing to the reduced sperm motility in Qrich2 KO mice. Our study reveals a crucial role of a normal Gln/Glu metabolism in maintaining the structural stability of the microtubules in sperm flagella by regulating the glutamylation levels of the tubulin and identifies Qrich2 as a possible novel Gln sensor that regulates microtubule glutamylation and mitochondrial function in mouse sperm.


Assuntos
Glutamina , Infertilidade Masculina , Animais , Humanos , Masculino , Camundongos , Ácido Glutâmico , Infertilidade Masculina/genética , Camundongos Knockout , Microtúbulos , Mitocôndrias , Proteínas Mitocondriais , Sêmen , Motilidade dos Espermatozoides , Espermatozoides , Tubulina (Proteína)
4.
Proteomics ; 24(3-4): e2200431, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37548120

RESUMO

Middle-down proteomics (MDP) is an analytical approach in which protein samples are digested with proteases such as Glu-C to generate large peptides (>3 kDa) that are analyzed by mass spectrometry (MS). This method is useful for characterizing high-molecular-weight proteins that are difficult to detect by top-down proteomics (TDP), in which intact proteins are analyzed by MS. In this study, we applied GeLC-FAIMS-MS, a multidimensional separation workflow that combines gel-based prefractionation with LC-FAIMS MS, for deep MDP. Middle-down peptides generated by optimized limited Glu-C digestion conditions were first size-fractionated by polyacrylamide gel electrophoresis, followed by C4 reversed-phase liquid chromatography separation and additional ion mobility fractionation, resulting in a significant increase in peptide length detectable by MS. In addition to global analysis, the GeLC-FAIMS-MS concept can also be applied to targeted MDP, where only proteins in the desired molecular weight range are gel-fractionated and their Glu-C digestion products are analyzed, as demonstrated by targeted analysis of integrins in exosomes. In-depth MDP achieved by global and targeted GeLC-FAIMS-MS supports the exploration of proteoform information not covered by conventional TDP by increasing the number of detectable protein groups or post-translational modifications (PTMs) and improving the sequence coverage.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Proteômica/métodos , Fluxo de Trabalho , Peptídeos/análise , Proteínas de Ligação a DNA
5.
BMC Plant Biol ; 24(1): 395, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745139

RESUMO

BACKGROUND: In common wheat (Triticum aestivum L.), allelic variations in the high-molecular-weight glutenin subunits Glu-B1 locus have important effects on grain end-use quality. The Glu-B1 locus consists of two tightly linked genes encoding x- and y-type subunits that exhibit highly variable frequencies. However, studies on the discriminating markers of the alleles that have been reported are limited. Here, we developed 11 agarose gel-based PCR markers for detecting Glu-1Bx and Glu-1By alleles. RESULTS: By integrating the newly developed markers with previously published PCR markers, nine Glu-1Bx locus alleles (Glu-1Bx6, Glu-1Bx7, Glu-1Bx7*, Glu-1Bx7 OE, Glu-1Bx13, Glu-1Bx14 (-) , Glu-1Bx14 (+)/Bx20, and Glu-1Bx17) and seven Glu-1By locus alleles (Glu-1By8, Glu-1By8*, Glu-1By9, Glu-1By15/By20, Glu-1By16, and Glu-1By18) were distinguished in 25 wheat cultivars. Glu-1Bx6, Glu-1Bx13, Glu-1Bx14 (+)/Bx20, Glu-1By16, and Glu-1By18 were distinguished using the newly developed PCR markers. Additionally, the Glu-1Bx13 and Glu-1Bx14 (+)/Bx20 were distinguished by insertions and deletions in their promoter regions. The Glu-1Bx6, Glu-1Bx7, Glu-1By9, Glu-1Bx14 (-), and Glu-1By15/By20 alleles were distinguished by using insertions and deletions in the gene-coding region. Glu-1By13, Glu-1By16, and Glu-1By18 were dominantly identified in the gene-coding region. We also developed a marker to distinguish between the two Glu-1Bx14 alleles. However, the Glu-1Bx14 (+) + Glu-1By15 and Glu-1Bx20 + Glu-1By20 allele combinations could not be distinguished using PCR markers. The high-molecular-weight glutenin subunits of wheat varieties were analyzed by ultra-performance liquid chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the findings were compared with the results of PCR analysis. CONCLUSIONS: Seven Glu-1Bx and four Glu-1By allele detection markers were developed to detect nine Glu-1Bx and seven Glu-1By locus alleles, respectively. Integrating previously reported markers and 11 newly developed PCR markers improves allelic identification of the Glu-B1 locus and facilitates more effective analysis of Glu-B1 alleles molecular variations, which may improve the end-use quality of wheat.


Assuntos
Alelos , Glutens , Reação em Cadeia da Polimerase , Triticum , Glutens/genética , Glutens/metabolismo , Triticum/genética , Marcadores Genéticos , Reação em Cadeia da Polimerase/métodos , Peso Molecular
6.
MAGMA ; 37(1): 39-51, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37715877

RESUMO

OBJECTIVE: To find a possible quantitative relation between activation-induced fast (< 10 s) changes in the γ-aminobutyric acid (GABA) level and the amplitude of a blood oxygen level-dependent contrast (BOLD) response (according to magnetic resonance spectroscopy [MRS] and functional magnetic resonance imaging [fMRI]). MATERIALS AND METHODS: fMRI data and MEGA-PRESS magnetic resonance spectra [echo time (TE)/repetition time (TR) = 68 ms/1500 ms] of an activated area in the visual cortex of 33 subjects were acquired using a 3 T MR scanner. Stimulation was performed by presenting an image of a flickering checkerboard for 3 s, repeated with an interval of 13.5 s. The time course of GABA and creatine (Cr) concentrations and the width and height of resonance lines were obtained with a nominal time resolution of 1.5 s. Changes in the linewidth and height of n-acetylaspartate (NAA) and Cr signals were used to determine the BOLD effect. RESULTS: In response to the activation, the BOLD-corrected GABA + /Cr ratio increased by 5.0% (q = 0.027) and 3.8% (q = 0.048) at 1.6 and 3.1 s, respectively, after the start of the stimulus. Time courses of Cr and NAA signal width and height reached a maximum change at the 6th second (~ 1.2-1.5%, q < 0.05). CONCLUSION: The quick response of the observed GABA concentration to the short stimulus is most likely due to a release of GABA from vesicles followed by its packaging back into vesicles.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Estimulação Luminosa , Encéfalo/diagnóstico por imagem , Espectroscopia de Ressonância Magnética/métodos , Ácido gama-Aminobutírico , Creatina , Ácido Glutâmico
7.
Skin Res Technol ; 30(1): e13548, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38174788

RESUMO

BACKGROUND: Excessive inflammation may cause tissue damage and disrupt the function of the skin barrier. Hyaluronic acid (HA), an endogenous component, was found to regulate multiple inflammatory factors for skin health. This work aims to further enhance its efficacy by grafting amino acid onto its molecule. METHODS: Glutamic acid (Glu) was selected as the ligand to react with low-molecular-weight HA. Fibroblast tests and a 3D skin model were used to investigate the anti-inflammation efficacy of HA-Glu. RESULTS: For IL-1α, IL-6 and TNF-α, the grafted compound presents stronger inhibition ability versus native HA. Moreover, HA-Glu could promote the repair of damaged skin by improving the compactness of the stratum corneum and increasing the thickness of the living cell layer. CONCLUSION: The application of HA-Glu compound in skin care formulas would be effective to alleviate inflammation-induced skin symptoms and skin aging.


Assuntos
Ácido Glutâmico , Ácido Hialurônico , Humanos , Ácido Hialurônico/farmacologia , Ácido Hialurônico/uso terapêutico , Ácido Hialurônico/química , Ácido Glutâmico/metabolismo , Pele/metabolismo , Inflamação/tratamento farmacológico , Fibroblastos/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-37928883

RESUMO

Glutamate (Glu) is an excitatory neurotransmitter that plays a critical role in memory. Brain mapping activities of such pathways relied heavily on the ability to release Glu with spatiotemporal precision. Several photo-protecting groups (PPGs), referred to as photocages or cages, were designed to accomplish the release of Glu upon irradiation. Previously reported Glu cages responded to UV upon irradiation with single photons, which limited their use in vivo experiments due to cytotoxicity. Other caged designs suffered from lower quantum efficiency (QE) of release necessitating higher concentrations and/or longer photoirradiation times. There have been limited examples of cages that respond to visible light with single photon irradiation. Herein, we report the efficient preparation of 11 caged Glu examples that respond to two visible wavelengths, 467 nm (thiocoumarin based) and 515-540 nm (BODIPY based). The kinetics of photouncaging were studied for all caged designs, and we report all quantum efficiencies, i.e., quantum yields (Φ), that ranged from 0.0001-0.65. Two of the BODIPY cages are reported here for the first time, and one, Me-BODIPY-Br-Glu, shows the most efficient Glu release with a QE of 0.65. Similar caged designs can be extended to the inhibitory neurotransmitter, GABA. This would enable the use of two visible wavelengths to modulate the release of excitatory and inhibitory neurotransmitters upon demand via optical control.

9.
Adv Exp Med Biol ; 3234: 31-40, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38507198

RESUMO

In the last two decades, biological mass spectrometry has become the gold standard for the identification of proteins in biological samples. The technological advancement of mass spectrometers and the development of methods for ionization, gas phase transfer, peptide fragmentation as well as for acquisition of high-resolution mass spectrometric data marked the success of the technique. This chapter introduces peptide-based mass spectrometry as a tool for the investigation of protein complexes. It provides an overview of the main steps for sample preparation starting from protein fractionation, reduction, alkylation and focus on the final step of protein digestion. The basic concepts of biological mass spectrometry as well as details about instrumental analysis and data acquisition are described. Finally, the most common methods for data analysis and sequence determination are summarized with an emphasis on its application to protein-protein complexes.


Assuntos
Peptídeos , Proteínas , Peptídeos/química , Espectrometria de Massas/métodos , Proteínas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
10.
Mikrochim Acta ; 191(9): 528, 2024 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120734

RESUMO

A dual-template molecularly imprinted electrochemical sensor was developed for the simultaneous detection of serotonin (5-HT) and glutamate (Glu). First, amino-functionalized reduced graphene oxide (NRGO) was used as the modification material of a GCE to increase its electrical conductivity and specific surface area, using Glu and 5-HT as dual-template molecules and o-phenylenediamine (OPD) with self-polymerization ability as functional monomers. Through self-assembly and electropolymerization, dual-template molecularly imprinted polymers were formed on the electrode. After removing the templates, the specific recognition binding sites were exposed. The amount of NRGO, polymerization parameters, and elution parameters were further optimized to construct a dual-template molecularly imprinted electrochemical sensor, which can specifically recognize double-target molecules Glu and 5-HT. The differential pulse voltammetry (DPV) technique was used to achieve simultaneous detection of Glu and 5-HT based on their distinct electrochemical activities under specific conditions. The sensor showed a good linear relationship for Glu and 5-HT in the range 1 ~ 100 µM, and the detection limits were 0.067 µM and 0.047 µM (S/N = 3), respectively. The sensor has good reproducibility, repeatability, and selectivity. It was successfully utilized to simultaneously detect Glu and 5-HT in mouse serum, offering a more dependable foundation for objectively diagnosing and early warning of depression. Additionally, the double signal sensing strategy also provides a new approach for the simultaneous detection of both electroactive and non-electroactive substances.


Assuntos
Técnicas Eletroquímicas , Ácido Glutâmico , Grafite , Limite de Detecção , Impressão Molecular , Fenilenodiaminas , Serotonina , Serotonina/sangue , Serotonina/análise , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Animais , Ácido Glutâmico/análise , Ácido Glutâmico/sangue , Ácido Glutâmico/química , Grafite/química , Camundongos , Fenilenodiaminas/química , Depressão/diagnóstico , Depressão/sangue , Eletrodos , Biomarcadores/sangue , Biomarcadores/análise , Reprodutibilidade dos Testes
11.
Ren Fail ; 46(1): 2318413, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38369750

RESUMO

The prevalence of diabetic kidney disease (DKD) is increasing annually. Damage to and loss of podocytes occur early in DKD. tRNA-derived fragments (tRFs), originating from tRNA precursors or mature tRNAs, are associated with various illnesses. In this study, tRFs were identified, and their roles in podocyte injury induced by high-glucose (HG) treatment were explored. High-throughput sequencing of podocytes treated with HG was performed to identify differentially expressed tRFs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. The expression levels of nephrin, podocin, and desmin were measured in podocytes after overexpression of tRF-1:24-Glu-CTC-1-M2 (tRF-1:24) and concomitant HG treatment. A total of 647 tRFs were identified, and 89 differentially expressed tRFs (|log2FC| ≥ 0.585; p ≤ .05) were identified in the HG group, of which 53 tRFs were downregulated and 36 tRFs were upregulated. The 10 tRFs with the highest differential expression were detected by real-time quantitative polymerase chain reaction (RT-qPCR), and these results were consistent with the sequencing results. GO analysis revealed that the biological process, cellular component, and molecular function terms in which the tRFs were the most enriched were cellular processes, cellular anatomical entities, and binding. KEGG pathway analysis revealed that tRFs may be involved in signaling pathways related to growth hormones, phospholipase D, the regulation of stem cell pluripotency, and T-/B-cell receptors. Overexpression of tRF-1:24, one of the most differentially expressed tRFs, attenuated podocyte injury induced by HG. Thus, tRFs might be potential biomarkers for podocyte injury in DKD.


Assuntos
Glucose , Podócitos , Glucose/efeitos adversos , Glucose/farmacologia , Podócitos/metabolismo , RNA de Transferência/química , RNA de Transferência/genética , RNA de Transferência/metabolismo , Transdução de Sinais , Nefropatias Diabéticas/epidemiologia
12.
Int J Mol Sci ; 25(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891902

RESUMO

Alzheimer's disease (AD) is characterized by the deposition in the brain of senile plaques composed of amyloid-ß peptides (Aßs) that increase inflammation. An endogenous peptide derived from the insulin-like growth factor (IGF)-I, glycine-proline-glutamate (GPE), has IGF-I-sensitizing and neuroprotective actions. Here, we examined the effects of GPE on Aß levels and hippocampal inflammation generated by the intracerebroventricular infusion of Aß25-35 for 2 weeks (300 pmol/day) in ovariectomized rats and the signaling-related pathways and levels of Aß-degrading enzymes associated with these GPE-related effects. GPE prevented the Aß-induced increase in the phosphorylation of p38 mitogen-activated protein kinase and the reduction in activation of signal transducer and activator of transcription 3, insulin receptor substrate-1, and Akt, as well as on interleukin (IL)-2 and IL-13 levels in the hippocampus. The functionality of somatostatin, measured as the percentage of inhibition of adenylate cyclase activity and the levels of insulin-degrading enzyme, was also preserved by GPE co-treatment. These findings indicate that GPE co-administration may protect from Aß insult by changing hippocampal cytokine content and somatostatin functionality through regulation of leptin- and IGF-I-signaling pathways that could influence the reduction in Aß levels through modulation of levels and/or activity of Aß proteases.


Assuntos
Peptídeos beta-Amiloides , Hipocampo , Fator de Crescimento Insulin-Like I , Oligopeptídeos , Transdução de Sinais , Animais , Peptídeos beta-Amiloides/metabolismo , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Ratos , Fator de Crescimento Insulin-Like I/metabolismo , Transdução de Sinais/efeitos dos fármacos , Feminino , Oligopeptídeos/farmacologia , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Fragmentos de Peptídeos/metabolismo , Ratos Wistar , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Peptídeos Semelhantes à Insulina
13.
J Neurochem ; 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36928655

RESUMO

Leif Hertz, M.D., D.Sc. (honoris causa) (1930-2018), was one of the original and noteworthy participants in the International Conference on Brain Energy Metabolism (ICBEM) series since its inception in 1993. The biennial ICBEM conferences are organized by neuroscientists interested in energetics and metabolism underlying neural functions; they have had a high impact on conceptual and experimental advances in these fields and on promoting collaborative interactions among neuroscientists. Leif made major contributions to ICBEM discussions and understanding of metabolic and signaling characteristics of astrocytes and their roles in brain function. His studies ranged from uptake of K+ from extracellular fluid and its stimulation of astrocytic respiration, identification, and regulation of enzymes specifically or preferentially expressed in astrocytes in the glutamate-glutamine cycle of excitatory neurotransmission, a requirement for astrocytic glycogenolysis for fueling K+ uptake, involvement of glycogen in memory consolidation in the chick, and pharmacology of astrocytes. This tribute to Leif Hertz highlights his major discoveries, the high impact of his work on astrocyte-neuron interactions, and his unparalleled influence on understanding the cellular basis of brain energy metabolism. His work over six decades has helped integrate the roles of astrocytes into neurotransmission where oxidative and glycogenolytic metabolism during neurotransmitter glutamate turnover are key aspects of astrocytic energetics. Leif recognized that brain astrocytic metabolism is greatly underestimated unless the volume fraction of astrocytes is taken into account. Adjustment for pathway rates expressed per gram tissue for volume fraction indicates that astrocytes have much higher oxidative rates than neurons and astrocytic glycogen concentrations and glycogenolytic rates during sensory stimulation in vivo are similar to those in resting and exercising muscle, respectively. These novel insights are typical of Leif's astute contributions to the energy metabolism field, and his publications have identified unresolved topics that provide the neuroscience community with challenges and opportunities for future research.

14.
Plant Biotechnol J ; 21(10): 1952-1965, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37381172

RESUMO

High-molecular-weight glutenin subunits (HMW-GS), a major component of seed storage proteins (SSP) in wheat, largely determine processing quality. HMW-GS encoded by GLU-1 loci are mainly controlled at the transcriptional level by interactions between cis-elements and transcription factors (TFs). We previously identified a conserved cis-regulatory module CCRM1-1 as the most essential cis-element for Glu-1 endosperm-specific high expression. However, the TFs targeting CCRM1-1 remained unknown. Here, we built the first DNA pull-down plus liquid chromatography-mass spectrometry platform in wheat and identified 31 TFs interacting with CCRM1-1. TaB3-2A1 as proof of concept was confirmed to bind to CCRM1-1 by yeast one hybrid and electrophoretic mobility shift assays. Transactivation experiments demonstrated that TaB3-2A1 repressed CCRM1-1-driven transcription activity. TaB3-2A1 overexpression significantly reduced HMW-GS and other SSP, but enhanced starch content. Transcriptome analyses confirmed that enhanced expression of TaB3-2A1 down-regulated SSP genes and up-regulated starch synthesis-related genes, such as TaAGPL3, TaAGPS2, TaGBSSI, TaSUS1 and TaSUS5, suggesting that it is an integrator modulating the balance of carbon and nitrogen metabolism. TaB3-2A1 also had significant effects on agronomic traits, including heading date, plant height and grain weight. We identified two major haplotypes of TaB3-2A1 and found that TaB3-2A1-Hap1 conferred lower seed protein content, but higher starch content, plant height and grain weight than TaB3-2A1-Hap2 and was subjected to positive selection in a panel of elite wheat cultivars. These findings provide a high-efficiency tool to detect TFs binding to targeted promoters, considerable gene resources for dissecting regulatory mechanisms underlying Glu-1 expression, and a useful gene for wheat improvement.


Assuntos
Proteoma , Triticum , Triticum/genética , Triticum/metabolismo , Proteoma/genética , Proteoma/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Glutens/genética , Regiões Promotoras Genéticas , Grão Comestível/genética , Amido/metabolismo , Peso Molecular
15.
Magn Reson Med ; 89(5): 1728-1740, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36572961

RESUMO

PURPOSE: The signals of glutamate (Glu) and glutamine (Gln) are often significantly overlapped in routine 1 H-MR spectra of human brain in vivo. Selectively probing the signals of Glu and Gln in vivo is very important for the study of the metabolisms in which Glu and Gln are involved. METHODS: The Glu-/Gln- targeted pulse sequences are developed to selectively probe the signals of Glu and Gln. The core part of the Glu-/Gln- targeted pulse sequences lies on the preparation of the nuclear spin singlet orders (SSOs) of the five-spin systems of Glu and Gln. The optimal control method is used to prepare the SSOs of Glu and Gln with high efficiency. RESULTS: The Glu-/Gln- targeted pulse sequences have been applied on phantoms to selectively probe the signals of Glu and Gln. Moreover, in the in vivo experiments, the signals of Glu and Gln in human brains of healthy subjects have been successfully probed separately. CONCLUSION: The developed Glu-/Gln- targeted pulse sequences can be used to distinguish the 1 H-MR signals of Glu and Gln in human brains in vivo. The optimal control method provides an effective way to prepare the SSO of a specific spin system with high efficiency and in turn selectively probe the signals of a targeted molecule.


Assuntos
Ácido Glutâmico , Glutamina , Humanos , Glutamina/metabolismo , Ácido Glutâmico/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imagens de Fantasmas
16.
Clin Genet ; 103(2): 226-230, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36189577

RESUMO

NSD2 dimethylates histone H3 at lysine 36 (H3K36me2) and is located in the Wolf-Hirschhorn syndrome (WHS) critical region. Recent descriptions have delineated loss-of-function (LoF) variants in NSD2 with a distinct disorder. The oncogenic missense variant p.Glu1099Lys occurs somatically in leukemia and has a gain-of-function (GoF) effect. We describe two individuals carrying p.Glu1099Lys as heterozygous de novo germline variant identified by exome sequencing (ES) of blood DNA and subsequently confirmed in two ectodermal tissues. Clinically, these individuals are characterized by intellectual disability, coarse/ square facial gestalt, abnormalities of the hands, and organomegaly. Public cell lines with NSD2 GoF variants had increased K36me2, DNA promoter methylation, and dysregulated RNA expression. NSD2 GoF caused by p.Glu1099Lys is associated with a novel phenotype different from WHS and Rauch-Steindl syndrome (RAUST).


Assuntos
Proteínas Repressoras , Síndrome de Wolf-Hirschhorn , Humanos , Proteínas Repressoras/genética , Mutação com Ganho de Função , Histonas/genética , Histonas/metabolismo , Síndrome de Wolf-Hirschhorn/genética , DNA
17.
Anal Bioanal Chem ; 415(19): 4795-4804, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37291250

RESUMO

Here we proposed a method for peptide purity analysis using gas chromatography-isotope dilution infrared spectroscopy. The principle and feasibility of the proposed measurement method were investigated. The derivatization, separation, and infrared detection conditions for amino acids were optimized, and the performance of the method was investigated. Then, the proposed method was used for assessment of [Glu1]-fibrinopeptide B purity, and the results were compared with those obtained by high performance liquid chromatography-isotope dilution mass spectrometry. The average purity of six sub-samples using the proposed method was (0.755 ± 0.017) g/g, which agreed well with that obtained by isotope dilution mass spectrometry (0.754 ± 0.012) g/g. The repeatability of the proposed method was 2.2%, which was similar to that of isotope dilution mass spectrometry (1.7%). The proposed method has a similar principle and had similar accuracy, precision, and linearity to isotope dilution mass spectrometry; however, the developed method had higher limit of detection (LOD) and limit of quantitation (LOQ) values because of the low sensitivity of infrared detection. The results were also Système International d'Unités (SI) traceable. The developed method has the advantage of lower cost compared with isotope dilution mass spectrometry because only one isotope-labeled atom in an analog is required, and several infrared spectra can be extracted, averaged, and used for an amino acid calculation during one run, potentially leading to higher accuracy. This method could be easily expanded to the accurate quantitation of other organic compounds, including proteins. It is expected that the proposed method will be widely used in chemical and biological measurements as a new primary method.


Assuntos
Isótopos , Peptídeos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas/métodos , Técnicas de Diluição do Indicador , Aminoácidos/análise , Análise Espectral
18.
Mol Biol Rep ; 50(7): 5747-5753, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37219667

RESUMO

BACKGROUND: Nitric oxide (NO) exerts diverse effects on the cardiovascular system. Impairment of NO production plays a key role in cerebral and coronary artery spasm. We aimed to explore the predicting factors of radial artery spasm (RAS) and the association of eNOS gene polymorphism (Glu298Asp) with RAS during cardiac catheterization. METHODS AND RESULTS: 200 patients underwent elective coronary angiography through a trans-radial approach. The subjects were genotyped to the Glu298Asp polymorphism (rs1799983) on the eNOS gene by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Our results showed that the subjects with the TT genotype and T allele were significantly more likely to develop radial artery spasms (OR = 12.5, 4.6, P < 0.001 respectively). TT genotype of eNOS Glu298Asp polymorphism, number of punctures, size of the radial sheath, radial tortuosity, and right radial access are independent predictors of radial spasm. CONCLUSION: The eNOS (Glu298Asp) gene polymorphism is associated with RAS during cardiac catheterization in Egyptians. TT genotype of eNOS Glu298Asp polymorphism, number of punctures, size of the radial sheath, right radial access, and tortuosity are independent predictors of RAS during cardiac catheterization.


Assuntos
Arteriopatias Oclusivas , Cateterismo Cardíaco , Óxido Nítrico Sintase Tipo III , Artéria Radial , Humanos , Arteriopatias Oclusivas/etiologia , Arteriopatias Oclusivas/genética , Cateterismo Cardíaco/efeitos adversos , Cateterismo Cardíaco/métodos , Cateterismo Periférico/efeitos adversos , Genótipo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Polimorfismo Genético , Fatores de Risco
19.
Eur J Clin Pharmacol ; 79(12): 1657-1664, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37782393

RESUMO

PURPOSE: The transthyretin kinetic stabilizer tafamidis, used as a first-line therapy of amyloidosis patients, binds selectively to the transthyretin protein structure and thus prevents its dissociation. The limited information regarding tafamidis application in Glu89Gln amyloidosis patients imposed our research team to determine and evaluate its individual mean plasma levels and their biological variation. METHODS: The present cohort study investigated Bulgarian amyloidosis patients, grouped by gender, age, and therapy duration. A total of sixty patients aged 40-75 years and therapy duration up to 9 years were included. A precise and accurate high-performance liquid chromatography method with ultraviolet detection was used for plasma concentration measurement. RESULTS: Mean plasma concentrations were 5.13 ± 2.64 µmol/L and showed low intra-individual (18.50%) and high inter-individual variability (51.43%). No significant difference was observed between tafamidis plasma levels and therapy duration with p = 0.5941 (p < 0.05 considered significant), but a significant positive correlation was found between plasma concentration, gender, and age with obtained results about p-value 0.0001 and 0.0235, respectively. CONCLUSION: The summary results of the study showed differences that may be based on some specific clinical features of the Glu89Gln mutation.


Assuntos
Neuropatias Amiloides Familiares , Pré-Albumina , Humanos , Pré-Albumina/genética , Pré-Albumina/química , Pré-Albumina/metabolismo , Neuropatias Amiloides Familiares/tratamento farmacológico , Neuropatias Amiloides Familiares/genética , Neuropatias Amiloides Familiares/diagnóstico , Estudos de Coortes , Mutação
20.
J Enzyme Inhib Med Chem ; 38(1): 2203879, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37080777

RESUMO

A novel series of multifunctional pyrazolo[3,4-d]pyrimidine-based glutamate analogs (6a-l and 7a,b) have been designed and synthesized as antifolate anticancer agents. Among the tested compounds, 6i exhibited the most potent anti-proliferative activity towards NSCLC, CNS, Ovarian, Prostate, Colon, Melanoma, Breast, and Renal cancers with good to weak cytostatic activity and non-lethal actions. 6i demonstrated higher selectivity for cancer than normal cells. 6i could significantly increase the accumulation of S-phase cells during the cell cycle distribution of cancer cells with high potency in the induction of apoptosis. The results unveiled that 6i probably acts through dual inhibition of DHFR and TS enzymes (IC50 = 2.41 and 8.88 µM, correspondingly). Docking studies of 6i displayed that N1-p-bromophenyl and C3-Methyl groups participate in substantial hydrophobic interactions. The drug-likeness features inferred that 6i met the acceptance criteria of Pfizer. Taking together, 6i could be a promising prototype for further optimization as an effective anticancer drug.


Assuntos
Antineoplásicos , Antagonistas do Ácido Fólico , Neoplasias , Humanos , Relação Estrutura-Atividade , Ensaios de Seleção de Medicamentos Antitumorais , Pirimidinas/química , Antineoplásicos/química , Estrutura Molecular , Proliferação de Células , Desenho de Fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA