Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 448
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Biol Chem ; 299(11): 105294, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37774972

RESUMO

The glycoside hydrolase family 55 (GH55) includes inverting exo-ß-1,3-glucosidases and endo-ß-1,3-glucanases, acting on laminarin, which is a ß1-3/1-6-glucan consisting of a ß1-3/1-6-linked main chain and ß1-6-linked branches. Despite their different modes of action toward laminarin, endo-ß-1,3-glucanases share with exo-ß-1,3-glucosidases conserved residues that form the dead-end structure of subsite -1. Here, we investigated the mechanism of endo-type action on laminarin by GH55 endo-ß-1,3-glucanase MnLam55A, identified from Microdochium nivale. MnLam55A, like other endo-ß-1,3-glucanases, degraded internal ß-d-glucosidic linkages of laminarin, producing more reducing sugars than the sum of d-glucose and gentiooligosaccharides detected. ß1-3-Glucans lacking ß1-6-linkages in the main chain were not hydrolyzed. NMR analysis of the initial degradation of laminarin revealed that MnLam55A preferentially cleaved the nonreducing terminal ß1-3-linkage of the laminarioligosaccharide moiety at the reducing end side of the main chain ß1-6-linkage. MnLam55A liberates d-glucose from laminaritriose and longer laminarioligosaccharides, but kcat/Km values to laminarioligosaccharides (≤4.21 s-1 mM-1) were much lower than to laminarin (5920 s-1 mM-1). These results indicate that ß-glucan binding to the minus subsites of MnLam55A, including exclusive binding of the gentiobiosyl moiety to subsites -1 and -2, is required for high hydrolytic activity. A crystal structure of MnLam55A, determined at 2.4 Å resolution, showed that MnLam55A adopts an overall structure and catalytic site similar to those of exo-ß-1,3-glucosidases. However, MnLam55A possesses an extended substrate-binding cleft that is expected to form the minus subsites. Sequence comparison suggested that other endo-type enzymes share the extended cleft. The specific hydrolysis of internal linkages in laminarin is presumably common to GH55 endo-ß-1,3-glucanases.


Assuntos
Glicosídeo Hidrolases , beta-Glucanas , Glucanos/metabolismo , Glucose , Glucosidases/metabolismo , Glicosídeo Hidrolases/metabolismo , Especificidade por Substrato
2.
Plant J ; 113(5): 1080-1094, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36625794

RESUMO

Seed longevity is an important trait for agriculture and the conservation of genetic resources. ß-1,3-Glucanases were first recognized as pathogenesis-related proteins involved in plant defense, but their roles in seeds are largely unknown. Here, we report a glycosylphosphatidylinositol-anchored ß-1,3-glucanase, BG14, that degrades callose in seed embryos and functions in seed longevity and dormancy in Arabidopsis. The loss of function of BG14 significantly decreased seed longevity, whereas functional reversion (RE) and overexpression (OE) lines reversed and increased the impaired phenotype, respectively. The loss of function of BG14 enhanced callose deposition in the embryos of mature seeds, confirmed by quantitative determination and the decreased callose degrading ability in bg14. The drop-and-see (DANS) assay revealed that the fluorescence signal in bg14 was significantly lower than that observed in the other three genotypes. BG14 is located on the periphery of the cell wall and can completely merge with callose at the plasmodesmata of epidermal cells. BG14 was highly expressed in developing seeds and was induced by aging and abscisic acid (ABA). The loss of function of BG14 led to a variety of phenotypes related to ABA, including reduced seed dormancy and reduced responses to treatment with ABA or pacolblltrazol, whereas OE lines showed the opposite phenotype. The reduced ABA response is because of the decreased level of ABA and the lowered expression of ABA synthesis genes in bg14. Taken together, this study demonstrated that BG14 is a bona fide BG that mediates callose degradation in the plasmodesmata of embryo cells, transcriptionally influences ABA synthesis genes in developing seeds, and positively affects seed longevity and dormancy in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Dormência de Plantas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Longevidade , Germinação/genética , Ácido Abscísico/metabolismo , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Chembiochem ; 25(8): e202400010, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38439711

RESUMO

A plethora of di- and oligosaccharides isolated from the natural sources are used in food and pharmaceutical industry. An enzymatic hydrolysis of fungal cell wall ß-glucans is a good alternative to produce the desired oligosaccharides with different functionalities, such as the flavour enhancer gentiobiose. We have previously identified PsGly30A as a potential yeast cell wall degrading ß-1,6-glycosidase. The aim of this study is to characterise the PsGly30A enzyme, a member of the GH30 family, and to evaluate its suitability for the production of gentiobiose from ß-1,6-glucans. An endo-ß-1,6-glucanase PsGly30A encoding gene from Paenibacillus sp. GKG has been cloned and overexpressed in Escherichia coli. The recombinant enzyme has been active towards pustulan and yeast ß-glucan, but not on laminarin from the Laminaria digitata, confirming the endo-ß-1,6-glucanase mode of action. The PsGly30A shows the highest activity at pH 5.5 and 50 °C. The specific activity of PsGly30A on pustulan (1262±82 U/mg) is among the highest reported for GH30 ß-1,6-glycosidases. Moreover, gentiobiose is the major reaction product when pustulan, yeast ß-glucan or yeast cell walls have been used as a substrate. Therefore, PsGly30A is a promising catalyst for valorisation of the yeast-related by-products.


Assuntos
Dissacarídeos , Algas Comestíveis , Laminaria , Paenibacillus , beta-Glucanas , Saccharomyces cerevisiae/metabolismo , Concentração de Íons de Hidrogênio , Glucanos , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Oligossacarídeos , Especificidade por Substrato
4.
Protein Expr Purif ; 219: 106486, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38642864

RESUMO

New thermostable ß-1,3-1,4-glucanase (lichenase) designated as Blg29 was expressed and purified from a locally isolated alkaliphilic bacteria Bacillus lehensis G1. The genome sequence of B. lehensis predicted an open reading frame of Blg29 with a deduced of 249 amino acids and a molecular weight of 28.99 kDa. The gene encoding for Blg29 was successfully amplified via PCR and subsequently expressed as a recombinant protein using the E. coli expression system. Recombinant Blg29 was produced as a soluble form and further purified via immobilized metal ion affinity chromatography (IMAC). Based on biochemical characterization, recombinant Blg29 showed optimal activity at pH9 and temperature 60 °C respectively. This enzyme was stable for more than 2 h, incubated at 50 °C, and could withstand ∼50 % of its activity at 70 °C for an hour and a half. No significant effect on Blg29 was observed when incubated with metal ions except for a small increase with ion Ca2+. Blg29 showed high substrate activity towards lichenan where Vm, Km, Kcat, and kcat/Km values were 2040.82 µmolmin‾1mg‾1, 4.69 mg/mL, and 986.39 s‾1 and 210.32 mLs‾1mg‾1 respectively. The high thermostability and activity make this enzyme useable for a broad prospect in industry applications.


Assuntos
Bacillus , Proteínas de Bactérias , Estabilidade Enzimática , Escherichia coli , Proteínas Recombinantes , Bacillus/enzimologia , Bacillus/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Clonagem Molecular , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/isolamento & purificação , Glicosídeo Hidrolases/metabolismo , Glicosídeo Hidrolases/biossíntese , Expressão Gênica , Temperatura , Especificidade por Substrato
5.
Biosci Biotechnol Biochem ; 88(5): 538-545, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38331414

RESUMO

Bacterial α-1,3-glucanase, classified as glycoside hydrolase (GH) family 87, has been divided into 3 subgroups based on differences in gene sequences in the catalytic domain. The enzymatic properties of subgroups 1 and 3 of several bacteria have been previously investigated and reported; however, the chemical characterization of subgroup 2 enzymes has not been previously conducted. The α-1,3-glucanase gene from Paenibacillus alginolyticus NBRC15375 (PaAgl) belonging to subgroup 2 of GH family 87 was cloned and expressed in Escherichia coli. PgAgl-N1 (subgroup 3) and PgAgl-N2 (subgroup 1) from P. glycanilyticus NBRC16188 were expressed in E. coli, and their enzymatic characteristics were compared. The amino acid sequence of PaAgl demonstrated that the homology was significantly lower in other subgroups when only the catalytic domain was compared. The oligosaccharide products of the mutan-degrading reaction seemed to have different characteristics among subgroups 1, 2, and 3 in GH family 87.


Assuntos
Sequência de Aminoácidos , Clonagem Molecular , Escherichia coli , Expressão Gênica , Glicosídeo Hidrolases , Paenibacillus , Paenibacillus/enzimologia , Paenibacillus/genética , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Escherichia coli/genética , Especificidade por Substrato , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Domínio Catalítico , Concentração de Íons de Hidrogênio , Oligossacarídeos/metabolismo
6.
Sensors (Basel) ; 24(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38339480

RESUMO

Interest in enzymes capable of neutralizing various mycotoxins is quite high. The methods used for the screening and selection of enzymes that catalyze the detoxification of mycotoxins should be sensitive and fast. However toxic compounds can be generated under the action of such enzymes. Thus, the assessment of the overall reduction in the toxic properties of reaction media towards bioluminescent bacteria seems to be the most reasonable control method allowing a quick search for the effective enzymatic biocatalysts. The influence of a wide range of mycotoxins and glucanases, which hydrolyze toxins with different chemical structures, on the analytical characteristics of luminescent photobacteria as a biosensing element has been studied. Different glucanases (ß-glucosidase and endoglucanase) were initially selected for reactions with 10 mycotoxins based on the results of molecular docking which was performed in silico with 20 mycotoxins. Finally, the biorecognizing luminescent cells were used to estimate the residual toxicity of reaction media with mycotoxins after their interaction with enzymes. The notable non-catalytic decrease in toxicity of media containing deoxynivalenol was revealed with luminous cells for both types of tested glucanases, whereas ß-glucosidase provided a significant catalytic detoxification of media with aflatoxin B2 and zearalenone at pH 6.0.


Assuntos
Celulases , Micotoxinas , Micotoxinas/análise , Biomarcadores Ambientais , Simulação de Acoplamento Molecular , Bactérias
7.
Int J Mol Sci ; 25(13)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39000560

RESUMO

Pinus is an important economic tree species, but pine wilt disease (PWD) seriously threatens the survival of pine trees. PWD caused by Bursaphelenchus xylophilus is a major quarantine disease worldwide that causes significant economic losses. However, more information about its molecular pathogenesis is needed, resulting in a lack of effective prevention and treatment measures. In recent years, effectors have become a hot topic in exploring the molecular pathogenic mechanism of pathogens. Here, we identified a specific effector, BxNMP1, from B. xylophilus. In situ hybridization experiments revealed that BxNMP1 was specifically expressed in dorsal gland cells and intestinal cells, and RT-qPCR experiments revealed that BxNMP1 was upregulated in the early stage of infection. The sequence of BxNMP1 was different in the avirulent strain, and when BxNMP1-silenced B. xylophilus was inoculated into P. thunbergii seedlings, the disease severity significantly decreased. We demonstrated that BxNMP1 interacted with the thaumatin-like protein PtTLP-L2 in P. thunbergii. Additionally, we found that the ß-1,3-glucanase PtGLU interacted with PtTLP-L2. Therefore, we hypothesized that BxNMP1 might indirectly interact with PtGLU through PtTLP-L2 as an intermediate mediator. Both targets can respond to infection, and PtTLP-L2 can enhance the resistance of pine trees. Moreover, we detected increased salicylic acid contents in P. thunbergii seedlings inoculated with B. xylophilus when BxNMP1 was silenced or when the PtTLP-L2 recombinant protein was added. In summary, we identified a key virulence effector of PWNs, BxNMP1. It positively regulates the pathogenicity of B. xylophilus and interacts directly with PtTLP-L2 and indirectly with PtGLU. It also inhibits the expression of two targets and the host salicylic acid pathway. This study provides theoretical guidance and a practical basis for controlling PWD and breeding for disease resistance.


Assuntos
Pinus , Doenças das Plantas , Tylenchida , Pinus/parasitologia , Animais , Doenças das Plantas/parasitologia , Doenças das Plantas/genética , Tylenchida/patogenicidade , Tylenchida/genética , Virulência , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética , Interações Hospedeiro-Parasita/genética
8.
J Biol Chem ; 298(3): 101606, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065074

RESUMO

The IALB_1185 protein, which is encoded in the gene cluster for endo-ß-1,2-glucanase homologs in the genome of Ignavibacterium album, is a glycoside hydrolase family (GH) 35 protein. However, most known GH35 enzymes are ß-galactosidases, which is inconsistent with the components of this gene cluster. Thus, IALB_1185 is expected to possess novel enzymatic properties. Here, we showed using recombinant IALB_1185 that this protein has glycosyltransferase activity toward ß-1,2-glucooligosaccharides, and that the kinetic parameters for ß-1,2-glucooligosaccharides are not within the ranges for general GH enzymes. When various aryl- and alkyl-glucosides were used as acceptors, glycosyltransfer products derived from these acceptors were subsequently detected. Kinetic analysis further revealed that the enzyme has wide aglycone specificity regardless of the anomer, and that the ß-1,2-linked glucose dimer sophorose is an appropriate donor. In the complex of wild-type IALB_1185 with sophorose, the electron density of sophorose was clearly observed at subsites -1 and +1, whereas in the E343Q mutant-sophorose complex, the electron density of sophorose was clearly observed at subsites +1 and +2. This observation suggests that binding at subsites -1 and +2 competes through Glu102, which is consistent with the preference for sophorose as a donor and unsuitability of ß-1,2-glucooligosaccharides as acceptors. A pliable hydrophobic pocket that can accommodate various aglycone moieties was also observed in the complex structures with various glucosides. Overall, our biochemical and structural data are indicative of a novel enzymatic reaction. We propose that IALB_1185 be redefined ß-1,2-glucooligosaccharide:d-glucoside ß-d-glucosyltransferase as a systematic name and ß-1,2-glucosyltransferase as an accepted name.


Assuntos
Glucosídeos , Glicosiltransferases , Glucosídeos/química , Glucosídeos/metabolismo , Glucosiltransferases/metabolismo , Glicosídeo Hidrolases/metabolismo , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Cinética , Especificidade por Substrato
9.
Planta ; 257(6): 118, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173556

RESUMO

MAIN CONCLUSION: PGPRs: P. fluorescens Ms9N and S. maltophilia Ll4 inhibit in vitro growth of three legume fungal pathogens from the genus Fusarium. One or both trigger up-regulation of some genes (CHIT, GLU, PAL, MYB, WRKY) in M. truncatula roots and leaves in response to soil inoculation. Pseudomonas fluorescens (referred to as Ms9N; GenBank accession No. MF618323, not showing chitinase activity) and Stenotrophomonas maltophilia (Ll4; GenBank accession No. MF624721, showing chitinase activity), previously identified as promoting growth rhizobacteria of Medicago truncatula, were found, during an in vitro experiment, to exert an inhibitory effect on three soil-borne fungi: Fusarium culmorum Cul-3, F. oxysporum 857 and F. oxysporum f. sp. medicaginis strain CBS 179.29, responsible for serious diseases of most legumes including M. truncatula. S. maltophilia was more active than P. fluorescens in suppressing the mycelium growth of two out of three Fusarium strains. Both bacteria showed ß-1,3-glucanase activity which was about 5 times higher in P. fluorescens than in S. maltophilia. Upon soil treatment with a bacterial suspension, both bacteria, but particularly S. maltophilia, brought about up-regulation of plant genes encoding chitinases (MtCHITII, MtCHITIV, MtCHITV), glucanases (MtGLU) and phenylalanine ammonia lyases (MtPAL2, MtPAL4, MtPAL5). Moreover, the bacteria up-regulate some genes from the MYB (MtMYB74, MtMYB102) and WRKY (MtWRKY6, MtWRKY29, MtWRKY53, MtWRKY70) families which encode TFs in M. truncatula roots and leaves playing multiple roles in plants, including a defense response. The effect depended on the bacterium species and the plant organ. This study provides novel information about effects of two M. truncatula growth-promoting rhizobacteria strains and suggests that both have a potential to be candidates for PGPR inoculant products on account of their ability to inhibit in vitro growth of Fusarium directly and indirectly by up-regulation of some defense priming markers such as CHIT, GLU and PAL genes in plants. This is also the first study of the expression of some MYB and WRKY genes in roots and leaves of M. truncatula upon soil treatment with two PGPR suspensions.


Assuntos
Quitinases , Fusarium , Medicago truncatula , Medicago truncatula/microbiologia , Expressão Gênica , Raízes de Plantas/metabolismo , Quitinases/genética , Quitinases/metabolismo
10.
Appl Environ Microbiol ; 89(1): e0123622, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36602342

RESUMO

The ß-1,6-glucan is the key linker between mannoproteins in the outermost part of the cell wall and ß-1,3-glucan/chitin polysaccharide to maintain the rigid structure of the cell wall. The ß-1,6-glucanase GluM, which was purified from the fermentation supernatant of Corallococcus sp. EGB, was able to inhibit the germination of Fusarium oxysporum f. sp. cucumerinum conidia at a minimum concentration of 2.0 U/mL (0.08 µg/mL). The survival rates of GluM-treated conidia and monohyphae were 10.4% and 30.7%, respectively, which were significantly lower than that of ß-1,3-glucanase treatment (Zymolyase, 20.0 U/mL; equate to 1.0 mg/mL) (72.9% and 73.9%). In contrast to ß-1,3-glucanase treatment, the high-osmolarity glycerol (HOG) pathway of F. oxysporum f. sp. cucumerinum cells was activated after GluM treatment, and the intracellular glycerol content was increased by 2.6-fold. Moreover, the accumulation of reactive oxygen species (ROS) in F. oxysporum f. sp. cucumerinum cells after GluM treatment induced apoptosis, but it was not associated with the increased intracellular glycerol content. Together, the results indicate that ß-1,6-glucan is a promising target for the development of novel broad-spectrum antifungal agents. IMPORTANCE Phytopathogenic fungi are the most devastating plant pathogens in agriculture, causing enormous economic losses to global crop production. Biocontrol agents have been promoted as replacements to synthetic chemical pesticides for sustainable agriculture development. Cell wall-degrading enzymes (CWDEs), including chitinases and ß-1,3-glucanases, have been considered as important armaments to damage the cell wall. Here, we found that F. oxysporum f. sp. cucumerinum is more sensitive to ß-1,6-glucanase GluM treatment (0.08 µg/mL) than ß-1,3-glucanase Zymolyase (1.0 mg/mL). The HOG pathway was activated in F. oxysporum f. sp. cucumerinum cells after GluM treatment, and the intracellular glycerol content was significantly increased. Moreover, the decomposition of F. oxysporum f. sp. cucumerinum cell wall by GluM induced the burst of intracellular ROS and apoptosis, which eventually leads to cell death. Therefore, we suggest that the ß-1,6-glucan of the fungal cell wall may be a better antifungal target compared to the ß-1,3-glucan.


Assuntos
Fusarium , Glicerol , Espécies Reativas de Oxigênio/metabolismo , Glicerol/metabolismo , Parede Celular , Antifúngicos/farmacologia , Esporos Fúngicos , Morte Celular , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia
11.
Plant Cell Environ ; 46(6): 1785-1804, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36760106

RESUMO

Perennial para- and endo-dormancy are seasonally separate phenomena. Whereas para-dormancy is the suppression of axillary buds (AXBs) by a growing shoot, endo-dormancy is the short-day elicited arrest of terminal and AXBs. In hybrid aspen (Populus tremula x P. tremuloides) compromising the apex releases para-dormancy, whereas endo-dormancy requires chilling. ABA and GA are implicated in both phenomena. To untangle their roles, we blocked ABA biosynthesis with fluridone (FD), which significantly reduced ABA levels, downregulated GA-deactivation genes, upregulated the major GA3ox-biosynthetic genes, and initiated branching. Comprehensive GA-metabolite analyses suggested that FD treatment shifted GA production to the non-13-hydroxylation pathway, enhancing GA4 function. Applied ABA counteracted FD effects on GA metabolism and downregulated several GA3/4 -inducible α- and γ-clade 1,3-ß-glucanases that hydrolyze callose at plasmodesmata (PD), thereby enhancing PD-callose accumulation. Remarkably, ABA-deficient plants repressed GA4 biosynthesis and established endo-dormancy like controls but showed increased stress sensitivity. Repression of GA4 biosynthesis involved short-day induced DNA methylation events within the GA3ox2 promoter. In conclusion, the results cast new light on the roles of ABA and GA in dormancy cycling. In para-dormancy, PD-callose turnover is antagonized by ABA, whereas in short-day conditions, lack of GA4 biosynthesis promotes callose deposition that is structurally persistent throughout endo-dormancy.


Assuntos
Giberelinas , Populus , Giberelinas/metabolismo , Regulação da Expressão Gênica de Plantas , Populus/metabolismo , Ácido Abscísico/metabolismo , Dormência de Plantas/genética , Sementes/metabolismo
12.
J Exp Bot ; 74(3): 1022-1038, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36385320

RESUMO

Cellobiose is the primary product of cellulose hydrolysis and is expected to function as a type of pathogen/damage-associated molecular pattern in evoking plant innate immunity. In this study, cellobiose was demonstrated to be a positive regulator in the immune response of lettuce, but halted autoimmunity when lettuce was exposed to concentrations of cellobiose >60 mg l-1. When lettuce plants were infected by Botrytis cinerea, cellobiose endowed plants with enhanced pre-invasion resistance by activating high ß-1,3-glucanase and antioxidative enzyme activities at the initial stage of pathogen infection. Cellobiose-activated core regulatory factors such as EDS1, PTI6, and WRKY70, as well as salicylic acid signaling, played an indispensable role in modulating plant growth-defense trade-offs. Transcriptomics data further suggested that the cellobiose-activated plant-pathogen pathways are involved in microbe/pathogen-associated molecular pattern-triggered immune responses. Genes encoding receptor-like kinases, transcription factors, and redox homeostasis, phytohormone signal transduction, and pathogenesis-related proteins were also up- or down-regulated by cellobiose. Taken together, the findings of this study demonstrated that cellobiose serves as an elicitor to directly activate disease-resistance-related cellular functions. In addition, multiple genes have been identified as potential modulators of the cellobiose-induced immune response, which could aid understanding of underlying molecular events.


Assuntos
Arabidopsis , Arabidopsis/genética , Lactuca/genética , Celobiose/metabolismo , Resistência à Doença/genética , Botrytis/fisiologia , Doenças das Plantas , Regulação da Expressão Gênica de Plantas
13.
Plant Cell Rep ; 42(2): 409-420, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36576553

RESUMO

KEY MESSAGE: Novel function and mechanism of a PNP molecule VaEG45 from adzuki bean involved in plant immunity. Plant natriuretic peptides (PNPs) can affect a broad spectrum of physiological responses in plants acting as peptidic signaling molecules. However, PNPs may play additional roles in plant immunity. Our previous transcriptome data of adzuki bean (Vigna angularis) in response to Uromyces vignae infection revealed association of PNP-encoding gene VaEG45 with U. vignae resistance. To determine the function of VaEG45 in disease resistance, we cloned the 589 bp nucleotide sequence of VaEG45 containing 2 introns, encoding a putative 13.68 kDa protein that is 131 amino acids in length. We analyzed expression in different resistant cultivars of V. angularis and found significant induction of VaEG45 expression after U. vignae infection. Transient expression of VaEG45 improved tobacco resistance against Botrytis cinerea. We next analyzed the mechanism by which VaEG45 protects plants from fungal infection by determination of the biological activity of the prokaryotic expressed VaEG45. The results showed that the fusion protein VaEG45 can significantly inhibit urediospores germination of U. vignae, mycelial growth, and the infection of tobacco by B. cinerea. Further analysis revealed that VaEG45 exhibits ß-1, 3-glucanase activity. These findings uncover the function of a novel PNP molecule VaEG45 and provide new evidence about the mechanism of PNPs in plant immunity.


Assuntos
Vigna , Vigna/genética , Sequência de Bases , Transcriptoma , Germinação , Peptídeos Natriuréticos
14.
Biosci Biotechnol Biochem ; 87(10): 1219-1228, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37410615

RESUMO

The glycoside hydrolase family 71 α-1,3-glucanase (Agn1p) of Schizosaccharomyces pombe was expressed in Escherichia coli Rosetta-gami B (DE3). Agn1p (0.5 nmol/mL) hydrolyzed insoluble α-1,3-glucan (1%), and about 3.3 mm reducing sugars were released after 1440 min of reaction. The analysis of reaction products by high-performance liquid chromatography revealed that pentasaccharides accumulated in the reaction mixture as the main products, along with a small amount of mono-, di-, tri-, tetra-, and hexasaccharides. Soluble glucan was prepared from insoluble α-1,3;1,6-glucan by alkaline and sonication treatment to improve the hydrolytic efficiency. As a result, this solubilized α-1,3;1,6-glucan maintained a solubilized state for at least 6 h. Agn1p (0.5 nmol/mL) hydrolyzed the solubilized α-1,3;1,6-glucan (1%), and about 8.2 mm reducing sugars were released after 240 min of reaction. Moreover, Agn1p released about 12.3 mm reducing sugars from 2% of the solubilized α-1,3;1,6-glucan.


Assuntos
Schizosaccharomyces , Schizosaccharomyces/metabolismo , Glucanos/metabolismo , Hidrólise , Oligossacarídeos , Açúcares , Glicosídeo Hidrolases/metabolismo
15.
J Dairy Sci ; 106(2): 1002-1012, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36543642

RESUMO

The objective of this study was to determine the effects of including exogenous amylolytic or fibrolytic enzymes in a diet for high-producing dairy cows on in vitro ruminal fermentation. Eight dual-flow continuous-culture fermentors were used in a replicated 4 × 4 Latin square. The treatments were control (CON), a xylanase and glucanase mixture (T1), an α-amylase mixture (T2), or a xylanase, glucanase, and α-amylase mixture (T3). Treatments were included at a rate of 0.008% of diet dry matter (DM) for T1 and T2 and at 0.02% for T3. All treatments replaced the equivalent amount of soybean meal in the diet compared with CON. All diets were balanced to have the same nutrient composition [30.2% neutral detergent fiber (NDF), 16.1% crude protein (CP), and 30% starch; DM basis], and fermentors were fed 106 g/d divided into 2 feedings. At each feeding, T2 was pipetted into the respective fermentor and an equivalent amount of deionized water was added to each fermentor to eliminate potential variation. Experimental periods were 10 d (7 d for adaptation and 3 d for sample collection). Composite samples of daily effluent were collected and analyzed for volatile fatty acids (VFA), NH3-N, and lactate concentrations, degradability of DM, organic matter, NDF, CP, and starch, and flow and metabolism of N. Samples of fermentor contents were collected from each fermentor at 0, 1, 2, 4, 6, and 8 h after feeding to determine kinetics of pH, NH3-N, lactate, and VFA concentrations over time. All data were analyzed using PROC GLIMMIX of SAS (SAS Institute Inc.), and the repeated variable of time was included for kinetics measurements. Treatment did not affect mean pH, degradability, N flow and metabolism, or the concentrations of VFA, NH3-N, or lactate in the effluent samples. Treatment did not affect pH, acetate:propionate ratio, or the concentrations of lactate, NH3-N, total VFA, acetate, propionate, butyrate, isobutyrate, valerate, or caproate. However, the concentration of total VFA tended to change at each time point depending upon the treatment, and T2 tended to have a greater proportion of 2-methylbutyrate and isovalerate than CON, T1, or T3. As 2-methylbutyrate and isovalerate are branched-chain VFA that are synthesized from branched-chain amino acids, T2 may have an increased fermentation of branched-chain amino acids or decreased uptake by fibrolytic microorganisms. Although we did not observe changes in N metabolism due to the enzymes, there could be changes in microbial populations that utilize branched-chain VFA. Overall, the tested enzymes did not improve in vitro ruminal fermentation in the diet of high-producing dairy cows.


Assuntos
Lactação , Propionatos , Animais , Bovinos , Feminino , alfa-Amilases/metabolismo , Ração Animal/análise , Dieta/veterinária , Digestão , Ácidos Graxos Voláteis/metabolismo , Fermentação , Lactatos/metabolismo , Propionatos/metabolismo , Rúmen/metabolismo , Amido/metabolismo
16.
Chem Biodivers ; 20(10): e202301035, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37647333

RESUMO

An efficient method has been developed for the synthesis of novel α-aminophosphonates (AAP) (3 a-m) through a one-pot three-component reaction of 1,3-disubstituted-1H-pyrazol-5-amine, aromatic aldehydes, and phosphite using lithium perchlorate as catalyst. All newly synthesized compounds were characterized via different spectroscopic techniques. The synthesized compounds' mode of action was investigated using molecular docking against the outer membrane protein A (OMPA) and exo-1,3-ß-glucanase, with interpreting their pharmacokinetics aspects. The results of the antimicrobial effectiveness of these compounds revealed a broad spectrum of their biocidal activity and this in-vitro study was in line with the in- silico results. Additionally, it has been demonstrated that these compounds exhibited a minimum inhibitory concentration (MIC) with significant activity at low concentrations (7.5-30.0 mg/mL). Further, the radical scavenging (DPPH* ) activity of the synthesized compounds fluctuated, with compounds 3 h, 3 a, and 3 f showing the highest antioxidant activity. Overall, the formulated compounds can be employed as antimicrobial and antioxidant agents in medical applications.

17.
Int J Mol Sci ; 24(12)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37373456

RESUMO

Termites live in colonies, and their members belong to different castes that each have their specific role within the termite society. In well-established colonies of higher termites, the only food the founding female, the queen, receives is saliva from workers; such queens can live for many years and produce up to 10,000 eggs per day. In higher termites, worker saliva must thus constitute a complete diet and therein resembles royal jelly produced by the hypopharyngeal glands of honeybee workers that serves as food for their queens; indeed, it might as well be called termite royal jelly. However, whereas the composition of honeybee royal jelly is well established, that of worker termite saliva in higher termites remains largely unknown. In lower termites, cellulose-digesting enzymes constitute the major proteins in worker saliva, but these enzymes are absent in higher termites. Others identified a partial protein sequence of the major saliva protein of a higher termite and identified it as a homolog of a cockroach allergen. Publicly available genome and transcriptome sequences from termites make it possible to study this protein in more detail. The gene coding the termite ortholog was duplicated, and the new paralog was preferentially expressed in the salivary gland. The amino acid sequence of the original allergen lacks the essential amino acids methionine, cysteine and tryptophan, but the salivary paralog incorporated these amino acids, thus allowing it to become more nutritionally balanced. The gene is found in both lower and higher termites, but it is in the latter that the salivary paralog gene got reamplified, facilitating an even higher expression of the allergen. This protein is not expressed in soldiers, and, like the major royal jelly proteins in honeybees, it is expressed in young but not old workers.


Assuntos
Baratas , Isópteros , Feminino , Abelhas , Animais , Isópteros/genética , Sequência de Aminoácidos , Alérgenos/genética
18.
Int J Mol Sci ; 24(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37175758

RESUMO

Grafting is widely used to improve the stress tolerance and the fruit yield of horticultural crops. Ribonucleoprotein complexes formed by mRNAs and proteins play critical roles in the communication between scions and stocks of grafted plants. In Pyrus betulaefolia, ankyrin was identified previously to promote the long-distance movement of the ribonucleoprotein complex(PbWoxT1-PbPTB3) by facilitating callose degradation at plasmodesmata. However, the mechanism of the ankyrin-mediated callose degradation remains elusive. In this study, we discovered a ß-1,3-glucanase (EC 3.2.1.39, PbPDBG) using ankyrin as a bait from plasmodesmata by co-immunoprecipitation and mass spectrometry. Ankyrin was required for the plasmodesmata-localization of PbPDBG. The grafting and bombardment experiments indicated that overexpressing PbPDBG resulted in decreased callose content at plasmodesmata, and thereby promoting the long-distance transport of the ribonucleoprotein complex. Altogether, our findings revealed that PbPDBG was the key factor in ankyrin-mediated callose degradation at plasmodesmata.


Assuntos
Plasmodesmos , Pyrus , Plasmodesmos/metabolismo , Pyrus/metabolismo , Anquirinas/metabolismo , Produtos Agrícolas/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
19.
Int J Mol Sci ; 24(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175962

RESUMO

ß-1,4-glucanase can not only promote the wound healing of grafted seedlings but can also have a positive effect on a plant's cell wall construction. As a critical gene of ß-1,4-glucanase, GH9B is involved in cell wall remodeling and intercellular adhesion and plays a vital role in grafting healing. However, the GH9B family members have not yet been characterized for melons. In this study, 18 CmGH9Bs were identified from the melon genome, and these CmGH9Bs were located on 15 chromosomes. Our phylogenetic analysis of these CmGH9B genes and GH9B genes from other species divided them into three clusters. The gene structure and conserved functional domains of CmGH9Bs in different populations differed significantly. However, CmGH9Bs responded to cis elements such as low temperature, exogenous hormones, drought, and injury induction. The expression profiles of CmGH9Bs were different. During the graft healing process of the melon scion grafted onto the squash rootstock, both exogenous naphthyl acetic acid (NAA) and far-red light treatment significantly induced the upregulated expression of CmGH9B14 related to the graft healing process. The results provided a technical possibility for managing the graft healing of melon grafted onto squash by regulating CmGH9B14 expression.


Assuntos
Cucurbita , Cucurbitaceae , Cucurbitaceae/genética , Filogenia , Luz , Hormônios
20.
Molecules ; 28(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37570595

RESUMO

Marennine, a blue pigment produced by the blue diatom Haslea ostrearia, is known to have some biological activities. This pigment is responsible for the greening of oysters on the West Coast of France. Other new species of blue diatom, H. karadagensis, H. silbo sp. inedit., H. provincialis sp. inedit, and H. nusantara, also produce marennine-like pigments with similar biological activities. Aside from being a potential source of natural blue pigments, H. ostrearia-like diatoms present a commercial potential for the aquaculture, food, cosmetics, and health industries. Unfortunately, for a hundred years, the exact molecular structure of this bioactive compound has remained a mystery. A lot of hypotheses regarding the chemical structure of marennine have been proposed. The recent discovery of this structure revealed that it is a macromolecule, mainly carbohydrates, with a complex composition. In this study, some glycoside hydrolases were used to digest marennine, and the products were further analyzed using nuclear magnetic resonance (NMR) and mass spectroscopy (MS). The reducing sugar assay showed that marennine was hydrolyzed only by endo-1,3-ß-glucanase. Further insight into the structure of marennine was provided by the spectrum of 1H NMR, MS, a colorimetric assay, and a computational study, which suggest that the chemical structure of marennine contains 1,3-ß-glucan.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA