Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
J Biol Chem ; : 107912, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39442620

RESUMO

Glucose-stimulated insulin secretion (GSIS) in pancreatic ß-cells is metabolically regulated and progressively diminished during the development of type 2 diabetes (T2D). This dynamic process is tightly coupled with fatty acid metabolism, but the underlying mechanisms remain poorly understood. Fatty acid 2-hydroxylase (FA2H) catalyzes the conversion of fatty acids to chiral specific (R)-2-hydroxy fatty acids ((R)-2-OHFAs), which influences cell metabolism. However, little is known about its potential coupling with GSIS in pancreatic ß cells. Here, we showed that Fa2h knockout decreases plasma membrane localization and protein level of glucose transporter 2 (GLUT2), which is essential for GSIS, thereby controlling blood glucose homeostasis. Conversely, FA2H overexpression increases GLUT2 on the plasma membrane and enhances GSIS. Mechanistically, FA2H suppresses the internalization and trafficking of GLUT2 to the lysosomes for degradation. Overexpression of wild-type FA2H, but not its mutant with impaired hydroxylase activity in the pancreatic ß-cells, improves glucose tolerance by promoting insulin secretion. Levels of 2-OHFAs and Fa2h gene expression are lower in high-fat diet-induced obese mouse islets with impaired GSIS. Moreover, lower gene expression of FA2H is observed in a set of human T2D islets when the insulin secretion index is significantly suppressed, indicating the potential involvement of FA2H in regulating mouse and human GSIS. Collectively, our results identified an FA chemical switch to maintain the proper response of GSIS in pancreatic ß cells and provided a new perspective on the ß-cell failure that triggers T2D.

2.
Am J Physiol Cell Physiol ; 327(2): C462-C476, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38912736

RESUMO

Islet ß-cell dysfunction is an underlying factor for type I diabetes (T1D) development. Insulin sensing and secretion are tightly regulated in ß-cells at multiple subcellular levels. The epithelial intermediate filament (IF) protein keratin (K) 8 is the main ß-cell keratin, constituting the filament network with K18. To identify the cell-autonomous functions of K8 in ß-cells, mice with targeted deletion of ß-cell K8 (K8flox/flox; Ins-Cre) were analyzed for islet morphology, ultrastructure, and integrity, as well as blood glucose regulation and streptozotocin (STZ)-induced diabetes development. Glucose transporter 2 (GLUT2) localization was studied in ß-cells in vivo and in MIN6 cells with intact or disrupted K8/K18 filaments. Loss of ß-cell K8 leads to a major reduction in K18. Islets without ß-cell K8 are more fragile, and these ß-cells display disjointed plasma membrane organization with less membranous E-cadherin and smaller mitochondria with diffuse cristae. Lack of ß-cell K8 also leads to a reduced glucose-stimulated insulin secretion (GSIS) response in vivo, despite undisturbed systemic blood glucose regulation. K8flox/flox, Ins-Cre mice have a decreased sensitivity to STZ compared with K8 wild-type mice, which is in line with decreased membranous GLUT2 expression observed in vivo, as GLUT2 is required for STZ uptake in ß-cells. In vitro, MIN6 cell plasma membrane GLUT2 is rescued in cells overexpressing K8/K18 filaments but mistargeted in cells with disrupted K8/K18 filaments. ß-Cell K8 is required for islet and ß-cell structural integrity, normal mitochondrial morphology, and GLUT2 plasma membrane targeting, and has implications on STZ sensitivity as well as systemic insulin responses.NEW & NOTEWORTHY Keratin 8 is the main cytoskeletal protein in the cytoplasmic intermediate filament network in ß-cells. Here for the first time, we assessed the ß-cell autonomous mechanical and nonmechanical roles of keratin 8 in ß-cell function. We demonstrated the importance of keratin 8 in islet and ß-cell structural integrity, maintaining mitochondrial morphology and GLUT2 plasma membrane targeting.


Assuntos
Membrana Celular , Diabetes Mellitus Experimental , Transportador de Glucose Tipo 2 , Células Secretoras de Insulina , Queratina-8 , Mitocôndrias , Animais , Transportador de Glucose Tipo 2/metabolismo , Transportador de Glucose Tipo 2/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestrutura , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Camundongos , Queratina-8/metabolismo , Queratina-8/genética , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/genética , Glucose/metabolismo , Insulina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
Am J Physiol Cell Physiol ; 327(4): C1111-C1124, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39219449

RESUMO

A central aspect of type 2 diabetes is decreased functional ß-cell mass. The orphan nuclear receptor Nr4a1 is critical for fuel utilization, but little is known regarding its regulation and function in the ß-cell. Nr4a1 expression is decreased in type 2 diabetes rodent ß-cells and type 2 diabetes patient islets. We have shown that Nr4a1-deficient mice have reduced ß-cell mass and that Nr4a1 knockdown impairs glucose-stimulated insulin secretion (GSIS) in INS-1 832/13 ß-cells. Here, we demonstrate that glucose concentration directly regulates ß-cell Nr4a1 expression. We show that 11 mM glucose increases Nr4a1 expression in INS-1 832/13 ß-cells and primary mouse islets. We show that glucose functions through the cAMP/PKA/CREB pathway to regulate Nr4a1 mRNA and protein expression. Using Nr4a1-/- animals, we show that Nr4a1 is necessary for GSIS and systemic glucose handling. Using RNA-seq, we define Nr4a1-regulated pathways in response to glucose in the mouse islet, including Glut2 expression. Our data suggest that Nr4a1 plays a critical role in the ß-cells response to the fed state.NEW & NOTEWORTHY Nr4a1 has a key role in fuel metabolism and ß-cell function, but its exact role is unclear. Nr4a1 expression is regulated by glucose concentration using cAMP/PKA/CREB pathway. Nr4a1 regulates Glut2, Ndufa4, Ins1, In2, Sdhb, and Idh3g expression in response to glucose treatment. These results suggest that Nr4a1 is necessary for proper insulin secretion both through glucose uptake and metabolism machinery.


Assuntos
Glucose , Homeostase , Secreção de Insulina , Células Secretoras de Insulina , Camundongos Knockout , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , Animais , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Glucose/metabolismo , Secreção de Insulina/efeitos dos fármacos , Camundongos , Insulina/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Ratos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Transdução de Sinais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo
4.
J Transl Med ; 22(1): 864, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39334386

RESUMO

BACKGROUND: The glucose transporter 2 (GLUT2) is constitutively expressed in pancreatic beta cells and hepatocytes of mice. It is the most important receptor in glucose-stimulated insulin release and hepatic glucose transport. The Sema4D is a signalin receptor on cell membranes. The correlation between Sema4D and GLUT2 has not been reported previously. We investigated whether knockdown of Sema4D could exert a hypoglycemic effect based on the increased GLUT2 expression in Sema4D -/- mice hepatocytes. METHODS: The glucose tolerance test and insulin tolerance test in sema4D -/- and sema4D +/+ mice were compared before and after streptozotocin (STZ) injection; the expression of GLUT2 content on the membrane surface of both groups was verified by Western blot. Then, the levels of insulin and C-peptide in the serum of the two groups of mice after STZ injection were measured by ELISA; the differentially expressed mRNAs in the liver of the two groups of mice were analyzed by transcriptomic analysis; then the differences in the expression of GLUT2, glycogen, insulin and glucagon in the two groups of mice were compared by tissue section staining. Finally, metabolomics analysis was performed to analyze the metabolites differentially expressed in the two groups of mice. KEY FINDINGS: First, Sema4D -/- male mice exhibited significantly greater glucose tolerance than wild-type mice in a hyperglycemic environment. Secondly, Sema4D -/- mice had more retained GLUT2 in liver membranes after STZ injection according to an immunofluorescence assay. After STZ injection, Sema4D -/- male mice did not exhibit fasting hyperinsulinemia like wild-type mice. Finally, analysis of metabolomic and immunohistochemical data also revealed that Sema4D -/- mice produce hypoglycemic effects by enhancing the pentose phosphate pathway, but not glycogen synthesis. CONCLUSIONS: Thus, Sema4D may play an important role in the regulation of glucose homeostasis by affecting GLUT2 synthesis.


Assuntos
Antígenos CD , Transportador de Glucose Tipo 2 , Hepatócitos , Insulina , Semaforinas , Animais , Transportador de Glucose Tipo 2/metabolismo , Hepatócitos/metabolismo , Masculino , Semaforinas/metabolismo , Insulina/metabolismo , Insulina/sangue , Antígenos CD/metabolismo , Teste de Tolerância a Glucose , Glicogênio/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Glucose/metabolismo , Glicemia/metabolismo , Fígado/metabolismo , Diabetes Mellitus Experimental/metabolismo , Camundongos , Estreptozocina
5.
Neurochem Res ; 49(12): 3367-3382, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39306597

RESUMO

Astrocyte glycogenolysis shapes ventromedial hypothalamic nucleus (VMN) regulation of glucostasis in vivo. Glucose transporter-2 (GLUT2), a plasma membrane glucose sensor, controls hypothalamic primary astrocyte culture glycogen metabolism in vitro. In vivo gene silencing tools and single-cell laser-catapult-microdissection/multiplex qPCR techniques were used here to examine whether GLUT2 governs dorsomedial (VMNdm) and/or ventrolateral (VMNvl) VMN astrocyte metabolic sensor and glycogen metabolic enzyme gene profiles. GLUT2 gene knockdown diminished astrocyte GLUT2 mRNA in both VMN divisions. Hypoglycemia caused GLUT2 siRNA-reversible up-regulation of this gene profile in the VMNdm, but down-regulated VMNvl astrocyte GLUT2 transcription. GLUT2 augmented baseline VMNdm and VMNvl astrocyte glucokinase (GCK) gene expression, but increased (VMNdm) or reduced (VMNvl) GCK transcription during hypoglycemia. GLUT2 imposed opposite control, namely stimulation versus inhibition of VMNdm or VMNvl astrocyte 5'-AMP-activated protein kinase-alpha 1 and -alpha 2 gene expression, respectively. GLUT2 stimulated astrocyte glycogen synthase (GS) gene expression in each VMN division. GLUT2 inhibited transcription of the AMP-sensitive glycogen phosphorylase (GP) isoform GP-brain type (GPbb) in each site, yet diminished (VMNdm) or augmented (VMNvl) astrocyte GP-muscle type (GPmm) mRNA. GLUT2 enhanced VMNdm and VMNvl glycogen accumulation during euglycemia, and curbed hypoglycemia-associated VMNdm glycogen depletion. Results show that VMN astrocytes exhibit opposite, division-specific GLUT2 transcriptional responsiveness to hypoglycemia. Data document divergent GLUT2 control of GCK, AMPK catalytic subunit, and GPmm gene profiles in VMNdm versus VMNvl astrocytes. Ongoing studies seek to determine how differential GLUT2 regulation of glucose and energy sensor function and glycogenolysis in each VMN location may affect local neuron responses to hypoglycemia.


Assuntos
Astrócitos , Transportador de Glucose Tipo 2 , Glicogênio , Núcleo Hipotalâmico Ventromedial , Animais , Astrócitos/metabolismo , Glicogênio/metabolismo , Feminino , Núcleo Hipotalâmico Ventromedial/metabolismo , Transportador de Glucose Tipo 2/metabolismo , Transportador de Glucose Tipo 2/genética , Ratos , Ratos Sprague-Dawley , Glucoquinase/metabolismo , Glucoquinase/genética , Hipoglicemia/metabolismo , Glicogênio Sintase/metabolismo , Glicogênio Sintase/genética
6.
J Theor Biol ; 581: 111756, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38307451

RESUMO

The dominant paradigm for modeling the obesity-induced T2DM (type 2 diabetes mellitus) today focuses on glucose and insulin regulatory systems, diabetes pathways, and diagnostic test evaluations. The problem with this approach is that it is not possible to explicitly account for the glucose transport mechanism from the blood to the liver, where the glucose is stored, and from the liver to the blood. This makes it inaccurate, if not incorrect, to properly model the concentration of glucose in the blood in comparison to actual glycated hemoglobin (A1C) test results. In this paper, we develop a mathematical model of glucose dynamics by a system of ODEs. The model includes the mechanism of glucose transport from the blood to the liver, and from the liver to the blood, and explains how obesity is likely to lead to T2DM. We use the model to evaluate the efficacy of an anti-T2DM drug that also reduces weight.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glicemia/metabolismo , Glucose , Insulina/metabolismo , Obesidade/complicações , Obesidade/tratamento farmacológico , Modelos Teóricos
7.
Bioorg Med Chem ; 103: 117695, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38522346

RESUMO

Resveratrol oligomers, ranging from dimers to octamers, are formed through regioselective synthesis involving the phenoxy radical coupling of resveratrol building blocks, exhibiting remarkable therapeutic potential, including antidiabetic properties. In this study, we elucidate the mechanistic insights into the insulin secretion potential of a resveratrol dimer, (-)-Ampelopsin F (AmF), isolated from the acetone extract of Vatica chinensis L. stem bark in Pancreatic Beta-TC-6 cell lines. The AmF (50 µM) treated cells exhibited a 3.5-fold increase in insulin secretion potential as compared to unstimulated cells, which was achieved through the enhancement of mitochondrial membrane hyperpolarization, elevation of intracellular calcium concentration, and upregulation of GLUT2 and glucokinase expression in pancreatic Beta-TC-6 cell lines. Furthermore, AmF effectively inhibited the activity of DPP4, showcasing a 2.5-fold decrease compared to the control and a significant 6.5-fold reduction compared to the positive control. These findings emphasize AmF as a potential lead for the management of diabetes mellitus and point to its possible application in the next therapeutic initiatives.


Assuntos
Flavonoides , Células Secretoras de Insulina , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Resveratrol , Glucoquinase/metabolismo , Glucose/metabolismo
8.
Pediatr Nephrol ; 39(11): 3201-3204, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38847860

RESUMO

Fanconi-Bickel syndrome (FBS) is a rare genetic disorder of carbohydrate metabolism due to pathogenic variants in SLC2A2, a gene encoding glucose transporter 2 (GLUT2), which leads to accumulation of glycogen in the kidney and liver. While consequential complex proximal tubular dysfunction is well acknowledged in the literature, long-term trajectories of kidney function in patients with FBS have not been well characterized, and kidney biopsy is performed infrequently. Here, we report on a patient with FBS followed from infancy through young adulthood who presented early on with hypercalciuria, phosphaturia, and hypophosphatemia, complicated by chronic kidney disease development during childhood. Kidney biopsy, in addition to a widespread glycogen accumulation in proximal tubular epithelial cells, demonstrated medullary nephrocalcinosis. Screening for nephrocalcinosis may be warranted in pediatric patients with FBS, along with close surveillance of their kidney function.


Assuntos
Síndrome de Fanconi , Taxa de Filtração Glomerular , Nefrocalcinose , Humanos , Nefrocalcinose/genética , Nefrocalcinose/diagnóstico , Nefrocalcinose/etiologia , Síndrome de Fanconi/genética , Síndrome de Fanconi/diagnóstico , Síndrome de Fanconi/complicações , Síndrome de Fanconi/fisiopatologia , Masculino , Biópsia , Feminino , Criança , Adolescente , Rim/patologia , Rim/fisiopatologia , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/fisiopatologia , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/etiologia
9.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125908

RESUMO

Multicenter international clinical trials demonstrated the clinical safety and efficacy by using stem cell educator therapy to treat type 1 diabetes (T1D) and other autoimmune diseases. Previous studies characterized the peripheral blood insulin-producing cells (PB-IPC) from healthy donors with high potential to give rise to insulin-producing cells. PB-IPC displayed the molecular marker glucose transporter 2 (GLUT2), contributing to the glucose transport and sensing. To improve the clinical efficacy of stem cell educator therapy in the restoration of islet ß-cell function, we explored the GLUT2 expression on PB-IPC in recent onset and longstanding T1D patients. In the Food and Drug Administration (FDA)-approved phase 2 clinical studies, patients received one treatment with the stem cell educator therapy. Peripheral blood mononuclear cells (PBMC) were isolated for flow cytometry analysis of PB-IPC and other immune markers before and after the treatment with stem cell educator therapy. Flow cytometry revealed that both recent onset and longstanding T1D patients displayed very low levels of GLUT2 on PB-IPC. After the treatment with stem cell educator therapy, the percentages of GLUT2+CD45RO+ PB-IPC were markedly increased in these T1D subjects. Notably, we found that T1D patients shared common clinical features with patients with other autoimmune and inflammation-associated diseases, such as displaying low or no expression of GLUT2 on PB-IPC at baseline and exhibiting a high profile of the inflammatory cytokine interleukin (IL)-1ß. Flow cytometry demonstrated that their GLUT2 expressions on PB-IPC were also markedly upregulated, and the levels of IL-1ß-positive cells were significantly downregulated after the treatment with stem cell educator therapy. Stem cell educator therapy could upregulate the GLUT2 expression on PB-IPC and restore their function in T1D patients, leading to the improvement of clinical outcomes. The clinical data advances current understanding about the molecular mechanisms underlying the stem cell educator therapy, which can be expanded to treat patients with other autoimmune and inflammation-associated diseases.


Assuntos
Diabetes Mellitus Tipo 1 , Transportador de Glucose Tipo 2 , Células Secretoras de Insulina , Insulina , Humanos , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/sangue , Transportador de Glucose Tipo 2/metabolismo , Transportador de Glucose Tipo 2/genética , Células Secretoras de Insulina/metabolismo , Masculino , Feminino , Insulina/metabolismo , Adulto , Leucócitos Mononucleares/metabolismo , Pessoa de Meia-Idade , Transplante de Células-Tronco
10.
Biochem Biophys Res Commun ; 658: 80-87, 2023 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-37027908

RESUMO

Wfs1 is an endoplasmic reticulum (ER) membrane located protein highly expressed in pancreatic ß cells and brain. Wfs1 deficiency causes adult pancreatic ß cells dysfunction following ß cells apoptosis. Previous studies mainly focus on the Wfs1 function in adult mouse pancreatic ß cells. However, whether Wfs1 loss-of-function impairs mouse pancreatic ß cell from its early development is unknown. In our study, Wfs1 deficiency disrupts the composition of mouse pancreatic endocrine cells from early postnatal day 0 (P0) to 8 weeks old, with decreased percentage of ß cells and increased percentage of α and δ cells. Meanwhile, Wfs1 loss-of-function leads to reduced intracellular insulin content. Notably, Wfs1 deficiency impairs Glut2 localization and causes the accumulation of Glut2 in mouse pancreatic ß cell cytoplasm. In Wfs1-deficient mice, glucose homeostasis is disturbed from early 3 weeks old to 8 weeks old. This work reveals that Wfs1 is significantly required for the composition of pancreatic endocrine cells and is essential for Glut2 localization in mouse pancreatic ß cells.


Assuntos
Células Secretoras de Insulina , Proteínas de Membrana , Síndrome de Wolfram , Animais , Camundongos , Retículo Endoplasmático/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Síndrome de Wolfram/metabolismo , Proteínas de Membrana/genética , Mutação com Perda de Função
11.
Neurochem Res ; 48(2): 404-417, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36173588

RESUMO

The plasma membrane glucose transporter-2 (GLUT2) monitors brain cell uptake of the critical nutrient glucose, and functions within astrocytes of as-yet-unknown location to control glucose counter-regulation. Hypothalamic astrocyte-neuron metabolic coupling provides vital cues to the neural glucostatic network. Current research utilized an established hypothalamic primary astrocyte culture model along with gene knockdown tools to investigate whether GLUT2 imposes sex-specific regulation of glucose/energy sensor function and glycogen metabolism in this cell population. Data show that GLUT2 stimulates or inhibits glucokinase (GCK) expression in glucose-supplied versus -deprived male astrocytes, but does not control this protein in female. Astrocyte 5'-AMP-activated protein kinaseα1/2 (AMPK) protein is augmented by GLUT2 in each sex, but phosphoAMPKα1/2 is coincidently up- (male) or down- (female) regulated. GLUT2 effects on glycogen synthase (GS) diverges in the two sexes, but direction of this control is reversed by glucoprivation in each sex. GLUT2 increases (male) or decreases (female) glycogen phosphorylase-brain type (GPbb) protein during glucoprivation, yet simultaneously inhibits (male) or stimulates (female) GP-muscle type (GPmm) expression. Astrocyte glycogen accumulation is restrained by GLUT2 when glucose is present (male) or absent (both sexes). Outcomes disclose sex-dependent GLUT2 control of the astrocyte glycolytic pathway sensor GCK. Data show that glucose status determines GLUT2 regulation of GS (both sexes), GPbb (female), and GPmm (male), and that GLUT2 imposes opposite control of GS, GPbb, and GPmm profiles between sexes during glucoprivation. Ongoing studies aim to investigate molecular mechanisms underlying sex-dimorphic GLUT2 regulation of hypothalamic astrocyte metabolic-sensory and glycogen metabolic proteins, and to characterize effects of sex-specific astrocyte target protein responses to GLUT2 on glucose regulation.


Assuntos
Astrócitos , Glucose , Ratos , Animais , Masculino , Feminino , Glucose/metabolismo , Astrócitos/metabolismo , Ratos Sprague-Dawley , Glicogênio/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo
12.
Vet Res ; 54(1): 40, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37138353

RESUMO

Cryptosporidiosis is one of the main causes of diarrhea in children and young livestock. The interaction of the parasite with the intestinal host cells has not been characterized thoroughly yet but may be affected by the nutritional demand of the parasite. Hence, we aimed to investigate the impact of C. parvum infection on glucose metabolism in neonatal calves. Therefore, N = 5 neonatal calves were infected with C. parvum on the first day of life, whereas a control group was not (N = 5). The calves were monitored clinically for one week, and glucose absorption, turnover and oxidation were assessed using stable isotope labelled glucose. The transepithelial transport of glucose was measured using the Ussing chamber technique. Glucose transporters were quantified on gene and protein expression level using RT-qPCR and Western blot in the jejunum epithelium and brush border membrane preparations. Plasma glucose concentration and oral glucose absorption were decreased despite an increased electrogenic phlorizin sensitive transepithelial transport of glucose in infected calves. No difference in the gene or protein abundance of glucose transporters, but an enrichment of glucose transporter 2 in the brush border was observed in the infected calves. Furthermore, the mRNA for enzymes of the glycolysis pathway was increased indicating enhanced glucose oxidation in the infected gut. In summary, C. parvum infection modulates intestinal epithelial glucose absorption and metabolism. We assume that the metabolic competition of the parasite for glucose causes the host cells to upregulate their uptake mechanisms and metabolic machinery to compensate for the energy losses.


Assuntos
Doenças dos Bovinos , Criptosporidiose , Cryptosporidium parvum , Glucose , Mucosa Intestinal , Animais , Bovinos , Animais Recém-Nascidos/metabolismo , Animais Recém-Nascidos/parasitologia , Glicemia/metabolismo , Doenças dos Bovinos/metabolismo , Doenças dos Bovinos/parasitologia , Criptosporidiose/metabolismo , Criptosporidiose/parasitologia , Cryptosporidium parvum/metabolismo , Glucose/metabolismo , Mucosa Intestinal/metabolismo , Jejuno/metabolismo , Masculino
13.
Mol Biol Rep ; 50(8): 6963-6974, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37358764

RESUMO

The glucose transporter family has an important role in the initial stage of glucose metabolism; Glucose transporters 2 (GLUTs, encoded by the solute carrier family 2, SLC2A genes) is the major glucose transporter in ß-cells of pancreatic islets and hepatocytes but is also expressed in the small intestine, kidneys, and central nervous system; GLUT2 has a relatively low affinity to glucose. Under physiological conditions, GLUT2 transports glucose into cells and allows the glucose concentration to reach balance on the bilateral sides of the cellular membrane; Variation of GLUT2 is associated with various endocrine and metabolic disorders; In this study, we discussed the role of GLUT2 in participating in glucose metabolism and regulation in multiple organs and tissues and its effects on maintaining glucose homeostasis.


Assuntos
Glucose , Ilhotas Pancreáticas , Glucose/metabolismo , Ilhotas Pancreáticas/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Hepatócitos/metabolismo , Transporte Biológico , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/metabolismo
14.
Mol Biol Rep ; 50(5): 4193-4205, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36897524

RESUMO

BACKGROUND: Nerium oleander L. is ethnopharmacologically used for diabetes. Our aim was to investigate the ameliorative effects of ethanolic Nerium flower extract (NFE) in STZ-induced diabetic rats. METHODS: Seven random groups including control group, NFE group (50 mg/kg), diabetic group, glibenclamide group and NFE treated groups (25 mg/kg, 75 mg/kg, and 225 mg/kg) were composed of forty-nine rats. Blood glucose level, glycated hemoglobin (HbA1c), insulin level, liver damage parameters and lipid profile parameters were investigated. Antioxidant defense system enzyme activities and reduced glutathione (GSH) and malondialdehyde (MDA) contents and immunotoxic and neurotoxic parameters were determined in liver tissue. Additionally, the ameliorative effects of NFE were histopathologically examined in liver. mRNA levels of SLC2A2 gene encoding glucose transporter 2 protein were measured by quantitative real time PCR. RESULTS: NFE caused decrease in glucose level and HbA1c and increase in insulin and C-peptide levels. Additionally, NFE improved liver damage biomarkers and lipid profile parameters in serum. Moreover, lipid peroxidation was prevented and antioxidant enzyme activities in liver were regulated by NFE treatment. Furthermore, anti-immunotoxic and anti-neurotoxic effects of NFE were determined in liver tissue of diabetic rats. Histopathogically, significant liver damages were observed in the diabetic rats. Histopathological changes were decreased partially in the 225 mg/kg NFE treated group. SLC2A2 gene expression in liver of diabetic rats significantly reduced compared to healthy rats and NFE treatment (25 mg/kg) caused increase in gene expression. CONCLUSION: Flower extract of Nerium plant may have an antidiabetic potential due to its high phytochemical content.


Assuntos
Diabetes Mellitus Experimental , Nerium , Ratos , Animais , Antioxidantes/metabolismo , Nerium/metabolismo , Estreptozocina/farmacologia , Hemoglobinas Glicadas , Diabetes Mellitus Experimental/metabolismo , Extratos Vegetais/química , Hipoglicemiantes/química , Insulina/metabolismo , Flores/metabolismo , Fígado/metabolismo , Lipídeos , Glicemia/metabolismo
15.
Diabetologia ; 65(6): 1032-1047, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35290476

RESUMO

AIMS/HYPOTHESIS: Renal GLUT2 is increased in diabetes, thereby enhancing glucose reabsorption and worsening hyperglycaemia. Here, we determined whether loss of Glut2 (also known as Slc2a2) specifically in the kidneys would reverse hyperglycaemia and normalise body weight in mouse models of diabetes and obesity. METHODS: We used the tamoxifen-inducible CreERT2-Lox system in mice to knockout Glut2 specifically in the kidneys (Ks-Glut2 KO) to establish the contribution of renal GLUT2 to systemic glucose homeostasis in health and in insulin-dependent as well as non-insulin-dependent diabetes. We measured circulating glucose and insulin levels in response to OGTT or IVGTT under different experimental conditions in the Ks-Glut2 KO and their control mice. Moreover, we quantified urine glucose levels to explain the phenotype of the mice independently of insulin actions. We also used a transcription factor array to identify mechanisms underlying the crosstalk between renal GLUT2 and sodium-glucose cotransporter 2 (SGLT2). RESULTS: The Ks-Glut2 KO mice exhibited improved glucose tolerance and massive glucosuria. Interestingly, this improvement in blood glucose control was eliminated when we knocked out Glut2 in the liver in addition to the kidneys, suggesting that the improvement is attributable to the lack of renal GLUT2. Remarkably, induction of renal Glut2 deficiency reversed hyperglycaemia and normalised body weight in mouse models of diabetes and obesity. Longitudinal monitoring of renal glucose transporters revealed that Sglt2 (also known as Slc5a2) expression was almost abolished 3 weeks after inducing renal Glut2 deficiency. To identify a molecular basis for this crosstalk, we screened for renal transcription factors that were downregulated in the Ks-Glut2 KO mice. Hnf1α (also known as Hnf1a) was among the genes most downregulated and its recovery restored Sglt2 expression in primary renal proximal tubular cells isolated from the Ks-Glut2 KO mice. CONCLUSIONS/INTERPRETATION: Altogether, these results demonstrate a novel crosstalk between renal GLUT2 and SGLT2 in regulating systemic glucose homeostasis via glucose reabsorption. Our findings also indicate that inhibiting renal GLUT2 is a potential therapy for diabetes and obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Glicosúria , Hiperglicemia , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Feminino , Glucose/metabolismo , Transportador de Glucose Tipo 2 , Glicosúria/metabolismo , Humanos , Hiperglicemia/metabolismo , Insulina/metabolismo , Rim/metabolismo , Masculino , Camundongos , Obesidade/genética , Obesidade/metabolismo , Transportador 2 de Glucose-Sódio/genética , Transportador 2 de Glucose-Sódio/metabolismo
16.
Am J Physiol Gastrointest Liver Physiol ; 322(3): G346-G359, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34984921

RESUMO

Early-life adversity (ELA) is linked with the increased risk for inflammatory and metabolic diseases in later life, but the mechanisms remain poorly understood. Intestinal epithelial glucose transporters sodium-glucose-linked transporter 1 (SGLT1) and glucose transporter 2 (GLUT2) are the major route for intestinal glucose uptake but have also received increased attention as modulators of inflammatory and metabolic diseases. Here, we tested the hypothesis that early weaning (EW) in pigs, an established model of ELA, alters the development of epithelial glucose transporters and coincides with elevated markers of metabolic inflammation. The jejunum and ileum of 90-day-old pigs previously exposed to EW (16 days wean age), exhibited reduced SGLT1 activity (by ∼ 30%, P < 0.05) than late weaned (LW, 28 days wean age) controls. In contrast, GLUT2-mediated glucose transport was increased (P = 0.003) in EW pigs than in LW pigs. Reciprocal changes in SGLT1- and GLUT2-mediated transport coincided with transporter protein expression in the intestinal brush-border membranes (BBMs) that were observed at 90 days and 150 days of age. Ileal SGLT1-mediated glucose transport and BBM expression were inhibited by the ß-adrenergic receptor (ßAR) blocker propranolol in EW and LW pigs. In contrast, propranolol enhanced ileal GLUT2-mediated glucose transport (P = 0.015) and brush-border membrane vesicle (BBMV) abundance (P = 0.035) in LW pigs, but not in EW pigs. Early-weaned pigs exhibited chronically elevated blood glucose and C-reactive protein (CRP) levels, and adipocyte hypertrophy and upregulated adipogenesis-related gene expression in visceral adipose tissue. Altered development of intestinal glucose transporters by EW could underlie the increased risk for later life inflammatory and metabolic diseases.NEW & NOTEWORTHY These studies reveal that early-life adversity in the form of early weaning in pigs causes a developmental shift in intestinal glucose transport from SGLT1 toward GLUT2-mediated transport. Early weaning also induced markers of metabolic inflammation including persistent elevations in blood glucose and the inflammatory marker CRP, along with increased visceral adiposity. Altered intestinal glucose transport might contribute to increased risk for inflammatory and metabolic diseases associated with early-life adversity.


Assuntos
Glicemia , Propranolol , Animais , Glicemia/metabolismo , Feminino , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Transportador 1 de Glucose-Sódio/genética , Suínos , Desmame
17.
J Intern Med ; 292(2): 296-307, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34982494

RESUMO

BACKGROUND: Sterol O-acyltransferase 2 (Soat2) encodes acyl-coenzyme A:cholesterol acyltransferase 2 (ACAT2), which synthesizes cholesteryl esters in hepatocytes and enterocytes fated either to storage or to secretion into nascent triglyceride-rich lipoproteins. OBJECTIVES: We aimed to unravel the molecular mechanisms leading to reduced hepatic steatosis when Soat2 is depleted in mice. METHODS: Soat2-/- and wild-type mice were fed a high-fat, a high-carbohydrate, or a chow diet, and parameters of lipid and glucose metabolism were assessed. RESULTS: Glucose, insulin, homeostatic model assessment for insulin resistance (HOMA-IR), oral glucose tolerance (OGTT), and insulin tolerance tests significantly improved in Soat2-/- mice, irrespective of the dietary regimes (2-way ANOVA). The significant positive correlations between area under the curve (AUC) OGTT (r = 0.66, p < 0.05), serum fasting insulin (r = 0.86, p < 0.05), HOMA-IR (r = 0.86, p < 0.05), Adipo-IR (0.87, p < 0.05), hepatic triglycerides (TGs) (r = 0.89, p < 0.05), very-low-density lipoprotein (VLDL)-TG (r = 0.87, p < 0.05) and the hepatic cholesteryl esters in wild-type mice disappeared in Soat2-/- mice. Genetic depletion of Soat2 also increased whole-body oxidation by 30% (p < 0.05) compared to wild-type mice. CONCLUSION: Our data demonstrate that ACAT2-generated cholesteryl esters negatively affect the metabolic control by retaining TG in the liver and that genetic inhibition of Soat2 improves liver steatosis via partitioning of lipids into secretory (VLDL-TG) and oxidative (fatty acids) pathways.


Assuntos
Fígado Gorduroso , Insulinas , Esterol O-Aciltransferase , Animais , Ésteres do Colesterol/metabolismo , Fígado Gorduroso/metabolismo , Glucose/metabolismo , Insulinas/metabolismo , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Esterol O-Aciltransferase/genética , Esterol O-Aciltransferase/metabolismo , Triglicerídeos , Esterol O-Aciltransferase 2
18.
Trends Food Sci Technol ; 120: 254-264, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35210697

RESUMO

BACKGROUND: Starch is a principal dietary source of digestible carbohydrate and energy. Glycaemic and insulinaemic responses to foods containing starch vary considerably and glucose responses to starchy foods are often described by the glycaemic index (GI) and/or glycaemic load (GL). Low GI/GL foods are beneficial in the management of cardiometabolic disorders (e.g., type 2 diabetes, cardiovascular disease). Differences in rates and extents of digestion of starch-containing foods will affect postprandial glycaemia. SCOPE AND APPROACH: Amylolysis kinetics are influenced by structural properties of the food matrix and of starch itself. Native (raw) semi-crystalline starch is digested slowly but hydrothermal processing (cooking) gelatinises the starch and greatly increases its digestibility. In plants, starch granules are contained within cells and intact cell walls can limit accessibility of water and digestive enzymes hindering gelatinisation and digestibility. In vitro studies of starch digestion by α-amylase model early stages in digestion and can suggest likely rates of digestion in vivo and expected glycaemic responses. Reports that metabolic responses to dietary starch are influenced by α-amylase gene copy number, heightens interest in amylolysis. KEY FINDINGS AND CONCLUSIONS: This review shows how enzyme kinetic strategies can provide explanations for differences in digestion rate of different starchy foods. Michaelis-Menten and Log of Slope analyses provide kinetic parameters (e.g., K m and k cat /K m ) for evaluating catalytic efficiency and ease of digestibility of starch by α-amylase. Suitable kinetic methods maximise the information that can be obtained from in vitro work for predictions of starch digestion and glycaemic responses in vivo.

19.
Diabetologia ; 64(12): 2803-2816, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34498099

RESUMO

AIMS/HYPOTHESIS: Pancreatic polypeptide (PP) cells, which secrete PP (encoded by the Ppy gene), are a minor population of pancreatic endocrine cells. Although it has been reported that the loss of beta cell identity might be associated with beta-to-PP cell-fate conversion, at present, little is known regarding the characteristics of Ppy-lineage cells. METHODS: We used Ppy-Cre driver mice and a PP-specific monoclonal antibody to investigate the association between Ppy-lineage cells and beta cells. The molecular profiles of endocrine cells were investigated by single-cell transcriptome analysis and the glucose responsiveness of beta cells was assessed by Ca2+ imaging. Diabetic conditions were experimentally induced in mice by either streptozotocin or diphtheria toxin. RESULTS: Ppy-lineage cells were found to contribute to the four major types of endocrine cells, including beta cells. Ppy-lineage beta cells are a minor subpopulation, accounting for 12-15% of total beta cells, and are mostly (81.2%) localised at the islet periphery. Unbiased single-cell analysis with a Ppy-lineage tracer demonstrated that beta cells are composed of seven clusters, which are categorised into two groups (i.e. Ppy-lineage and non-Ppy-lineage beta cells). These subpopulations of beta cells demonstrated distinct characteristics regarding their functionality and gene expression profiles. Ppy-lineage beta cells had a reduced glucose-stimulated Ca2+ signalling response and were increased in number in experimental diabetes models. CONCLUSIONS/INTERPRETATION: Our results indicate that an unexpected degree of beta cell heterogeneity is defined by Ppy gene activation, providing valuable insight into the homeostatic regulation of pancreatic islets and future therapeutic strategies against diabetes. DATA AVAILABILITY: The single-cell RNA sequence (scRNA-seq) analysis datasets generated in this study have been deposited in the Gene Expression Omnibus (GEO) under the accession number GSE166164 ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE166164 ).


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas , Animais , Glucose/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Estreptozocina/farmacologia
20.
J Endocrinol Invest ; 44(2): 277-286, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32458408

RESUMO

PURPOSE: Adversity in early life can induce metabolic defects in exposure to stress in adulthood. Therefore, the exploration of involving mechanisms can be helpful in the treatment of metabolic disorders. So, the present study was conducted in terms of exploring the effects of interaction between early postnatal stress and young adulthood psychological stress on insulin secretion and pancreatic GLUT-2 levels in male rats. METHODS: Footshock as a model of early life stress (at 2 weeks of age) and psychological stress induced by communication box as a model of young adulthood stress (at 8-10 weeks of age) were induced in male Wistar rats for five consecutive days (2 times/day). Blood samples were drawn to measure glucose, insulin, homeostatic model assessment of insulin resistance (HOMA-IR) and homeostasis model assessment of ß-cell dysfunction (HOMA-B), before and after stress protocol in young adult rats. Corticosterone was measured on days 1 and 5 of stress induction. The day after the stress period, factors including glucose tolerance, TNF-alpha, isolated islets' insulin output and levels of pancreatic GLUT-2 protein via western blotting were determined. RESULTS: The combination of early footshock exposure and psychological stress during adulthood did not affect plasma corticosterone, but increased plasma insulin, HOMA-IR, HOMA-B and TNF-alpha levels. Plasma TNF was not only increased by the combination of both stressors, but also after only E STR exposure. HOMA-IR was increased in both Psy STR and E + Psy-STR groups. Plasma glucose just increased in Psy STR group. The combination of these two life stressors further increased the in vitro insulin secretion from isolated islets in response to 16.7-mM glucose. The level of Glut2 was increased in Psy STR and decreased in both E STR and E + Psy STR groups. Finally, glucose tolerance was impaired and glucose-stimulated insulin secretion was increased in E + Psy STR group. CONCLUSIONS: In conclusion, inducing stress in early life makes the organism more susceptible to metabolic defects in exposure to psychological stress later in life.


Assuntos
Glicemia/metabolismo , Resistência à Insulina , Secreção de Insulina , Ilhotas Pancreáticas/patologia , Estresse Psicológico/fisiopatologia , Animais , Animais Recém-Nascidos , Feminino , Ilhotas Pancreáticas/metabolismo , Masculino , Ratos , Ratos Wistar , Estresse Psicológico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA