Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.232
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(23): e2317873121, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38768326

RESUMO

Water is a limited resource in Arctic watersheds with continuous permafrost because freezing conditions in winter and the impermeability of permafrost limit storage and connectivity between surface water and deep groundwater. However, groundwater can still be an important source of surface water in such settings, feeding springs and large aufeis fields that are abundant in cold regions and generating runoff when precipitation is rare. Whether groundwater is sourced from suprapermafrost taliks or deeper regional aquifers will impact water availability as the Arctic continues to warm and thaw. Previous research is ambiguous about the role of deep groundwater, leading to uncertainty regarding Arctic water availability and changing water resources. We analyzed chemistry and residence times of spring, stream, and river waters in the continuous permafrost zone of Alaska, spanning the mountains to the coastal plain. Water chemistry and age tracers show that surface waters are predominately sourced from recent precipitation and have short (<50 y) subsurface residence times. Remote sensing indicates trends in the areal extent of aufeis over the last 37 y, and correlations between aufeis extent and previous year summer temperature. Together, these data indicate that surface waters in continuous permafrost regions may be impacted by short flow paths and shallow suprapermafrost aquifers that are highly sensitive to climatic and hydrologic change over annual timescales. Despite the lack of connection to regional aquifers, continued warming and permafrost thaw may promote deepening of the shallow subsurface aquifers and creation of shallow taliks, providing some resilience to Arctic freshwater ecosystems.

2.
Proc Natl Acad Sci U S A ; 121(32): e2310079121, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39074271

RESUMO

California agriculture will undergo significant transformations over the next few decades in response to climate extremes, environmental regulation and policy encouraging environmental justice, and economic pressures that have long driven agricultural changes. With several local climates suited to a variety of crops, periodically abundant nearby precipitation, and public investments that facilitated abundant low-priced irrigation water, California hosts one of the most diverse and productive agroecosystems in the world. California farms supply nearly half of the high-nutrient fruit, tree nut, and vegetable production in the United States. Climate change impacts on productivity and profitability of California agriculture are increasing and forebode problems for standard agricultural practices, especially water use norms. We highlight many challenges California agriculture confronts under climate change through the direct and indirect impacts on the biophysical conditions and ecosystem services that drive adaptations in farm practices and water accessibility and availability. In the face of clear conflicts among competing interests, we consider ongoing and potential sustainable and equitable solutions, with particular attention to how technology and policy can facilitate progress.


Assuntos
Agricultura , Mudança Climática , California , Agricultura/métodos , Ecossistema , Abastecimento de Água , Produtos Agrícolas/crescimento & desenvolvimento , Irrigação Agrícola , Água
3.
Proc Natl Acad Sci U S A ; 121(36): e2400085121, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39186643

RESUMO

As climate change shifts crop exposure to dry and wet extremes, a better understanding of factors governing crop response is needed. Recent studies identified shallow groundwater-groundwater within or near the crop rooting zone-as influential, yet existing evidence is largely based on theoretical crop model simulations, indirect or static groundwater data, or small-scale field studies. Here, we use observational satellite yield data and dynamic water table simulations from 1999 to 2018 to provide field-scale evidence for shallow groundwater effects on maize yields across the United States Corn Belt. We identify three lines of evidence supporting groundwater influence: 1) crop model simulations better match observed yields after improvements in groundwater representation; 2) machine learning analysis of observed yields and modeled groundwater levels reveals a subsidy zone between 1.1 and 2.5 m depths, with yield penalties at shallower depths and no effect at deeper depths; and 3) locations with groundwater typically in the subsidy zone display higher yield stability across time. We estimate an average 3.4% yield increase when groundwater levels are at optimum depth, and this effect roughly doubles in dry conditions. Groundwater yield subsidies occur ~35% of years on average across locations, with 75% of the region benefitting in at least 10% of years. Overall, we estimate that groundwater-yield interactions had a net monetary contribution of approximately $10 billion from 1999 to 2018. This study provides empirical evidence for region-wide groundwater yield impacts and further underlines the need for better quantification of groundwater levels and their dynamic responses to short- and long-term weather conditions.

4.
Appl Environ Microbiol ; 90(2): e0121323, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38231263

RESUMO

Domestic wastewater is a source of persistent organic pollutants and pathogens to the aquatic environment, including groundwater aquifers. Wastewater contaminants include a variety of personal care products, pharmaceuticals, endocrine disrupters, bacteria, and viruses. Groundwater from 22 wells completed in a semi-confined to confined, fractured Silurian dolostone aquifer in southern Wellington County, Ontario, Canada, was analyzed for 14 organic wastewater contaminants (4 artificial sweeteners, 10 pharmaceuticals) as well as E. coli, total coliforms, and 6 human enteric viruses. Enteric viruses were detected in 8.6% of 116 samples, and at least one organic wastewater contaminant was detected in 82% of the wells (in order of decreasing detection frequency: acesulfame, ibuprofen, sulfamethoxazole, triclosan, carbamazepine, and saccharin). Virus indicator metrics [positive and negative predictive values (PPV, NPV), sensitivity, specificity] were calculated at the sample and well level for the organic wastewater compounds, E. coli, and total coliforms. Fecal bacteria were not good predictors of virus presence (PPV = 0%-8%). Of the potential chemical indicators, triclosan performed the best at the sample level (PPV = 50%, NPV = 100%), and ibuprofen performed the best at the well level (PPV = 60%, NPV = 67%); however, no samples had triclosan or ibuprofen concentrations above their practical quantification limits. Therefore, none of the compounds performed sufficiently well to be considered reliable for assessing the potential threat of enteric viruses in wastewater-impacted groundwater in this bedrock aquifer. Future studies need to evaluate the indicator potential of persistent organic wastewater contaminants in different types of aquifers, especially in fractured rock where heterogeneity is strong.IMPORTANCEAssessing the potential risk that human enteric viruses pose in groundwater aquifers used for potable water supply is complicated by several factors, including: (i) labor-intensive methods for the isolation and quantification of viruses in groundwater, (ii) the temporal variability of these viruses in domestic wastewater, and (iii) their potentially rapid transport in the subsurface, especially in fractured rock aquifers. Therefore, aquifer risk assessment would benefit from the identification of suitable proxy indicators of enteric viruses that are easier to analyze and less variable in wastewater sources. Traditional fecal indicators (e.g., E. coli and coliforms) are generally poor indicators of enteric viruses in groundwater. While many studies have examined the use of pharmaceutical and personal care products as tracers of domestic wastewater and fecal pollution in the environment, there is a paucity of data on the potential use of these chemical tracers as enteric virus indicators, especially in groundwater.


Assuntos
Cosméticos , Enterovirus , Água Subterrânea , Triclosan , Vírus , Poluentes Químicos da Água , Humanos , Águas Residuárias , Escherichia coli , Ibuprofeno , Água Subterrânea/microbiologia , Compostos Orgânicos , Preparações Farmacêuticas , Ontário , Monitoramento Ambiental , Poluentes Químicos da Água/análise
5.
Mass Spectrom Rev ; 42(5): 1727-1771, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35657034

RESUMO

Environmental contamination by explosives occurs due to improper handling and disposal procedures. Explosives and their transformation products pose threat to human health and the ecosystem. Trace level detection of explosives present in different environmental matrices is a challenge, due to the interference caused by matrix components and the presence of cocontaminants. Liquid chromatography combined with tandem mass spectrometry (LC-MS/MS) is an advanced analytical tool, which is ideal for quantitative and qualitative detection of explosives and its metabolites at trace levels. This review aims to showcase the current trends in the application of LC-MS/MS for detecting explosives present in soil, sediment, and groundwater with detection limits ranging from nano to femtogram levels. Specificity and advantages of using LC-MS/MS over conventional analytical methods and various processing methods and techniques used for sample preparation are discussed in this article. Important application aspects of LC-MS/MS on environmental monitoring include site characterization and degradation evaluation. Studies on qualitative and quantitative LC-MS/MS analysis in determining the efficiency of treatment processes and contamination mapping, optimized conditions of LC and MS/MS adopted, role of different ionization techniques and mass analyzers in detection of explosives and its metabolites, relative abundance of various product ions formed on dissociation and the levels of detection achieved are reviewed. Ionization suppression, matrix effect, additive selection are some of the major factors which influence MS/MS detection. A summary of challenges and future research insights for effective utilization of this technique in the environmental monitoring of explosives are presented.

6.
Glob Chang Biol ; 30(1): e16997, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37937346

RESUMO

Mediterranean spring ecosystems are unique habitats at the interface between surface water and groundwater. These ecosystems support a remarkable array of biodiversity and provide important ecological functions and ecosystem services. Spring ecosystems are influenced by abiotic, biotic, and anthropogenic factors such as the lithology of their draining aquifers, their climate, and the land use of their recharge area, all of which affect the water chemistry of the aquifer and the spring discharges. One of the most relevant characteristics of spring ecosystems is the temporal stability of environmental conditions, including physicochemical features of the spring water, across seasons and years. This stability allows a wide range of species to benefit from these ecosystems (particularly during dry periods), fostering an unusually high number of endemic species. However, global change poses important threats to these freshwater ecosystems. Changes in temperature, evapotranspiration, and precipitation patterns can alter the water balance and chemistry of spring water. Eutrophication due to agricultural practices and emergent pollutants, such as pharmaceuticals, personal care products, and pesticides, is also a growing concern for the preservation of spring biodiversity. Here, we provide a synthesis of the main characteristics and functioning of Mediterranean spring ecosystems. We then describe their ecological value and biodiversity patterns and highlight the main risks these ecosystems face. Moreover, we identify existing knowledge gaps to guide future research in order to fully uncover the hidden biodiversity within these habitats and understand the main drivers that govern them. Finally, we provide a brief summary of recommended actions that should be taken to effectively manage and preserve Mediterranean spring ecosystems for future generations. Even though studies on Mediterranean spring ecosystems are still scarce, our review shows there are sufficient data to conclude that their future viability as functional ecosystems is under severe threat.


Assuntos
Ecossistema , Nascentes Naturais , Refúgio de Vida Selvagem , Biodiversidade , Água
7.
Glob Chang Biol ; 30(1): e17066, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273563

RESUMO

Groundwater is a vital ecosystem of the global water cycle, hosting unique biodiversity and providing essential services to societies. Despite being the largest unfrozen freshwater resource, in a period of depletion by extraction and pollution, groundwater environments have been repeatedly overlooked in global biodiversity conservation agendas. Disregarding the importance of groundwater as an ecosystem ignores its critical role in preserving surface biomes. To foster timely global conservation of groundwater, we propose elevating the concept of keystone species into the realm of ecosystems, claiming groundwater as a keystone ecosystem that influences the integrity of many dependent ecosystems. Our global analysis shows that over half of land surface areas (52.6%) has a medium-to-high interaction with groundwater, reaching up to 74.9% when deserts and high mountains are excluded. We postulate that the intrinsic transboundary features of groundwater are critical for shifting perspectives towards more holistic approaches in aquatic ecology and beyond. Furthermore, we propose eight key themes to develop a science-policy integrated groundwater conservation agenda. Given ecosystems above and below the ground intersect at many levels, considering groundwater as an essential component of planetary health is pivotal to reduce biodiversity loss and buffer against climate change.


Assuntos
Ecossistema , Água Subterrânea , Biodiversidade , Água Doce , Poluição Ambiental
8.
Photochem Photobiol Sci ; 23(6): 1143-1153, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38748080

RESUMO

Epoxiconazole (EPO) is classified as a persistent organic pollutant due to its ability to persist in the environment for prolonged periods. Its degradation is pivotal in mitigating its environmental impact. This investigation focuses on assessing the degradation of EPO using various methodologies, namely Fenton, photo-Fenton, solar photo-Fenton, and solar photolysis, conducted in both Milli-Q water and groundwater. These experiments encompassed evaluations at both the standard pH typically used in photo-Fenton reactions and the natural pH levels inherent to the respective aqueous environments. Additionally, EPO degradation products were analyzed after a 60-min reaction. Notably, in systems utilizing groundwater, the inclusion of additional iron was unnecessary, as the naturally occurring iron content in the groundwater facilitated the intended processes. Specifically, in Milli-Q water, solar photo-Fenton demonstrated an EPO degradation efficiency of 97%. Furthermore, the substitution of Milli-Q water with groundwater in Fenton-like processes did not significantly affect the efficacy of EPO degradation. These findings underscore the potential of solar photo-Fenton as an economically viable and environmentally sustainable strategy for EPO degradation.

9.
Environ Sci Technol ; 58(20): 8792-8802, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38719742

RESUMO

Per- and polyfluoroalkyl substances (PFASs) from aqueous film forming foams (AFFFs) can hinder bioremediation of co-contaminants such as trichloroethene (TCE) and benzene, toluene, ethylbenzene, and xylene (BTEX). Anaerobic dechlorination can require bioaugmentation of Dehalococcoides, and for BTEX, oxygen is often sparged to stimulate in situ aerobic biodegradation. We tested PFAS inhibition to TCE and BTEX bioremediation by exposing an anaerobic TCE-dechlorinating coculture, an aerobic BTEX-degrading enrichment culture, and an anaerobic toluene-degrading enrichment culture to n-dimethyl perfluorohexane sulfonamido amine (AmPr-FHxSA), perfluorohexane sulfonamide (FHxSA), perfluorohexanesulfonic acid (PFHxS), or nonfluorinated surfactant sodium dodecyl sulfate (SDS). The anaerobic TCE-dechlorinating coculture was resistant to individual PFAS exposures but was inhibited by >1000× diluted AFFF. FHxSA and AmPr-FHxSA inhibited the aerobic BTEX-degrading enrichment. The anaerobic toluene-degrading enrichment was not inhibited by AFFF or individual PFASs. Increases in amino acids in the anaerobic TCE-dechlorinating coculture compared to the control indicated stress response, whereas the BTEX culture exhibited lower concentrations of all amino acids upon exposure to most surfactants (both fluorinated and nonfluorinated) compared to the control. These data suggest the main mechanisms of microbial toxicity are related to interactions with cell membrane synthesis as well as protein stress signaling.


Assuntos
Biodegradação Ambiental , Hidrocarbonetos Aromáticos , Hidrocarbonetos Aromáticos/metabolismo , Tricloroetileno/metabolismo , Sulfonamidas/metabolismo
10.
Environ Sci Technol ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39321415

RESUMO

While unconventional oil and gas (UOG) development is changing the world economy, processes that are used during UOG development such as high-volume hydraulic fracturing ("fracking") have been linked with water contamination. Water quality risks include leaks of gas and salty fluids (brines) that are coproduced at wellpads. Identifying the cause of contamination is difficult, however, because UOG wells are often colocated with other contaminant sources. We investigated the world's largest shale gas play with publicly accessible groundwater data (Marcellus Shale in Pennsylvania, U.S.A. with ∼29,000 analyses) and discovered that concentrations of brine-associated barium ([Ba]) and strontium ([Sr]) show small regional increases within 1 km of UOG development. Higher concentrations in groundwaters are associated with greater proximity to and density of UOG wells. Concentration increases are even larger when considering associations with the locations of (i) spill-related violations and (ii) some wastewater impoundments. These statistically significant relationships persist even after correcting for other natural and anthropogenic sources of salts. The most likely explanation is that UOG development slightly increases salt concentrations in regional groundwaters not because of fracking but because of the ubiquity of wastewater management issues. These results emphasize the need for stringent wastewater management practices across oil and gas operations.

11.
Environ Sci Technol ; 58(18): 8032-8042, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38670935

RESUMO

Accumulation of geogenic phosphorus (P) in groundwater is an emerging environmental concern, which is closely linked to coupled processes involving FeOOH and organic matter under methanogenic conditions. However, it remains unclear how P enrichment is associated with methane cycling, particularly the anaerobic methane oxidation (AMO). This study conducted a comprehensive investigation of carbon isotopes in dissolved inorganic carbon (DIC), CO2, and CH4, alongside Fe isotopes, microbial communities, and functions in quaternary aquifers of the central Yangtze River plain. The study found that P concentrations tended to increase with Fe(II) concentrations, δ56Fe, and δ13C-DIC, suggesting P accumulation due to the reductive dissolution of FeOOH under methanogenic conditions. The positive correlations of pmoA gene abundance versus δ13C-CH4 and Fe concentrations versus δ13C-CH4, and the prevalent presence of Candidatus_Methanoperedens, jointly demonstrated the potential significance of Fe(III)-mediated AMO process (Fe-AMO) alongside traditional methanogenesis. The increase of P concentration with δ13C-CH4 value, pmoA gene abundance, and Fe concentration suggested that the Fe-AMO process facilitated P enrichment in groundwater. Redundancy analysis confirmed this assertion, identifying P concentration as the primary determinant and the cooperative influence of Fe-AMO microorganisms such as Candidatus_Methanoperedens and Geobacter on P enrichment. Our work provided new insights into P dynamics in subsurface environments.


Assuntos
Água Subterrânea , Metano , Oxirredução , Fósforo , Água Subterrânea/química , Metano/metabolismo , Fósforo/metabolismo , Anaerobiose , Compostos Férricos/metabolismo
12.
Environ Sci Technol ; 58(25): 11193-11202, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38859757

RESUMO

Per- and poly fluoroalkyl substances (PFASs) are often encountered with nonaqueous phase liquid (NAPL) in the groundwater at fire-fighting and military training sites. However, it is unclear how PFASs affect the dechlorination performance of sulfidized nanoscale zerovalent iron (S-nFe0), which is an emerging promising NAPL remediation agent. Here, S-nFe0 synthesized with controllable S speciation (FeS or FeS2) were characterized to assess their interactions with PFASs and their dechlorination performance for trichloroethylene NAPL (TCE-NAPL). Surface-adsorbed PFASs blocked materials' reactive sites and inhibited aqueous TCE dechlorination. In contrast, PFASs-adsorbed particles with improved hydrophobicity tended to enrich at the NAPL-water interface, and the reactive sites were re-exposed after the PFASs accumulation into the NAPL phase to accelerate dechlorination. This PFASs-induced phenomenon allowed the materials to present a higher reactivity (up to 1.8-fold) with a high electron efficiency (up to 99%) for TCE-NAPL dechlorination. Moreover, nFe0-FeS2 with a higher hydrophobicity was more readily enriched at the NAPL-water interface and more reactive and selective than nFe0-FeS, regardless of coexisting PFASs. These results unveil that a small amount of yet previously overlooked coexisting PFASs can favor selective reductions of TCE-NAPL by S-nFe0, highlighting the importance of materials hydrophobicity and transportation induced by S and PFASs for NAPL remediation.


Assuntos
Ferro , Ferro/química , Poluentes Químicos da Água/química , Halogenação , Água Subterrânea/química
13.
Environ Sci Technol ; 58(20): 8783-8791, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38718173

RESUMO

Machine learning models show promise in identifying geogenic contaminated groundwaters. Modeling in regions with no or limited samples is challenging due to the need for large training sets. One potential solution is transferring existing models to such regions. This study explores the transferability of high fluoride groundwater models between basins in the Shanxi Rift System, considering six factors, including modeling methods, predictor types, data size, sample/predictor ratio (SPR), predictor range, and data informing. Results show that transferability is achieved only when model predictors are based on hydrochemical parameters rather than surface parameters. Data informing, i.e., adding samples from challenging regions to the training set, further enhances the transferability. Stepwise regression shows that hydrochemical predictors and data informing significantly improve transferability, while data size, SPR, and predictor range have no significant effects. Additionally, despite their stronger nonlinear capabilities, random forests and artificial neural networks do not necessarily surpass logistic regression in transferability. Lastly, we utilize the t-SNE algorithm to generate low-dimensional representations of data from different basins and compare these representations to elucidate the critical role of predictor types in transferability.


Assuntos
Água Subterrânea , Aprendizado de Máquina , Redes Neurais de Computação , Poluentes Químicos da Água/análise , Modelos Teóricos , Monitoramento Ambiental/métodos
14.
Environ Sci Technol ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090056

RESUMO

Migration of microplastics (MPs) in soil-groundwater systems plays a pivotal role in determining its concentration in aquifers and future threats to the terrestrial environment, including human health. However, existing models employing an advection-dispersion equation are insufficient to incorporate the holistic mechanism of MP migration. Therefore, to bridge the gap associated with MP migration in soil-groundwater systems, a dispersion-drag force coupled model incorporating a drag force on MPs along with dispersion is developed and validated through existing laboratory and field-scale experiments. The inclusion of the MP dispersion notably increased the global maximum particle velocity (vmaxp) of MPs, resulting in a higher concentration of MPs in the aquifer, which is also established by sensitivity analysis of MP dispersion. Additionally, increasing irrigation flux and irrigation areas significantly accelerates MP migration downward from soil to deep saturated aquifers. Intriguingly, vmaxp of MPs exhibited a nonlinear relationship with MPs' sizes smaller than 20 µm reaching the highest value (=1.64 × 10-5 m/s) at a particle size of 8 µm, while a decreasing trend was identified for particle sizes ranging from 20 to 100 µm because of the hindered effect by porous media and the weaker effect of the drag force. Moreover, distinct behaviors were observed among different plastic types, with poly(vinyl chloride), characterized by the highest density, displaying the lowest vmaxp and minimal flux entering groundwater. Furthermore, the presence of a heterogeneous structure with lower hydraulic conductivity facilitated MP dispersion and promoted their migration in saturated aquifers. The findings shed light on effective strategies to mitigate the impact of MPs in aquifers, contributing valuable insights to the broader scientific fraternity.

15.
Environ Sci Technol ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39269719

RESUMO

Uranium is a toxic and pervasive geogenic contaminant often associated with organic matter. Its abundance and speciation in organic-rich permafrost soils are unknown, thereby limiting our ability to assess risks associated with uranium mobilization during permafrost thaw. In this study, we assessed uranium speciation in permafrost soil and porewater liberated during thaw using active-layer and permafrost samples from a study area in Yukon, Canada where elevated uranium concentrations occur in bedrock and groundwater. Permafrost contained 1.1-28 wt % organic carbon and elevated uranium (range 7.6-1040 µg g-1, median 25 µg g-1) relative to local bedrock. The highest soil uranium concentrations were encountered in catchments hosting uranium-enriched bedrock and correlated positively with soil organic carbon. X-ray absorption spectroscopy, micro-X-ray fluorescence, and electron microscopy analyses revealed that solid-phase uranium predominantly occurs as uranium(VI) associated with soil organic matter. Extended X-ray absorption fine structure (EXAFS) analyses suggested the presence of uranium(VI) coordinated with carbon, consistent with bidentate-mononuclear uranyl complexation on carboxyl groups. Permafrost thaw produced circumneutral pH porewater (pH 6.2-7.5) with elevated dissolved uranium (0.5-203 µg L-1). Geochemical modeling indicated that calcium-uranyl-carbonate complexes dominated the dissolved uranium speciation. This study highlights that permafrost soil can mobilize uranium upon thaw and that uranium fate is linked to dynamic biogeochemical reactions involving organic carbon and groundwater chemistry.

16.
Environ Sci Technol ; 58(5): 2185-2203, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38237040

RESUMO

The groundwater table fluctuation (GTF) zone is an important medium for the hydrologic cycle between unsaturated soil and saturated aquifers, which accelerates the migration, transformation, and redistribution of contaminants and further poses a potential environmental risk to humans. In this review, we clarify the key processes in the generation of the GTF zone and examine its links with the variation of the hydrodynamic and hydrochemistry field, colloid mobilization, and contaminant migration and transformation. Driven by groundwater recharge and discharge, GTF regulates water flow and the movement of the capillary fringe, which further control the advection and dispersion of contaminants in soil and groundwater. In addition, the formation and variation of the reactive oxygen species (ROS) waterfall are impacted by GTF. The changing ROS components partially determine the characteristic transformation of solutes and the dynamic redistribution of the microbial population. GTF facilitates the migration and transformation of contaminants (such as nitrogen, heavy metals, non-aqueous phase liquids, and volatile organic compounds) through colloid mobilization, the co-migration effect, and variation of the hydrodynamic and hydrochemistry fields. In conclusion, this review illustrates the limitations of the current literature on GTF, and the significance of GTF zones in the underground environment is underscored by expounding on the future directions and prospects.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Humanos , Solo , Espécies Reativas de Oxigênio , Movimentos da Água , Água Subterrânea/química , Coloides , Poluentes Químicos da Água/análise
17.
Environ Sci Technol ; 58(2): 1255-1264, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38164924

RESUMO

Lithium (Li) concentrations in drinking-water supplies are not regulated in the United States; however, Li is included in the 2022 U.S. Environmental Protection Agency list of unregulated contaminants for monitoring by public water systems. Li is used pharmaceutically to treat bipolar disorder, and studies have linked its occurrence in drinking water to human-health outcomes. An extreme gradient boosting model was developed to estimate geogenic Li in drinking-water supply wells throughout the conterminous United States. The model was trained using Li measurements from ∼13,500 wells and predictor variables related to its natural occurrence in groundwater. The model predicts the probability of Li in four concentration classifications, ≤4 µg/L, >4 to ≤10 µg/L, >10 to ≤30 µg/L, and >30 µg/L. Model predictions were evaluated using wells held out from model training and with new data and have an accuracy of 47-65%. Important predictor variables include average annual precipitation, well depth, and soil geochemistry. Model predictions were mapped at a spatial resolution of 1 km2 and represent well depths associated with public- and private-supply wells. This model was developed by hydrologists and public-health researchers to estimate Li exposure from drinking water and compare to national-scale human-health data for a better understanding of dose-response to low (<30 µg/L) concentrations of Li.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Estados Unidos , Humanos , Lítio , Abastecimento de Água , Poços de Água , Poluentes Químicos da Água/análise , Monitoramento Ambiental
18.
Environ Sci Technol ; 58(11): 5079-5092, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38451152

RESUMO

Redox conditions in groundwater may markedly affect the fate and transport of nutrients, volatile organic compounds, and trace metals, with significant implications for human health. While many local assessments of redox conditions have been made, the spatial variability of redox reaction rates makes the determination of redox conditions at regional or national scales problematic. In this study, redox conditions in groundwater were predicted for the contiguous United States using random forest classification by relating measured water quality data from over 30,000 wells to natural and anthropogenic factors. The model correctly predicted the oxic/suboxic classification for 78 and 79% of the samples in the out-of-bag and hold-out data sets, respectively. Variables describing geology, hydrology, soil properties, and hydrologic position were among the most important factors affecting the likelihood of oxic conditions in groundwater. Important model variables tended to relate to aquifer recharge, groundwater travel time, or prevalence of electron donors, which are key drivers of redox conditions in groundwater. Partial dependence plots suggested that the likelihood of oxic conditions in groundwater decreased sharply as streams were approached and gradually as the depth below the water table increased. The probability of oxic groundwater increased as base flow index values increased, likely due to the prevalence of well-drained soils and geologic materials in high base flow index areas. The likelihood of oxic conditions increased as topographic wetness index (TWI) values decreased. High topographic wetness index values occur in areas with a propensity for standing water and overland flow, conditions that limit the delivery of dissolved oxygen to groundwater by recharge; higher TWI values also tend to occur in discharge areas, which may contain groundwater with long travel times. A second model was developed to predict the probability of elevated manganese (Mn) concentrations in groundwater (i.e., ≥50 µg/L). The Mn model relied on many of the same variables as the oxic/suboxic model and may be used to identify areas where Mn-reducing conditions occur and where there is an increased risk to domestic water supplies due to high Mn concentrations. Model predictions of redox conditions in groundwater produced in this study may help identify regions of the country with elevated groundwater vulnerability and stream vulnerability to groundwater-derived contaminants.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Humanos , Algoritmo Florestas Aleatórias , Monitoramento Ambiental , Abastecimento de Água , Solo , Manganês , Oxirredução , Poluentes Químicos da Água/análise
19.
Environ Sci Technol ; 58(8): 3953-3965, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38359304

RESUMO

Elevated groundwater salinity is unsuitable for drinking and harmful to crop production. Thus, it is crucial to determine groundwater salinity distribution, especially where drinking and agricultural water requirements are largely supported by groundwater. This study used field observation (n = 20,994)-based machine learning models to determine the probabilistic distribution of elevated groundwater salinity (electrical conductivity as a proxy, >2000 µS/cm) at 1 km2 across parts of India for near groundwater-table conditions. The final predictions were made by using the best-performing random forest model. The validation performance also demonstrated the robustness of the model (with 77% accuracy). About 29% of the study area (including 25% of entire cropland areas) was estimated to have elevated salinity, dominantly in northwestern and peninsular India. Also, parts of the northwestern and southeastern coasts, adjoining the Arabian Sea and the Bay of Bengal, were assessed with elevated salinity. The climate was delineated as the dominant factor influencing groundwater salinity occurrence, followed by distance from the coast, geology (lithology), and depth of groundwater. Consequently, ∼330 million people, including ∼109 million coastal populations, were estimated to be potentially exposed to elevated groundwater salinity through groundwater-sourced drinking water, thus substantially limiting clean water access.


Assuntos
Água Potável , Água Subterrânea , Poluentes Químicos da Água , Humanos , Monitoramento Ambiental , Salinidade , Índia , Poluentes Químicos da Água/análise
20.
Environ Sci Technol ; 58(9): 4056-4059, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38393774

RESUMO

Certain per- or polyfluoroalkyl substances [e.g., fluorotelomer alcohols (FtOHs), perfluorooctane sulfonamides (FOSAs), and perfluorooctane sulfonamidoethanols (FOSEs)] have sufficient volatility to merit investigation of the vapor intrusion pathway on a site-specific basis, when they occur as subsurface contaminants in sufficient concentrations near occupied buildings. This perspective summarizes some of the evidence that these categories of per- or polyfluoroalkyl substances are volatile and offers specific research questions and objectives, for purposes of further assessing whether FtOHs, FOSAs, and/or FOSEs can pose indoor exposures via soil vapor intrusion and under what circumstances.


Assuntos
Monitoramento Ambiental , Fluorocarbonos , Fluorocarbonos/análise , Gases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA