Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 28(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37175231

RESUMO

Efficient energy-level alignment is crucial for achieving high performance in organic electronic devices. Because the electronic structure of an organic semiconductor is significantly influenced by its molecular orientation, comprehensively understanding the molecular orientation and electronic structure of the organic layer is essential. In this study, we investigated the interface between a 1,4,5,8,9,11-hexaazatriphenylene hexacarbonitrile (HAT-CN) hole injection layer and a zinc-phthalocyanine (ZnPc) p-type organic semiconductor. To determine the energy-level alignment and molecular orientation, we conducted in situ ultraviolet and X-ray photoelectron spectroscopies, as well as angle-resolved X-ray absorption spectroscopy. We found that the HAT-CN molecules were oriented relatively face-on (40°) in the thin (5 nm) layer, whereas they were oriented relatively edge-on (62°) in the thick (100 nm) layer. By contrast, ZnPc orientation was not significantly altered by the underlying HAT-CN orientation. The highest occupied molecular orbital (HOMO) level of ZnPc was closer to the Fermi level on the 100 nm thick HAT-CN layer than on the 5 nm thick HAT-CN layer because of the higher work function. Consequently, a considerably low energy gap between the lowest unoccupied molecular orbital level of HAT-CN and the HOMO level of ZnPc was formed in the 100 nm thick HAT-CN case. This may improve the hole injection ability of the anode system, which can be utilized in various electronic devices.

2.
Nano Lett ; 19(4): 2456-2463, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30855970

RESUMO

Since transition metal dichalcogenide (TMD) semiconductors are found as two-dimensional van der Waals materials with a discrete energy bandgap, many TMD based field effect transistors (FETs) are reported as prototype devices. However, overall reports indicate that threshold voltage ( Vth) of those FETs are located far away from 0 V whether the channel is p- or n-type. This definitely causes high switching voltage and unintended OFF-state leakage current. Here, a facile way to simultaneously modulate the Vth of both p- and n-channel FETs with TMDs is reported. The deposition of various organic small molecules on the channel results in charge transfer between the organic molecule and TMD channels. Especially, HAT-CN molecule is found to ideally work for both p- and n-channels, shifting their Vth toward 0 V concurrently. As a proof of concept, a complementary metal oxide semiconductor (CMOS) inverter with p-MoTe2 and n-MoS2 channels shows superior voltage gain and minimal power consumption after HAT-CN deposition, compared to its initial performance. When the same TMD FETs of the CMOS structure are integrated into an OLED pixel circuit for ambipolar switching, the circuit with HAT-CN film demonstrates complete ON/OFF switching of OLED pixel, which was not switched off without HAT-CN.

3.
ACS Nano ; 10(1): 704-12, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26695703

RESUMO

Silicon-organic solar cells based on conjugated polymers such as poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PEDOT: PSS) on n-type silicon (n-Si) attract wide interest because of their potential for cost-effectiveness and high-efficiency. However, a lower barrier height (Φb) and a shallow built in potential (Vbi) of Schottky junction between n-Si and PEDOT: PSS hinders the power conversion efficiency (PCE) in comparison with those of traditional p-n junction. Here, a strong inversion layer was formed on n-Si surface by inserting a layer of 1, 4, 5, 8, 9, 11-hexaazatriphenylene hexacarbonitrile (HAT-CN), resulting in a quasi p-n junction. External quantum efficiency spectra, capacitance-voltage, transient photovoltage decay and minority charge carriers life mapping measurements indicated that a quasi p-n junction was built due to the strong inversion effect, resulting in a high Φb and Vbi. The quasi p-n junction located on the front surface region of silicon substrates improved the short wavelength light conversion into photocurrent. In addition, a derivative perylene diimide (PDIN) layer between rear side of silicon and aluminum cathodes was used to block the holes from flowing to cathodes. As a result, the device with PDIN layer also improved photoresponse at longer wavelength. A champion PCE of 14.14% was achieved for the nanostructured silicon-organic device by combining HAT-CN and PDIN layers. The low temperature and simple device structure with quasi p-n junction promises cost-effective high performance photovoltaic techniques.

4.
ACS Appl Mater Interfaces ; 7(12): 6406-11, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25761404

RESUMO

A nonadditive hole-transporting material (HTM) of a triphenylamine derivative of N,N'-di(3-methylphenyl)-N,N'-diphenyl-4,4'-diaminobiphenyl (TPD) is used for the organic-inorganic hybrid perovskite solar cells. The power conversion efficiency (PCE) can be significantly enhanced by inserting a thin layer of 1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile (HAT-CN) without adding an ion additive because the hole-transporting properties improve. The short-circuit current density (J(sc)) increases from 8.5 to 13.1 mA/cm(2), the open-circuit voltage (V(oc)) increases from 0.84 to 0.92 V, and the fill-factor (FF) increases from 0.45 to 0.59, which corresponds to the increase in PCE from 3.2% to 7.1%. Moreover, the PCE decreases by only 10% after approximately 1000 h without encapsulation, which suggests an alternative method to improve the stability of perovskite solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA