Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cancer Res Clin Oncol ; 149(9): 6225-6237, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36700980

RESUMO

PURPOSE: This study aims to explore the expression of hnRNP K in cervical carcinogenesis and to investigate the regulatory role of hnRNP K on HPV16 oncogene expression as well as biological changes in cervical cancer cells. METHODS: In total 1042 subjects, including 573 with the normal cervix and 469 with different grades of cervical lesions were enrolled in this study to explore the association between hnRNP K and HPV16 oncogene expression in cervical carcinogenesis. Additionally, the Gene Omnibus (GEO) database was used to analyze hnRNP K mRNA expression in cervical cancerization. Meanwhile, the effects of hnRNP K on cell biological functions and HPV16 oncogene expression were investigated in Siha cells. Moreover, Function analyses were conducted using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases after ChIP-seq. RESULTS: hnRNP K was highly expressed in cervical cancer and precancerous lesions, and positively correlated with HPV16 E6, but negatively correlated with HPV16 E2 and HPV16 E2/E6 ratio. hnRNP K induced cell proliferation, inhibited apoptosis and caused cell cycle arrest in the S phase, and particularly increased HPV16 E6 protein expression. CONCLUSION: This study revealed that hnRNP K overexpression has important warning significance for the malignant transformation of cervical lesions, and could be used as a potential therapeutic target for inhibiting the carcinogenicity of HPV16 and prevention of cervical carcinogenesis.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Colo do Útero/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , Oncogenes/genética , Carcinogênese/genética , Infecções por Papillomavirus/genética
2.
Front Oncol ; 12: 905900, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35800060

RESUMO

hnRNP E1 (heterogeneous nuclear ribonucleoprotein E1) is an important RNA-binding protein (RBPs) that plays a vital role in tumor development. Human papillomavirus 16 (HPV16) contains numerous sites that can bind to RNA/DNA and may be modified by multiple RBPs, which contribute to HPV gene expression and HPV-associated cancer development. However, the effects of hnRNP E1 on HPV16 oncogenes in the development of cervical lesions remain unclear. A total of 816 participants with different grades of cervical lesions were enrolled in a community-based cohort established in Shanxi Province, China. The Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases were used to analyze the association between hnRNP E1 mRNA expression and cervical lesions. Cells with up_ and down_regulated hnRNP E1 were established. hnRNP E1 functions were evaluated using cell counting kit-8, flow cytometry analyses, and chromatin immunoprecipitation sequencing. Our results showed that hnRNP E1 expression was linearly dependent on the severity of the cervical lesions. Low expression of HPV16 E2, high expression of E6, and a low ratio of E2 to E6 could increase the risk of cervical lesions. hnRNP E1 expression was correlated with HPV16 oncogene expression. hnRNP E1-relevant genes were involved in the dopaminergic synapses, Wnt signaling pathway, gnRH secretion, and mTOR signaling pathway. hnRNP E1 significantly inhibited cell proliferation, induced apoptosis, arrested the cell cycle at the G0/G1 stage, and decreased HPV16 E6 expression. Our results indicate that hnRNP E1 could downregulate HPV16 E6 oncogene expression and inhibit cervical cancerization, which sheds new light on preventing the carcinogenicity of HPV across a range of diseases by regulating RNA-binding proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA