Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plasmid ; 127: 102694, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37301314

RESUMO

Plasmid families harbor different maintenances functions, depending on their size and copy number. Low copy number plasmids rely on active partition systems, organizing a partition complex at specific centromere sites that is actively positioned using NTPase proteins. Some low copy number plasmids lack an active partition system, but carry atypical intracellular positioning systems using a single protein that binds to the centromere site but without an associated NTPase. These systems have been studied in the case of the Escherichia coli R388 and of the Staphylococcus aureus pSK1 plasmids. Here we review these two systems, which appear to be unrelated but share common features, such as their distribution on plasmids of medium size and copy number, certain activities of their centromere-binding proteins, StbA and Par, respectively, as well as their mode of action, which may involve dynamic interactions with the nucleoid-packed chromosome of their hosts.


Assuntos
Variações do Número de Cópias de DNA , Nucleosídeo-Trifosfatase , Humanos , Plasmídeos/genética , Nucleosídeo-Trifosfatase/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Bactérias/genética , Segregação de Cromossomos
2.
Mol Microbiol ; 116(1): 140-153, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33561892

RESUMO

The essential transcription factor PoxCxrA is required for cellulase and xylanase gene expression in the filamentous fungus Penicillium oxalicum that is potentially applied in biotechnological industry as a result of the existence of the integrated cellulolytic and xylolytic system. However, the regulatory mechanism of cellulase and xylanase gene expression specifically associated with PoxCxrA regulation in fungi is poorly understood. In this study, the novel regulator PoxCbh (POX06865), containing a centromere protein B-type helix-turn-helix domain, was identified through screening for the PoxCxrA regulon under Avicel induction and genetic analysis. The mutant ∆PoxCbh showed significant reduction in cellulase and xylanase production, ranging from 28.4% to 59.8%. Furthermore, PoxCbh was found to directly regulate the expression of important cellulase and xylanase genes, as well as the known regulatory genes PoxNsdD and POX02484, and its expression was directly controlled by PoxCxrA. The PoxCbh-binding DNA sequence in the promoter region of the cellobiohydrolase 1 gene cbh1 was identified. These results expand our understanding of the diverse roles of centromere protein B-like protein, the regulatory network of cellulase and xylanase gene expression, and regulatory mechanisms in fungi.


Assuntos
Proteína B de Centrômero/genética , Proteínas Cromossômicas não Histona/biossíntese , Regulação Fúngica da Expressão Gênica/genética , Sequências Hélice-Volta-Hélice/genética , Penicillium/genética , Penicillium/metabolismo , Celulase/biossíntese , Celulase/genética , Celulose 1,4-beta-Celobiosidase/genética , Proteína B de Centrômero/biossíntese , Proteínas Cromossômicas não Histona/genética , Endo-1,4-beta-Xilanases/biossíntese , Endo-1,4-beta-Xilanases/genética , Fatores de Transcrição/genética
3.
BMC Microbiol ; 21(1): 80, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750295

RESUMO

BACKGROUND: A wide variety of bacterial adaptative responses to environmental conditions are mediated by signal transduction pathways. Two-component signal transduction systems are one of the predominant means used by bacteria to sense the signals of the host plant and adjust their interaction behaviour. A total of seven open reading frames have been identified as putative two-component response regulators in the gram-negative nitrogen-fixing bacteria Azorhizobium caulinodans ORS571. However, the biological functions of these response regulators in the symbiotic interactions between A. caulinodans ORS571 and the host plant Sesbania rostrata have not been elucidated to date. RESULTS: In this study, we identified and investigated a two-component response regulator, AcfR, with a phosphorylatable N-terminal REC (receiver) domain and a C-terminal HTH (helix-turn-helix) LuxR DNA-binding domain in A. caulinodans ORS571. Phylogenetic analysis showed that AcfR possessed close evolutionary relationships with NarL/FixJ family regulators. In addition, six histidine kinases containing HATPase_c and HisKA domains were predicted to interact with AcfR. Furthermore, the biological function of AcfR in free-living and symbiotic conditions was elucidated by comparing the wild-type strain and the ΔacfR mutant strain. In the free-living state, the cell motility behaviour and exopolysaccharide production of the ΔacfR mutant were significantly reduced compared to those of the wild-type strain. In the symbiotic state, the ΔacfR mutant showed a competitive nodule defect on the stems and roots of the host plant, suggesting that AcfR can provide A. caulinodans with an effective competitive ability for symbiotic nodulation. CONCLUSIONS: Our results showed that AcfR, as a response regulator, regulates numerous phenotypes of A. caulinodans under the free-living conditions and in symbiosis with the host plant. The results of this study help to elucidate the involvement of a REC + HTH_LuxR two-component response regulator in the Rhizobium-host plant interaction.


Assuntos
Azorhizobium caulinodans/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Interações entre Hospedeiro e Microrganismos/genética , Plantas/microbiologia , Simbiose/genética , Azorhizobium caulinodans/classificação , Mutação , Fases de Leitura Aberta/genética
4.
Mol Plant Microbe Interact ; 33(3): 528-538, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31789101

RESUMO

LuxR-type regulators play important roles in transcriptional regulation in bacteria and control various biological processes. A genome sequence analysis showed the existence of seven LuxR-type regulators in Azorhizobium caulinodans ORS571, an important nitrogen-fixing bacterium in both its free-living state and in symbiosis with its host, Sesbania rostrata. However, the functional mechanisms of these regulators remain unclear. In this study, we identified a LuxR-type regulator that contains a cheY-homologous receiver (REC) domain in its N terminus and designated it AclR1. Interestingly, phylogenetic analysis revealed that AclR1 exhibited relatively close evolutionary relationships with MalT/GerE/FixJ/NarL family proteins. Functional analysis of an aclR1 deletion mutant (ΔaclR1) in the free-living state showed that AclR1 positively regulated cell motility and flocculation but negatively regulated exopolysaccharide production, biofilm formation, and second messenger cyclic diguanylate (c-di-GMP)-related gene expression. In the symbiotic state, the ΔaclR1 mutant was defective in competitive colonization and nodulation on host plants. These results suggested that AclR1 could provide bacteria with the ability to compete effectively for symbiotic nodulation. Overall, our results show that the REC-LuxR-type regulator AclR1 regulates numerous phenotypes both in the free-living state and during host plant symbiosis.


Assuntos
Azorhizobium caulinodans/fisiologia , GMP Cíclico/análogos & derivados , Proteínas Repressoras/fisiologia , Simbiose , Transativadores/fisiologia , Azorhizobium caulinodans/genética , Proteínas de Bactérias , GMP Cíclico/fisiologia , Fenótipo , Filogenia , Sesbania/microbiologia
5.
Biol Chem ; 402(1): 7-23, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33544496

RESUMO

The LOTUS domain (also known as OST-HTH) is a highly conserved protein domain found in a variety of bacteria and eukaryotes. In animals, the LOTUS domain is present in the proteins Oskar, TDRD5/Tejas, TDRD7/TRAP/Tapas, and MARF1/Limkain B1, all of which play essential roles in animal development, in particular during oogenesis and/or spermatogenesis. This review summarizes the diverse biological as well as molecular functions of LOTUS-domain proteins and discusses their roles as helicase effectors, post-transcriptional regulators, and critical cofactors of piRNA-mediated transcript silencing.


Assuntos
Proteínas/metabolismo , Animais , Humanos , Modelos Moleculares , Domínios Proteicos , Proteínas/química
6.
Extremophiles ; 23(1): 59-67, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30350225

RESUMO

DNA-binding motif of bacterioopsin activator (Bat) protein is a Helix-Turn-Helix motif, which binds to bop promoter and induces bacterioopsin (Bop) expression under light and low oxygen tension. Bacterioopsin is linked to retinal to produce bacteriorhodopsin (BR), which in turn supplies energy source in Halobacterium salinarum. In this study, effect of Bat HTH motif-promoter DNA interaction on bacterioopsin (Bop) expression was investigated using in silico and experimental approaches. Molecular docking showed that the most stable DNA-protein complex was generated by Q661R/Q665R mutant. Based on the in silico analysis, HTH motif was mutated using site-directed mutagenesis and Hbt. salinarum recombinant strains were developed by introduction of mutant bat genes. Double positively charged amino acid substitutions (Q661R/Q665R) in second helix of HTH motif increased whereas deletion of this region decreased BR production. However, other single substitutions (Q665R and Q661H) did not change BR production. These findings represent key role of HTH motif stability for DNA binding and regulation of bacterioopsin (Bop) expression and bacteriorhodopsin (BR) production independent of environmental condition.


Assuntos
Bacteriorodopsinas/genética , Halobacterium salinarum/genética , Fatores de Transcrição/metabolismo , Bacteriorodopsinas/metabolismo , Sítios de Ligação , Halobacterium salinarum/metabolismo , Microbiologia Industrial/métodos , Simulação de Acoplamento Molecular , Mutação de Sentido Incorreto , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição/química , Fatores de Transcrição/genética
7.
Int J Mol Sci ; 20(23)2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31771094

RESUMO

The toxin-antitoxin (TA) systems have been attracting attention due to their role in regulating stress responses in prokaryotes and their biotechnological potential. Much recognition has been given to type II TA system of mesophiles, while thermophiles have received merely limited attention. Here, we are presenting the putative type II TA families encoded on the genomes of four Geobacillus strains. We employed the TA finder tool to mine for TA-coding genes and manually curated the results using protein domain analysis tools. We also used the NCBI BLAST, Operon Mapper, ProOpDB, and sequence alignment tools to reveal the geobacilli TA features. We identified 28 putative TA pairs, distributed over eight TA families. Among the identified TAs, 15 represent putative novel toxins and antitoxins, belonging to the MazEF, MNT-HEPN, ParDE, RelBE, and XRE-COG2856 TA families. We also identified a potentially new TA composite, AbrB-ParE. Furthermore, we are suggesting the Geobacillus acetyltransferase TA (GacTA) family, which potentially represents one of the unique TA families with a reverse gene order. Moreover, we are proposing a hypothesis on the xre-cog2856 gene expression regulation, which seems to involve the c-di-AMP. This study aims for highlighting the significance of studying TAs in Geobacillus and facilitating future experimental research.


Assuntos
Evolução Molecular , Regulação Bacteriana da Expressão Gênica/fisiologia , Geobacillus , Família Multigênica/fisiologia , Sistemas Toxina-Antitoxina/fisiologia , Geobacillus/genética , Geobacillus/metabolismo
8.
Dev Biol ; 382(2): 413-26, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23978534

RESUMO

JAK/STAT signaling is localized to the wing hinge, but its function there is not known. Here we show that the Drosophila STAT Stat92E is downstream of Homothorax and is required for hinge development by cell-autonomously regulating hinge-specific factors. Within the hinge, Stat92E activity becomes restricted to gap domain cells that lack Nubbin and Teashirt. While gap domain cells lacking Stat92E have significantly reduced proliferation, increased JAK/STAT signaling there does not expand this domain. Thus, this pathway is necessary but not sufficient for gap domain growth. We show that reduced Wingless (Wg) signaling dominantly inhibits Stat92E activity in the hinge. However, ectopic JAK/STAT signaling does not perturb Wg expression in the hinge. We report negative interactions between Stat92E and the notum factor Araucan, resulting in restriction of JAK/STAT signaling from the notum. In addition, we find that the distal factor Nub represses the ligand unpaired as well as Stat92E activity. These data suggest that distal expansion of JAK/STAT signaling is deleterious to wing blade development. Indeed, mis-expression of Unpaired within the presumptive wing blade causes small, stunted adult wings. We conclude that JAK/STAT signaling is critical for hinge fate specification and growth of the gap domain and that its restriction to the hinge is required for proper wing development.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Janus Quinases/metabolismo , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Asas de Animais/crescimento & desenvolvimento , Animais , Padronização Corporal/genética , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Janus Quinases/genética , Fatores do Domínio POU/genética , Fatores do Domínio POU/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Future Microbiol ; 19: 21-31, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38294294

RESUMO

Aims: Persistent cells are primarily responsible for developing antibiotic resistance and the recurrence of Pseudomonas aeruginosa. This study investigated the possible role of GNAT toxin in persistence. Materials & methods: P. aeruginosa was exposed to five MIC concentrations of ciprofloxacin. The expression levels of target genes were assessed. The GNAT/HTH system was bioinformatically studied, and an inhibitory peptide was designed to disrupt this system. Results: Ciprofloxacin can induce bacterial persistence. There was a significant increase in the expression of the GNAT toxin during the persistence state. A structural study of the GNAT/HTH system determined that an inhibitory peptide could be designed to block this system effectively. Conclusion: The GNAT/HTH system shows promise as a novel therapeutic target for combating P. aeruginosa infections.


Antibiotics are used to treat infections caused by bacteria. Over time, some of these infections have become more difficult to treat. This is because the bacteria can slow their growth and tolerate the antibiotic, known as persistence. It is important to find new ways to treat infections caused by persistent bacteria. This study researched a toxin­antitoxin system, called GNAT/HTH, that may play a role in bacterial persistence. This system could be a target for new antibiotics.


Assuntos
Toxinas Bacterianas , Infecções por Pseudomonas , Humanos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Pseudomonas aeruginosa , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Ciprofloxacina/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Peptídeos/farmacologia , Testes de Sensibilidade Microbiana
10.
ACS Synth Biol ; 13(1): 242-258, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38092428

RESUMO

Cells experience time-varying and spatially heterogeneous chemokine signals in vivo, activating cell surface proteins including G protein-coupled receptors (GPCRs). The Gαq pathway activation by GPCRs is a major signaling axis with broad physiological and pathological significance. Compared with other Gα members, GαqGTP activates many crucial effectors, including PLCß (Phospholipase Cß) and Rho GEFs (Rho guanine nucleotide exchange factors). PLCß regulates many key processes, such as hematopoiesis, synaptogenesis, and cell cycle, and is therefore implicated in terminal-debilitating diseases, including cancer, epilepsy, Huntington's Disease, and Alzheimer's Disease. However, due to a lack of genetic and pharmacological tools, examining how the dynamic regulation of PLCß signaling controls cellular physiology has been difficult. Since activated PLCß induces several abrupt cellular changes, including cell morphology, examining how the other pathways downstream of Gq-GPCRs contribute to the overall signaling has also been difficult. Here we show the engineering, validation, and application of a highly selective and efficient optogenetic inhibitor (Opto-dHTH) to completely disrupt GαqGTP-PLCß interactions reversibly in user-defined cellular-subcellular regions on optical command. Using this newly gained PLCß signaling control, our data indicate that the molecular competition between RhoGEFs and PLCß for GαqGTP determines the potency of Gq-GPCR-governed directional cell migration.


Assuntos
Transdução de Sinais , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismo , Transdução de Sinais/fisiologia
11.
Biochem Biophys Res Commun ; 440(2): 317-21, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24070609

RESUMO

Pseudomonas aeruginosa is a major opportunistic human pathogen. PA2196 from P. aeruginosa is a member of TetR family of transcriptional repressors, which is involved in adaptation to environmental changes as well as bacterial antibiotic resistance. PA2196 consists of nine α-helical bundles divided into two separate domains. The N-terminal domain, called the DNA-binding domain, is composed of helices α1-α3 and has a helix-turn-helix motif. The C-terminal domain, called the ligand-binding domain, has a hydrophobic pocket for ligand binding. Here, PA2196 was shown to bind to a 25 bp semi-palindromic dsDNA located in the upstream region of its own gene. The crystal structure of the PA2196-25mer dsDNA complex determined at a resolution of 2.9 Å revealed that two dimers of PA2196 bound to one dsDNA, with each monomer interacting with the major groove of DNA. Especially, residues in helix α3, including Lys41, Gly42, Ser43, and Tyr45, interacted mainly with the base and phosphate backbone of dsDNA. PA2196 underwent large conformational changes upon DNA binding, as the distances between DNA-binding domains measured between two G42s in subunits A and B decreased from 41.7 Å to 36.8 Å. Our crystal structure of PA2196-25mer dsDNA complex revealed that PA2196 is similar to QacR in that two dimers bound to one dsDNA through specific interactions.


Assuntos
Proteínas de Bactérias/química , DNA Bacteriano/química , Proteínas Repressoras/química , Sequência de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Pseudomonas aeruginosa/química , Alinhamento de Sequência
12.
mBio ; 13(2): e0329721, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35311535

RESUMO

Unique DNA repair enzymes that provide self-resistance against therapeutically important, genotoxic natural products have been discovered in bacterial biosynthetic gene clusters (BGCs). Among these, the DNA glycosylase AlkZ is essential for azinomycin B production and belongs to the HTH_42 superfamily of uncharacterized proteins. Despite their widespread existence in antibiotic producers and pathogens, the roles of these proteins in production of other natural products are unknown. Here, we determine the evolutionary relationship and genomic distribution of all HTH_42 proteins from Streptomyces and use a resistance-based genome mining approach to identify homologs associated with known and uncharacterized BGCs. We find that AlkZ-like (AZL) proteins constitute one distinct HTH_42 subfamily and are highly enriched in BGCs and variable in sequence, suggesting each has evolved to protect against a specific secondary metabolite. As a validation of the approach, we show that the AZL protein, HedH4, associated with biosynthesis of the alkylating agent hedamycin, excises hedamycin-DNA adducts with exquisite specificity and provides resistance to the natural product in cells. We also identify a second, phylogenetically and functionally distinct subfamily whose proteins are never associated with BGCs, are highly conserved with respect to sequence and genomic neighborhood, and repair DNA lesions not associated with a particular natural product. This work delineates two related families of DNA repair enzymes-one specific for complex alkyl-DNA lesions and involved in self-resistance to antimicrobials and the other likely involved in protection against an array of genotoxins-and provides a framework for targeted discovery of new genotoxic compounds with therapeutic potential. IMPORTANCE Bacteria are rich sources of secondary metabolites that include DNA-damaging genotoxins with antitumor/antibiotic properties. Although Streptomyces produce a diverse number of therapeutic genotoxins, efforts toward targeted discovery of biosynthetic gene clusters (BGCs) producing DNA-damaging agents is lacking. Moreover, work on toxin-resistance genes has lagged behind our understanding of those involved in natural product synthesis. Here, we identified over 70 uncharacterized BGCs producing potentially novel genotoxins through resistance-based genome mining using the azinomycin B-resistance DNA glycosylase AlkZ. We validate our analysis by characterizing the enzymatic activity and cellular resistance of one AlkZ ortholog in the BGC of hedamycin, a potent DNA alkylating agent. Moreover, we uncover a second, phylogenetically distinct family of proteins related to Escherichia coli YcaQ, a DNA glycosylase capable of unhooking interstrand DNA cross-links, which differs from the AlkZ-like family in sequence, genomic location, proximity to BGCs, and substrate specificity. This work defines two families of DNA glycosylase for specialized repair of complex genotoxic natural products and generalized repair of a broad range of alkyl-DNA adducts and provides a framework for targeted discovery of new compounds with therapeutic potential.


Assuntos
Produtos Biológicos , DNA Glicosilases , Streptomyces , Alquilantes , Antibacterianos/metabolismo , Produtos Biológicos/metabolismo , DNA , Adutos de DNA , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Mutagênicos , Streptomyces/genética , Streptomyces/metabolismo
13.
Comput Struct Biotechnol J ; 20: 5275-5286, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212535

RESUMO

Self-labelling protein tags (SLPs) are resourceful tools that revolutionized sensor imaging, having the versatile ability of being genetically fused with any protein of interest and undergoing activation with alternative probes specifically designed for each variant (namely, SNAP-tag, CLIP-tag and Halo-tag). Commercially available SLPs are highly useful in studying molecular aspects of mesophilic organisms, while they fail in characterizing model organisms that thrive in harsh conditions. By applying an integrated computational and structural approach, we designed a engineered variant of the alkylguanine-DNA-alkyl-transferase (OGT) from the hyper-thermophilic archaeon Saccharolobus solfataricus (SsOGT), with no DNA-binding activity, able to covalently react with O6 -benzyl-cytosine (BC-) derivatives, obtaining the first thermostable CLIP-tag, named SsOGT-MC8 . The presented construct is able to recognize and to covalently bind BC- substrates with a marked specificity, displaying a very low activity on orthogonal benzyl-guanine (BG-) substrate and showing a remarkable thermal stability that broadens the applicability of SLPs. The rational mutagenesis that, starting from SsOGT, led to the production of SsOGT-MC8 was first evaluated by structural predictions to precisely design the chimeric construct, by mutating specific residues involved in protein stability and substrate recognition. The final construct was further validated by biochemical characterization and X-ray crystallography, allowing us to present here the first structural model of a CLIP-tag establishing the molecular determinants of its activity, as well as proposing a general approach for the rational engineering of any O6 -alkylguanine-DNA-alkyl-transferase turning it into a SNAP- and a CLIP-tag variant.

14.
Comput Struct Biotechnol J ; 20: 6214-6236, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36420162

RESUMO

The unique biological and rheological properties make hyaluronic acid a sought-after material for medicine and cosmetology. Due to very high purity requirements for hyaluronic acid in medical applications, the profitability of streptococcal fermentation is reduced. Production of hyaluronic acid by recombinant systems is considered a promising alternative. Variations in combinations of expressed genes and fermentation conditions alter the yield and molecular weight of produced hyaluronic acid. This review is devoted to the current state of hyaluronic acid production by recombinant bacterial and fungal organisms.

15.
Genes (Basel) ; 12(9)2021 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-34573327

RESUMO

Accurate DNA segregation is essential for faithful inheritance of genetic material. In bacteria, this process is mainly ensured by partition systems composed of two proteins, ParA and ParB, and a centromere site. Auto-regulation of Par operon expression is important for efficient partitioning and is primarily mediated by ParA for type Ia plasmid partition systems. For the F-plasmid, four ParAF monomers were proposed to bind to four repeated sequences in the promoter region. By contrast, using quantitative surface-plasmon-resonance, we showed that three ParAF dimers bind to this region. We uncovered that one perfect inverted repeat (IR) motif, consisting of two hexamer sequences spaced by 28-bp, constitutes the primary ParAF DNA binding site. A similar but degenerated motif overlaps the former. ParAF binding to these motifs is well supported by biochemical and modeling analyses. Molecular dynamics simulations predict that the winged-HTH domain displays high flexibility, which may favor the cooperative ParA binding to the promoter. We propose that three ParAF dimers bind cooperatively to overlapping motifs, thus covering the promoter region. A similar organization is found on closely related and distant plasmid partition systems, suggesting that such promoter organization for auto-regulated Par operons is widespread and may have evolved from a common ancestor.


Assuntos
Centrômero/metabolismo , Cromossomos Bacterianos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Sítios de Ligação , Cromossomos Bacterianos/genética , DNA Primase/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli/metabolismo , Simulação de Dinâmica Molecular , Óperon/genética , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Domínios Proteicos , Multimerização Proteica
16.
Front Microbiol ; 10: 989, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31130942

RESUMO

Few studies were reported about the regulatory mechanism of lincomycin biosynthesis since it was found in 1962. Although we have proved that a cluster-situated regulator (CSR) LmbU (GenBank Accession No. ABX00623.1) positively modulates lincomycin biosynthesis in Streptomyces lincolnensis NRRL 2936, the molecular mechanism of LmbU regulation is still unclear. In this study, we demonstrated that LmbU binds to the target lmbAp by a central DNA-binding domain (DBD), which interacts with the binding sites through the helix-turn-helix (HTH) motif. N-terminal of LmbU includes an auto-inhibitory domain (AID), inhibiting the DNA-binding activity of LmbU. Without the AID, LmbU variant can bind to its own promoter. Interestingly, compared to other LmbU homologs, the homologs within the biosynthetic gene clusters (BGCs) of known antibiotics generally contain N-terminal AIDs, which offer them the abilities to play complex regulatory functions. In addition, cysteine 12 (C12) has been proved to be mainly responsible for LmbU homodimer formation in vitro. In conclusion, LmbU homologs naturally exist in hundreds of actinomycetes, and belong to a new regulatory family, LmbU family. The present study reveals the DBD, AID and dimerization of LmbU, and sheds new light on the regulatory mechanism of LmbU and its homologs.

17.
J Mol Model ; 25(3): 74, 2019 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-30798412

RESUMO

Our environment is densely populated with various beneficial sulfur-oxidizing prokaryotes (SOPs). These organisms are responsible for the proper maintenance of biogeochemical sulfur cycles to regulate the turnover of biological sulfur substrates in the environment. Allochromatium vinosum strain DSM 180T is a gamma-proteobacterium and is a member of SOP. The organism codes for the sulfur-oxidizing dsr operon, which is comprised of dsrABEFHCMKLJOPNRS genes. The Dsr proteins formed from dsr operon are responsible for formation of sulfur globules. However, the molecular mechanism of the regulation of the dsr operon is not yet fully established. Among the proteins encoded by dsr genes, DsrC is known to have some regulatory functions. DsrC possesses a helix-turn-helix (HTH) DNA-binding motif. Interestingly, the structural details of this interaction have not yet been fully established. Therefore, we tried to analyze the binding interactions of the DsrC protein with the promoter DNA structure of the dsr operon as well as a random DNA as the control. We also performed molecular dynamics simulations of the DsrC-DNA complexes. This structure-function relationship investigation revealed the most probable binding interactions of the DsrC protein with the promoter region present upstream of the dsrA gene in the dsr operon. As expected, the random DNA structure could not properly interact with DsrC. Our analysis will therefore help researchers to predict a plausible biochemical mechanism for the sulfur oxidation process. Graphical Abstract Interaction of Allochromatium vinosum DsrC protein with the promoter region present upstream of the dsrA gene.


Assuntos
Proteínas de Bactérias/química , Chromatiaceae/metabolismo , Proteínas de Ligação a DNA/química , Sulfito de Hidrogênio Redutase/química , Motivos de Aminoácidos , Sítios de Ligação , Simulação de Dinâmica Molecular , Oxirredução , Regiões Promotoras Genéticas , Domínios Proteicos , Enxofre/química , Enxofre/metabolismo
18.
FEBS J ; 285(23): 4424-4444, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30306715

RESUMO

The gene Rv1828 in Mycobacterium tuberculosis is shown to be essential for the pathogen and encodes for an uncharacterized protein. In this study, we have carried out biochemical and structural characterization of Rv1828 at the molecular level to understand its mechanism of action. The Rv1828 is annotated as helix-turn-helix (HTH)-type MerR family transcription regulator based on its N-terminal amino acid sequence similarity. The MerR family protein binds to a specific DNA sequence in the spacer region between -35 and -10 elements of a promoter through its N-terminal domain (NTD) and acts as transcriptional repressor or activator depending on the absence or presence of effector that binds to its C-terminal domain (CTD). A characteristic feature of MerR family protein is its ability to bind to 19 ± 1 bp DNA sequence in the spacer region between -35 and -10 elements which is otherwise a suboptimal length for transcription initiation by RNA polymerase. Here, we show the Rv1828 through its NTD binds to a specific DNA sequence that exists on its own as well as in other promoter regions. Moreover, the crystal structure of CTD of Rv1828, determined by single-wavelength anomalous diffraction method, reveals a distinctive dimerization. The biochemical and structural analysis reveals that Rv1828 specifically binds to an everted repeat through its winged-HTH motif. Taken together, we demonstrate that the Rv1828 encodes for a MerR family transcription regulator.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Mycobacterium tuberculosis/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Cristalografia por Raios X , DNA Bacteriano/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Conformação Proteica , Homologia de Sequência , Fatores de Transcrição/genética
19.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-30173729

RESUMO

PURPOSE: Complications related to anterior cruciate ligament (ACL) graft are common. Change in height, especially patella baja, can be a cause of anterior knee pain. Several studies have related ACL reconstruction with bone-tendon-bone graft to patella baja. METHODS: Forty-three patients with ACL reconstruction using a with bone-tendon-bone graft were included in this study. All patients underwent the same surgery, with closure of the paratenon of the patellar tendon. A radiological study was performed before surgery and 2 years after surgery. The Insall-Salvati index, axial view and patellar tilt were analyzed in all patients. The healthy contralateral knees were used as the control group. RESULTS: No significant differences were observed from the preoperative measurements or at the 2-year follow-up. CONCLUSIONS: The use of patellar tendon with closure of the paratenon in ACL reconstruction was not shown to modify patellar height within the radiological follow-up of two years.


Assuntos
Lesões do Ligamento Cruzado Anterior/cirurgia , Enxerto Osso-Tendão Patelar-Osso/efeitos adversos , Patela/patologia , Complicações Pós-Operatórias/etiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Patela/diagnóstico por imagem , Patela/cirurgia , Complicações Pós-Operatórias/diagnóstico por imagem , Complicações Pós-Operatórias/patologia , Estudos Prospectivos , Radiografia , Resultado do Tratamento
20.
Biophys Chem ; 221: 41-48, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27992841

RESUMO

Th2a and Th2b are the testis-specific histone variants highly expressed during spermatogenesis. Approximately 4% of the genome is retained in nucleosomes in mature human sperm, which is enriched at loci of developmental importance. Our recent studies revealed that the mouse histone variant homologs TH2a and TH2b are involved in reprogramming. In the present work, we report three nucleosome structures (NCPs) with human testis-specific histone variants hTh2a and hTh2b, [hGcH (hTh2a-hTh2b-H3-H4), hGcHV1 (hTh2a-H2b-H3-H4) and hGcHV2 (H2a-hTh2b-H3-H4)] and a 146-base pair (bp) duplex DNA fragment at ~3.0Å resolutions. These crystal structures revealed two major changes within the nucleosomes, either with hTh2a, hTh2b or both variants, as compared to the canonical counterpart. First, the H-bonding interactions between the L1-L1' interfaces mediated by the hTh2a/hTh2a' L1-loops are lost. Second, the histone dimer-DNA contacts are considerably reduced, and these changes are localized around ±31 to 35-bp from the nucleosome entry/exit sites. Thus, the modified functional residues at the N- and C-terminal ends of histone variants are responsible for the observed structural changes and regulate the gene expression through specific structural alterations in the chromatin by modulating the chromatin-associated binding proteins.


Assuntos
Histonas/genética , Nucleossomos/química , Cromatina/química , Montagem e Desmontagem da Cromatina/genética , Cristalização , DNA/química , Regulação da Expressão Gênica , Variação Genética , Humanos , Ligação de Hidrogênio , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA