Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 790
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Small ; : e2401283, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38924314

RESUMO

Fibrillated cellulose-based nanocomposites can improve energy efficiency of building envelopes, especially windows, but efficiently engineering them with a flexible ability of lighting and thermal management remains highly challenging. Herein, a scalable interfacial engineering strategy is developed to fabricate haze-tunable thermal barrier films tailored with phosphorylated cellulose nanofibrils (PCNFs). Clear films with an extremely low haze of 1.6% (glass-scale) are obtained by heat-assisted surface void packing without hydrophobization of nanocellulose. PCNF gel cakes serve here as templates for surface roughening, thereby resulting in a high haze (73.8%), and the roughened films can block heat transfer by increasing solar reflection in addition to a reduced thermal conduction. Additionally, obtained films can tune distribution of light from visible to near-infrared spectral range, enabling uniform colored lighting and inhibiting localized heating. Furthermore, an integrated simulation of lighting and cooling energy consumption in the case of office buildings shows that the film can reduce the total energy use by 19.2-38.1% under reduced lighting levels. Such a scalable and versatile engineering strategy provides an opportunity to endow nanocellulose-reinforced materials with tunable optical and thermal functionalities, moving their practical applications in green buildings forward.

2.
Nanotechnology ; 35(37)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38897181

RESUMO

While silver nanowires (Ag NWs) have been demonstrated as a highly efficient transparent conducting material, they suffer from strong light scattering, which is quantified by a large haze factor (HF) in the optical spectrum. Here we investigate the influence of the dielectric environment on the light scattering of Ag NWs by comparing experimental measurements and simulations. In air, two peaks on the HF spectra are observed experimentally at the wavelength ofλI= 350 nm andλII= 380 nm and are attributed by simulations to the influence of the Ag NWs pentagonal shape on the localized surface plasmon resonance. The relative intensity between the two peaks is found to be dependent on whether the Ag NWs are in contact with the glass substrate or not. The HF behaviour in the near IR region seems to be dominated by Rayleigh scattering following simulations results. Dielectric environments of Ag NWs with various refractive indexes were obtained experimentally by the conformal deposition of different metal oxide coatings using atomic layer deposition, including Al-doped zinc oxide, Al2O3and SiO2coatings. The HF is found to be correlated with the refractive index environment in terms of HF peaks position, intensity and broadening. This trend of HF peaks is supported by a theoretical model to understand the optical mechanism behind this phenomenon.

3.
Environ Sci Technol ; 58(19): 8326-8335, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38696616

RESUMO

China, especially the densely populated North China region, experienced severe haze events in the past decade that concerned the public. Although the most extreme cases have been largely eliminated through recent mitigation measures, severe outdoor air pollution persists and its environmental impact needs to be understood. Severe indoor pollution draws less public attention due to the short visible distance indoors, but its public health impacts cannot be ignored. Herein, we assess the trends and impacts of severe outdoor and indoor air pollution in North China from 2014 to 2021. Our results demonstrate the uneven contribution of severe hazy days to ambient and exposure concentrations of particulate matter with an aerodynamic diameter <2.5 (PM2.5). Although severe indoor pollution contributes to indoor PM2.5 concentrations (23%) to a similar extent as severe haze contributes to ambient PM2.5 concentrations (21%), the former's contribution to premature deaths was significantly higher. Furthermore, residential emissions contributed more in the higher PM2.5 concentration range both indoors and outdoors. Notably, severe haze had greater health impacts on urban residents, while severe indoor pollution was more impactful in rural areas. Our findings suggest that, besides reducing severe haze, mitigating severe indoor pollution is an important aspect of combating air pollution, especially toward improving public health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Monitoramento Ambiental , Material Particulado , China , Material Particulado/análise , Poluentes Atmosféricos/análise , Poluição do Ar , Humanos
4.
Environ Sci Technol ; 58(14): 6071-6076, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38551192

RESUMO

The atmospheric oxidizing capacity is the most important driving force for the chemical transformation of pollutants in the atmosphere. Traditionally, the atmospheric oxidizing capacity mainly depends on the concentration of O3 and other gaseous oxidants. However, the atmospheric oxidizing capacity based on gas-phase oxidation cannot accurately describe the explosive growth of secondary particulate matter under complex air pollution. From the chemical perspective, the atmospheric oxidizing capacity mainly comes from the activation of O2, which can be achieved in both gas-phase and interfacial processes. In the heterogeneous or multiphase formation pathways of secondary particulate matter, the enhancement of oxidizing capacity ascribed to the O2/H2O-involved interfacial oxidation and hydrolysis processes is an unrecognized source of atmospheric oxidizing capacity. Revealing the enhanced oxidizing capacity due to interfacial processes in high-concentration particulate matter environments and its contribution to the formation of secondary pollution are critical in understanding haze chemistry. The accurate evaluation of atmospheric oxidizing capacity ascribed to interfacial processes is also an important scientific basis for the implementation of PM2.5 and O3 collaborative control in China and around the world.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Aerossóis/análise , Material Particulado/análise , Poluição do Ar/análise , China , Estações do Ano , Gases
5.
Environ Sci Technol ; 58(3): 1589-1600, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38154035

RESUMO

Hydroxymethanesulfonate (HMS) has been found to be an abundant organosulfur aerosol compound in the Beijing-Tianjin-Hebei (BTH) region with a measured maximum daily mean concentration of up to 10 µg per cubic meter in winter. However, the production medium of HMS in aerosols is controversial, and it is unknown whether chemical transport models are able to capture the variations of HMS during individual haze events. In this work, we modify the parametrization of HMS chemistry in the nested-grid GEOS-Chem chemical transport model, whose simulations provide a good account of the field measurements during winter haze episodes. We find the contribution of the aqueous aerosol pathway to total HMS is about 36% in winter in Beijing, due primarily to the enhancement effect of the ionic strength on the rate constants of the reaction between dissolved formaldehyde and sulfite. Our simulations suggest that the HMS-to-inorganic sulfate ratio will increase from the baseline of 7% to 13% in the near future, given the ambitious clean air and climate mitigation policies for the BTH region. The more rapid reductions in emissions of SO2 and NOx compared to NH3 alter the atmospheric acidity, which is a critical factor leading to the rising importance of HMS in particulate sulfur species.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Pequim , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Material Particulado/análise , Monitoramento Ambiental , China , Aerossóis/análise , Água
6.
Environ Sci Technol ; 58(32): 14361-14371, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39088841

RESUMO

The photolysis of particulate nitrate (pNO3-) has been suggested to be an important source of nitrous acid (HONO) in the troposphere. However, determining the photolysis rate constant of pNO3- (jpNO3-) suffers from high uncertainty. Prior laboratory measurements of jpNO3- using aerosol filters have been complicated by the "shadow effect"─a phenomenon of light extinction within aerosol layers that potentially skews these measurements. We developed a method to correct the shadow effect on the photolysis rate constant of pNO3- for HONO production (jpNO3- â†’ HONO) using aerosol filters with identical chemical compositions but different aerosol loadings. We applied the method to quantify jpNO3- â†’ HONO over the North China Plain (NCP) during the winter haze period. After correcting for the shadow effect, the normalized average jpNO3- â†’ HONO at 5 °C increased from 5.89 × 10-6 s-1 to 1.72 × 10-5 s-1. The jpNO3- â†’ HONO decreased with increasing pH and nitrate proportions in PM2.5 and had no correlation with nitrate concentrations. A parametrization for jpNO3- â†’ HONO was developed for model simulation of HONO production in NCP and similar environments.


Assuntos
Poluentes Atmosféricos , Atmosfera , Nitratos , Ácido Nitroso , Fotólise , Nitratos/química , Atmosfera/química , Ácido Nitroso/química , Poluentes Atmosféricos/química , Aerossóis
7.
Environ Res ; 252(Pt 3): 119020, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38679276

RESUMO

Government governance reform is not only a vital motivation for high economic quality but also an important factor in stimulating the government's environmental governance responsibility. The article empirically examines the fiscal Province-Managing-County (PMC) pilot reform on the synergic governance of haze and carbon reduction and its mechanism. The results show that the policy helps to realize the synergic governance of haze and carbon reduction, and the reform of fiscal Province-Managing-County promotes regional haze and carbon reduction mainly through structural effect, innovation effect, and fiscal expenditure responsibility effect. The heterogeneity analysis shows that the policy has an asymmetric effect on haze and carbon reduction under different administrative structures, economic structures and levels of government intervention. Further analysis shows a policy linkage effect between this policy and the Green Fiscal Policy. The policy has the situation of blood-sucking in the provincial capital city and leads to an increase in financial funds. The above results prove that the policy can help to realize haze and carbon reduction and provide practical ideas for the further expansion of the policy. At the same time, it provides the direction for the local government to realize the double-carbon goal.


Assuntos
Poluição do Ar , Poluição do Ar/prevenção & controle , Poluição do Ar/economia , Poluição do Ar/legislação & jurisprudência , Carbono , Política Ambiental/economia , Política Ambiental/legislação & jurisprudência , Política , Governo Local
8.
Environ Res ; 252(Pt 1): 118741, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38522744

RESUMO

It is important to ensure energy security and achieve carbon-haze collaborative management for sustainable development. Reducing imported energy dependence is necessary to maintain energy security, while its impact on environmental quality remains unclear. From the perspective of biased technological progress, this paper estimates the level of biased technological progress towards self-sufficient energy by a heterogeneous stochastic frontier analysis (SFA) function, and then empirically examines whether self-sufficient energy biased technological progress has a dampening effect on haze pollution and carbon emissions. It is found that: (1) Self-sufficient energy biased technological progress can effectively reduce haze pollution and carbon emissions, achieving a synergistic effect between energy security and carbon-haze collaborative management. (2) "Efficiency enhancement" and "quality improvement" are the essential mechanisms for the synergistic effect. (3) Environmental regulation, abundant resource and technology endowments can enhance the haze reduction effect. And the lower dependence on foreign trade and stable global economic policy environment are more conducive to achieving carbon-haze collaborative control. (4) In the Eastern and Western regions, self-sufficient energy biased technology can be sped up to alleviate haze pollution. The findings can enrich the research exploring pollution control from the perspective of biased technological progress, and provide policy recommendations for promoting high-quality development.


Assuntos
Poluição do Ar , Poluição do Ar/prevenção & controle , Carbono , Poluentes Atmosféricos/análise , Conservação de Recursos Energéticos/métodos , Desenvolvimento Sustentável
9.
Environ Res ; 257: 119312, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38830393

RESUMO

Carbon dioxide (CO2) emissions and haze pollution are often thought to have the same origin, the burning of fossil fuels. However, their relationship is not always synergistic and may even exhibit mutual constraints. Carbon-biased technological progress has emerged as a promising approach for simultaneously achieving three goals - to reduce CO2 emissions, alleviate the haze pressure, and keep economic growth. This study empirically investigates the impact and mechanisms of carbon-biased technological progress on carbon haze collaborative governance using data from 286 Chinese cities during 2006-2021. The results indicate that: (1) Carbon biased technological progress positively influences carbon haze collaborative governance. (2) This progress achieves coordination by enhancing element allocation efficiency, carbon efficiency, and responding to public environmental demands. (3) The facilitating role of carbon biased technological progress to carbon haze collaborative governance will work better if external conditions are met. Moreover, the effectiveness of carbon-biased technological progress in promoting coordination is contingent upon high levels of marketization, government intervention, environmental regulation, and technical advancements. Local and regional governments should foster conducive conditions for carbon dioxide and haze pollution coordination, optimize the allocation and flow of carbon resources, ensure harmonization between environmental regulation policies and other sectors, and bolster international cooperation and technical knowledge exchange to collectively address global environmental challenges.


Assuntos
Poluição do Ar , Dióxido de Carbono , Cidades , China , Poluição do Ar/prevenção & controle , Dióxido de Carbono/análise , Poluentes Atmosféricos/análise , Política Ambiental , Carbono
10.
Graefes Arch Clin Exp Ophthalmol ; 262(7): 2189-2198, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38349421

RESUMO

PURPOSE: To compare corneal haze between active ulcer and healed scarring using a Scheimpflug densitometry. MATERIALS AND METHODS: A prospective longitudinal study enrolled 30 patients (30 eyes) with ulcerative keratitis (UK). Each subject's corneal optical density (COD) was measured with a Scheimpflug corneal densitometry, Pentacam® AXL (Oculus GmbH, Wetzlar, Germany), at the active ulcerative and complete scarring stage. The COD data were analyzed through distinct methods (inbuilt, sorted annular partitions, and ulcer-matching densitometric maps). We compared different CODs to select the better index for clinically monitoring the transition from corneal ulceration to healed scar. RESULTS: The CODs of the periphery (P = 0.0024) and outside of the active ulcer (P = 0.0002) significantly decreased after scarring. Partitioning the cornea into different depths and annular zones, the anterior layer, center layer, and the 2-6 mm annular zone had a more remarkable COD decrease after scar formation. The 3rd-sorted COD in the anterior layer revealed the highest area under the receiver-operating characteristic curves (0.709), in which 90% of subjects had COD reduction during the ulcer-to-scar transition. CONCLUSIONS: Aside from subjective judgment based on clinical signs, the Scheimpflug tomography-based densitometry could provide objective and efficient monitoring of the corneal opacity evolution in UK patients. Because the 3rd-sorted annular COD is a better index than the inbuilt or mapping CODs in differentiating active ulcers from healed scars, this COD could be a clinically promising parameter to monitor the progression of UK patients.


Assuntos
Córnea , Úlcera da Córnea , Densitometria , Humanos , Estudos Prospectivos , Feminino , Masculino , Densitometria/métodos , Pessoa de Meia-Idade , Úlcera da Córnea/diagnóstico , Córnea/patologia , Córnea/diagnóstico por imagem , Seguimentos , Adulto , Cicatrização , Cicatriz/diagnóstico , Cicatriz/etiologia , Idoso , Curva ROC , Acuidade Visual , Topografia da Córnea/métodos , Opacidade da Córnea/diagnóstico , Opacidade da Córnea/etiologia , Opacidade da Córnea/fisiopatologia
11.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33649215

RESUMO

Surface ozone is a severe air pollution problem in the North China Plain, which is home to 300 million people. Ozone concentrations are highest in summer, driven by fast photochemical production of hydrogen oxide radicals (HOx) that can overcome the radical titration caused by high emissions of nitrogen oxides (NOx) from fuel combustion. Ozone has been very low during winter haze (particulate) pollution episodes. However, the abrupt decrease of NOx emissions following the COVID-19 lockdown in January 2020 reveals a switch to fast ozone production during winter haze episodes with maximum daily 8-h average (MDA8) ozone concentrations of 60 to 70 parts per billion. We reproduce this switch with the GEOS-Chem model, where the fast production of ozone is driven by HOx radicals from photolysis of formaldehyde, overcoming radical titration from the decreased NOx emissions. Formaldehyde is produced by oxidation of reactive volatile organic compounds (VOCs), which have very high emissions in the North China Plain. This remarkable switch to an ozone-producing regime in January-February following the lockdown illustrates a more general tendency from 2013 to 2019 of increasing winter-spring ozone in the North China Plain and increasing association of high ozone with winter haze events, as pollution control efforts have targeted NOx emissions (30% decrease) while VOC emissions have remained constant. Decreasing VOC emissions would avoid further spreading of severe ozone pollution events into the winter-spring season.


Assuntos
Poluição do Ar/análise , Ozônio/análise , Material Particulado/análise , Estações do Ano , Compostos Orgânicos Voláteis , COVID-19 , China , Produtos Agrícolas , Monitoramento Ambiental , Poluição Ambiental , Humanos , Óxidos de Nitrogênio/química , Pandemias , Saúde Pública
12.
J Environ Manage ; 359: 120976, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38678902

RESUMO

Recent years have witnessed growing public concern over air pollution in China, posing a challenge to the government's environmental management efforts. Empirical evidence indicates that the digital economy contributes to mitigating environmental pollution. Given that national audits are a crucial part of the national oversight system and considering the significant role of digital technology in audit governance, it is relevant to explore how the digital economy can support national audits in enhancing China's environmental quality. This study investigates the environmental impact of national audit governance, utilizing a dataset from 1540 counties in China spanning from 2005 to 2018. The findings reveal that effective national audits contribute to reducing haze pollution (HP) levels, with the digital economy playing a moderating role. The results also demonstrate heterogeneity; national audits are particularly effective in regions characterized by high urbanization rates, severe HP, and stringent environmental regulations. The mechanism analysis suggests that industrial transformation and enhanced government governance are the key mechanisms through which national audits reduce regional HP. Additionally, reforming the audit management system can amplify the effects of national audits on reducing HP.


Assuntos
Poluição do Ar , China , Poluição do Ar/legislação & jurisprudência , Governo , Urbanização
13.
J Environ Sci (China) ; 144: 35-44, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38802236

RESUMO

Sandstorm, which injects generous newly emerging microbes into the atmosphere covering cities, adversely affects the air quality in built environments. However, few studies have examined the change of airborne bacteria during severe sandstorm events. In this work, we analyzed the airborne bacteria during one of the strongest sandstorms in East Asia on March 15th, 2021, which affected large areas of China and Mongolia. The characteristics of the sandstorm were compared with those of the subsequent clean and haze days. The composition of the bacterial community of air samples was investigated using quantitative polymerase chain reaction (qPCR) and high-throughput sequencing technology. During the sandstorm, the particulate matter (PM) concentration and bacterial richness were extremely high (PM2.5: 207 µg/m3; PM10: 1630 µg/m3; 5700 amplicon sequence variants/m3). In addition, the sandstorm brought 10 pathogenic bacterial genera to the atmosphere, posing a grave hazard to human health. As the sandstorm subsided, small bioaerosols (0.65-1.1 µm) with a similar bacterial community remained suspended in the atmosphere, bringing possible long-lasting health risks.


Assuntos
Microbiologia do Ar , Bactérias , Monitoramento Ambiental , Pequim , Bactérias/classificação , Bactérias/genética , Poluentes Atmosféricos/análise , Material Particulado/análise , Poluição do Ar/estatística & dados numéricos
14.
J Environ Sci (China) ; 141: 90-101, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38408836

RESUMO

A strongly declining aerosol radiative effect has been observed in China since 2013 after implementing the clean air action, yet its impact on wheat (Triticum aestivum L.) production remains unclear. We use satellite measures and a biophysical crop model to assess the impact of aerosol-induced radiative perturbations on winter wheat production in the agricultural belt of Henan province from 2013 to 2018. After calibrating parameters with the extended Fourier Amplitude Sensitivity Test (EFAST) and the generalized likelihood uncertainty estimation (GLUE) method, the DSSAT CERES-Wheat model was able to simulate crop biomass and yield more accurately. We found that the aerosol negatively impacted wheat biomass by 21.87% and yield by 22.48% from 2006 to 2018, and the biomass effects from planting to anthesis were more significant compared to anthesis to maturity. Due to the strict clean air action, under all-sky conditions, the surface solar shortwave radiation (SSR) in 2018 increased by about 7.08% over 2006-2013 during the wheat growing seasons. As a result of the improvement of crop photosynthesis, winter wheat biomass and yield increased by an average of 5.46% and 2.9%, respectively. Our findings show that crop carbon uptake and yield will benefit from the clean air action in China, helping to ensure national food and health security.


Assuntos
Agricultura , Triticum , Estações do Ano , Biomassa , China
15.
J Environ Sci (China) ; 138: 406-417, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135406

RESUMO

In this study, online water-soluble inorganic ions were detected to deduce the formation mechanism of secondary inorganic aerosol in Xianyang, China during wintertime. The dominant inorganic ions of sulfate (SO42-), nitrate (NO3-), and ammonium (NH4+) (the sum of those is abbreviated as SNA) accounted for 17%, 21%, and 12% of PM2.5 mass, respectively. While the air quality deteriorated from excellent to poor grades, the precursor gas sulfur dioxide (SO2) of SO42- increased and then decreased with a fluctuation, while nitrogen dioxide (NO2) and ammonia (NH3), precursors of NO3- and NH4+, and SNA show increasing trends. Meteorological factors including boundary layer height (BLH), temperature, and wind speed also show decline trends, except relative humidity (RH). Meanwhile, the secondary conversion ratio shows a remarkable increasing trend, indicating that there was a strong secondary transformation. From the perspective of chemical mechanisms, RH is positively correlated with sulfur oxidation ratios (SOR), nitrogen oxidation ratios (NOR), and ammonia conversion ratios, representing that the increase of humidity could promote the generation of SNA. Notably, SOR and NOR were also positively related to the ammonia. On the one hand, the low wind speed and BLH led to the accumulation of pollutants. On the other hand, the increases of RH and ammonia promoted more formations of SNA and PM2.5. The results advance our identification of the contributors to the haze episodes and assist to establish more efficient emission controls in Xianyang, in addition to other cities with similar emission and geographical characteristics.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Material Particulado/análise , Amônia , Monitoramento Ambiental , Estações do Ano , China , Nitratos/análise , Nitrogênio , Aerossóis/análise
16.
J Environ Sci (China) ; 139: 377-388, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105063

RESUMO

Atmospheric carbonyl compounds play significant roles in the cycling of radicals and have exhibited surprisingly high levels in winter that were well correlated to particulate matter, for which the reason have not been clearly elucidated. Here we measured carbonyl compounds and other trace gasses together with PM2.5 over urban Jinan in North China Plain during the winter. Markedly higher carbonyl concentrations (average: 14.63 ± 4.21 ppbv) were found during wintertime haze pollution, about one to three-times relative to those on non-haze days, with slight difference in chemical composition except formaldehyde (HCHO). HCHO (3.68 ppbv), acetone (3.17 ppbv), and acetaldehyde (CH3CHO) (2.83 ppbv) were the three most abundant species, accounting for ∼75% of the total carbonylson both haze and non-haze days. Results from observational-based model (OBM) with atmospheric oxidation capacity (AOC) indicated that AOC significantly increased with the increasing carbonyls during the winter haze events. Carbonyl photolysis have supplied key oxidants such as RO2 and HO2, and thereby enhancing the formation of fine particles and secondary organic aerosols, elucidating the observed haze-carbonyls inter-correlation. Diurnal variation with carbonyls exhibiting peak values at early-noon and night highlighted the combined contribution of both secondary formation and primary diesel-fuel sources. 1-butene was further confirmed to be the major precursor for HCHO. This study confirms the great contribution of carbonyls to AOC, and also suggests that reducing the emissions of carbonyls would be an effective way to mitigate haze pollution in urban area of the NCP region.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , China , Material Particulado/análise , Estações do Ano , Acetaldeído/análise , Monitoramento Ambiental , Aerossóis/análise
17.
Environ Sci Technol ; 57(13): 5149-5159, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36939598

RESUMO

We measured submicron aerosols (PM1) at a beachfront site in Texas in Spring 2021 to characterize the "background" aerosol chemical composition advecting into Texas and the factors controlling this composition. Observations show that marine "background" aerosols from the Gulf of Mexico were highly processed and acidic; sulfate was the most abundant component (on average 57% of total PM1 mass), followed by organic material (26%). These chemical characteristics are similar to those observed at other marine locations globally. However, Gulf "background" aerosols were much more polluted; the average non-refractory (NR-) PM1 mass concentration was 3-70 times higher than that observed in other clean marine atmospheres. Anthropogenic shipping emissions over the Gulf of Mexico explain 78.3% of the total measured "background" sulfate in the Gulf air. We frequently observed haze pollution in the air mass from the Gulf, with significantly elevated concentrations of sulfate, organosulfates, and secondary organic aerosol associated with sulfuric acid. Analysis suggests that aqueous oxidation of shipping emissions over the Gulf of Mexico by peroxides in the particles might potentially be an important pathway for the rapid production of acidic sulfate and organosulfates during the haze episodes under acidic conditions.


Assuntos
Poluentes Atmosféricos , Sulfatos , Sulfatos/análise , Poluentes Atmosféricos/análise , Golfo do México , Oxirredução , Óxidos de Enxofre/análise , Aerossóis/análise , Material Particulado/análise , Monitoramento Ambiental , China
18.
Environ Sci Technol ; 57(48): 20010-20023, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37909663

RESUMO

Outdoor air pollution causes millions of premature deaths annually worldwide. Sulfate is a major component of particulate pollution. Winter sulfate observations in China show both high concentrations and an accumulation mode with a modal size >1 µm. However, we find that this observed size distribution cannot be simulated using classical gaseous and aqueous phase formation (CSF) or proposed aerosol-processing formation (APF) mechanisms. Specifically, the CSF simulation underestimates sulfate concentrations by 76% over megacities in China and predicts particle size distributions with a modal size of ∼0.35 µm, significantly smaller than observations. Although incorporating the APF mechanism in the atmospheric chemical model notably improves sulfate concentration simulation with reasonable parameters, the simulated sulfate particle size distribution remains similar to that using the CSF mechanism. We further conduct theoretical analyses and show that particles with diameters <0.3 µm grow rapidly (2-3 s) to 1 µm through the condensation of sulfuric acid in fresh high-temperature exhaust plumes, referred to as in-source formation (ISF). An ISF sulfate source equivalent to 15% of sulfur emissions from fossil fuel combustion largely explains both observed size distributions and mass concentrations of sulfate particles. The findings imply that ISF is a major source of wintertime micron-sized sulfate in China and underscore the importance of considering the size distribution of aerosols for accurately assessing the impacts of inorganic aerosols on radiative forcing and human health.


Assuntos
Poluentes Atmosféricos , Humanos , Poluentes Atmosféricos/análise , Material Particulado/análise , Sulfatos/análise , Estações do Ano , China , Aerossóis/análise , Monitoramento Ambiental , Tamanho da Partícula
19.
Environ Sci Technol ; 57(49): 20647-20656, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38033251

RESUMO

The mechanism of sulfate formation during winter haze events in North China remains largely elusive. In this study, the multiple sulfur isotopic composition of sulfate in different grain-size aerosol fractions collected seasonally from sampling sites in rural, suburban, urban, industrial, and coastal areas of North China are used to constrain the mechanism of SO2 oxidation at different levels of air pollution. The Δ33S values of sulfate in aerosols show an obvious seasonal variation, except for those samples collected in the rural area. The positive Δ33S signatures (0‰ < Δ33S < 0.439‰) observed on clean days are mainly influenced by tropospheric SO2 oxidation and stratospheric SO2 photolysis. The negative Δ33S signatures (-0.236‰ < Δ33S < ∼0‰) observed during winter haze events (PM2.5 > 200 µg/m3) are mainly attributed to SO2 oxidation by H2O2 and transition metal ion catalysis (TMI) in the troposphere. These results reveal that both the H2O2 and TMI pathways play critical roles in sulfate formation during haze events in North China. Additionally, these new data provide evidence that the tropospheric oxidation of SO2 can produce significant negative Δ33S values in sulfate aerosols.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Sulfatos , Peróxido de Hidrogênio , Isótopos de Enxofre/análise , China , Óxidos de Enxofre , Estações do Ano , Aerossóis/análise , Monitoramento Ambiental , Material Particulado/análise
20.
Environ Sci Technol ; 57(49): 20726-20735, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38035574

RESUMO

δ18O is widely used to track nitrate (NO3-) formation but overlooks NO3 radical reactions with hydrocarbons (HCs), particularly in heavily emitting hazes. This study introduces high-time resolution Δ17O-NO3- as a powerful tool to quantify NO3- formation during five hazes in three cities. Results show significant differences between Δ17O-NO3- and δ18O-NO3- in identifying NO3- formation. δ18O-NO3- results suggested N2O5 hydrolysis (62.0-88.4%) as the major pathway of NO3- formation, while Δ17O-NO3- shows the NO3- formation contributions of NO2 + OH (17.7-66.3%), NO3 + HC (10.8-49.6%), and N2O5 hydrolysis (22.9-33.3%), revealing significant NO3 + HC contribution (41.7-56%) under severe pollution. Furthermore, NO3- formation varies with temperatures, NOx oxidation rate (NOR), and pollution levels. Higher NO2 + OH contribution and lower NO3 + HC contribution were observed at higher temperatures, except for low NOR haze where higher NO2 + OH contributions were observed at low temperatures (T ← 10 °C). This emphasizes the significance of NO2 + OH in emission-dominated haze. Contributions of NO2 + OH and NO3 + HC relate to NOR as positive (fP1 = 3.0*NOR2 - 2.4*NOR + 0.8) and negative (fP2 = -2.3*NOR2 + 1.8*NOR) quadratic functions, respectively, with min/max values at NOR = 0.4. At mild pollution, NO2 + OH (58.1 ± 22.2%) dominated NO3- formation, shifting to NO3 + HC (35.5 ± 16.3%) during severe pollution. Additionally, high-time resolution Δ17O-NO3- reveals that morning-evening rush hours and high temperatures at noon promote the contributions of NO3 + HC and NO2 + OH, respectively. Our results suggested that the differences in the NO3- pathway are attributed to temperatures, NOR, and pollution levels. Furthermore, high-time resolution Δ17O-NO3- is vital for quantifying NO3 + HC contribution during severe hazes.


Assuntos
Monitoramento Ambiental , Dióxido de Nitrogênio , Nitratos/análise , Cidades , Isótopos de Nitrogênio/análise , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA