Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.761
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 171(7): 1625-1637.e13, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29198525

RESUMO

When unfolded proteins accumulate in the endoplasmic reticulum (ER), the unfolded protein response (UPR) increases ER-protein-folding capacity to restore protein-folding homeostasis. Unfolded proteins activate UPR signaling across the ER membrane to the nucleus by promoting oligomerization of IRE1, a conserved transmembrane ER stress receptor. However, the coupling of ER stress to IRE1 oligomerization and activation has remained obscure. Here, we report that the ER luminal co-chaperone ERdj4/DNAJB9 is a selective IRE1 repressor that promotes a complex between the luminal Hsp70 BiP and the luminal stress-sensing domain of IRE1α (IRE1LD). In vitro, ERdj4 is required for complex formation between BiP and IRE1LD. ERdj4 associates with IRE1LD and recruits BiP through the stimulation of ATP hydrolysis, forcibly disrupting IRE1 dimers. Unfolded proteins compete for BiP and restore IRE1LD to its default, dimeric, and active state. These observations establish BiP and its J domain co-chaperones as key regulators of the UPR.


Assuntos
Endorribonucleases/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Resposta a Proteínas não Dobradas , Animais , Cricetinae , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Humanos , Dobramento de Proteína
2.
Mol Cell ; 84(4): 687-701.e7, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266641

RESUMO

Molecular chaperones are critical for protein homeostasis and are implicated in several human pathologies such as neurodegeneration and cancer. While the binding of chaperones to nascent and misfolded proteins has been studied in great detail, the direct interaction between chaperones and RNA has not been systematically investigated. Here, we provide the evidence for widespread interaction between chaperones and RNA in human cells. We show that the major chaperone heat shock protein 70 (HSP70) binds to non-coding RNA transcribed by RNA polymerase III (RNA Pol III) such as tRNA and 5S rRNA. Global chromatin profiling revealed that HSP70 binds genomic sites of transcription by RNA Pol III. Detailed biochemical analyses showed that HSP70 alleviates the inhibitory effect of cognate tRNA transcript on tRNA gene transcription. Thus, our study uncovers an unexpected role of HSP70-RNA interaction in the biogenesis of a specific class of non-coding RNA with wider implications in cancer therapeutics.


Assuntos
Proteínas de Choque Térmico HSP70 , Neoplasias , Humanos , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , RNA , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , RNA de Transferência/genética , RNA não Traduzido/genética
3.
Annu Rev Biochem ; 85: 715-42, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27050154

RESUMO

Molecular chaperones control the cellular folding, assembly, unfolding, disassembly, translocation, activation, inactivation, disaggregation, and degradation of proteins. In 1989, groundbreaking experiments demonstrated that a purified chaperone can bind and prevent the aggregation of artificially unfolded polypeptides and use ATP to dissociate and convert them into native proteins. A decade later, other chaperones were shown to use ATP hydrolysis to unfold and solubilize stable protein aggregates, leading to their native refolding. Presently, the main conserved chaperone families Hsp70, Hsp104, Hsp90, Hsp60, and small heat-shock proteins (sHsps) apparently act as unfolding nanomachines capable of converting functional alternatively folded or toxic misfolded polypeptides into harmless protease-degradable or biologically active native proteins. Being unfoldases, the chaperones can proofread three-dimensional protein structures and thus control protein quality in the cell. Understanding the mechanisms of the cellular unfoldases is central to the design of new therapies against aging, degenerative protein conformational diseases, and specific cancers.


Assuntos
Chaperonina 60/química , Proteínas de Choque Térmico HSP110/química , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico Pequenas/química , Proteínas Mitocondriais/química , Desdobramento de Proteína , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Chaperonina 60/genética , Chaperonina 60/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Expressão Gênica , Proteínas de Choque Térmico HSP110/genética , Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico Pequenas/genética , Proteínas de Choque Térmico Pequenas/metabolismo , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Agregados Proteicos , Dobramento de Proteína , Estrutura Quaternária de Proteína , Rhodospirillum rubrum/química , Rhodospirillum rubrum/metabolismo
4.
Mol Cell ; 81(17): 3496-3508.e5, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34380015

RESUMO

The Hsp90 chaperone promotes folding and activation of hundreds of client proteins in the cell through an ATP-dependent conformational cycle guided by distinct cochaperone regulators. The FKBP51 immunophilin binds Hsp90 with its tetratricopeptide repeat (TPR) domain and catalyzes peptidyl-prolyl isomerase (PPIase) activity during folding of kinases, nuclear receptors, and tau. Here we determined the cryoelectron microscopy (cryo-EM) structure of the human Hsp90:FKBP51:p23 complex to 3.3 Å, which, together with mutagenesis and crosslinking analyses, reveals the basis for cochaperone binding to Hsp90 during client maturation. A helix extension in the TPR functions as a key recognition element, interacting across the Hsp90 C-terminal dimer interface presented in the closed, ATP conformation. The PPIase domain is positioned along the middle domain, adjacent to Hsp90 client binding sites, whereas a single p23 makes stabilizing interactions with the N-terminal dimer. With this architecture, FKBP51 is positioned to act on specific client residues presented during Hsp90-catalyzed remodeling.


Assuntos
Proteínas de Choque Térmico HSP90/química , Proteínas de Ligação a Tacrolimo/química , Sequência de Aminoácidos , Sítios de Ligação , Biomarcadores Tumorais/química , Biomarcadores Tumorais/metabolismo , Microscopia Crioeletrônica/métodos , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Conformação Molecular , Ligação Proteica , Proteínas de Ligação a Tacrolimo/metabolismo , Proteína Tumoral 1 Controlada por Tradução
5.
Proc Natl Acad Sci U S A ; 120(6): e2213765120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36719917

RESUMO

Small heat-shock proteins (sHSPs) are a widely expressed family of ATP-independent molecular chaperones that are among the first responders to cellular stress. Mechanisms by which sHSPs delay aggregation of client proteins remain undefined. sHSPs have high intrinsic disorder content of up to ~60% and assemble into large, polydisperse homo- and hetero-oligomers, making them challenging structural and biochemical targets. Two sHSPs, HSPB4 and HSPB5, are present at millimolar concentrations in eye lens, where they are responsible for maintaining lens transparency over the lifetime of an organism. Together, HSPB4 and HSPB5 compose the hetero-oligomeric chaperone known as α-crystallin. To identify the determinants of sHSP function, we compared the effectiveness of HSPB4 and HSPB5 homo-oligomers and HSPB4/HSPB5 hetero-oligomers in delaying the aggregation of the lens protein γD-crystallin. In chimeric versions of HSPB4 and HSPB5, chaperone activity tracked with the identity of the 60-residue disordered N-terminal regions (NTR). A short 10-residue stretch in the middle of the NTR ("Critical sequence") contains three residues that are responsible for high HSPB5 chaperone activity toward γD-crystallin. These residues affect structure and dynamics throughout the NTR. Abundant interactions involving the NTR Critical sequence reveal it to be a hub for a network of interactions within oligomers. We propose a model whereby the NTR critical sequence influences local structure and NTR dynamics that modulate accessibility of the NTR, which in turn modulates chaperone activity.


Assuntos
Proteínas de Choque Térmico Pequenas , Cristalino , alfa-Cristalinas , Humanos , alfa-Cristalinas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico Pequenas/metabolismo , Cadeia B de alfa-Cristalina/metabolismo , Cristalino/metabolismo
6.
Plant J ; 119(1): 218-236, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38565312

RESUMO

The Arabidopsis endoplasmic reticulum-localized heat shock protein HSP90.7 modulates tissue differentiation and stress responses; however, complete knockout lines have not been previously reported. In this study, we identified and analyzed a mutant allele, hsp90.7-1, which was unable to accumulate the HSP90.7 full-length protein and showed seedling lethality. Microscopic analyses revealed its essential role in male and female fertility, trichomes and root hair development, proper chloroplast function, and apical meristem maintenance and differentiation. Comparative transcriptome and proteome analyses also revealed the role of the protein in a multitude of cellular processes. Particularly, the auxin-responsive pathway was specifically downregulated in the hsp90.7-1 mutant seedlings. We measured a much-reduced auxin content in both root and shoot tissues. Through comprehensive histological and molecular analyses, we confirmed PIN1 and PIN5 accumulations were dependent on the HSP90 function, and the TAA-YUCCA primary auxin biosynthesis pathway was also downregulated in the mutant seedlings. This study therefore not only fulfilled a gap in understanding the essential role of HSP90 paralogs in eukaryotes but also provided a mechanistic insight on the ER-localized chaperone in regulating plant growth and development via modulating cellular auxin homeostasis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Retículo Endoplasmático , Proteínas de Choque Térmico HSP90 , Homeostase , Ácidos Indolacéticos , Plântula , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Plântula/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/genética , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/genética
7.
Trends Immunol ; 43(5): 404-413, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35382994

RESUMO

Tumor immunosurveillance requires tumor cell-derived molecules to initiate responses through corresponding receptors on antigen presenting cells (APCs) and a specific effector response designed to eliminate the emerging tumor cells. This is supported by evidence from immunodeficient individuals and experimental animals. Recent discoveries suggest that adjuvanticity of tumor-derived heat shock proteins (HSPs) and double-stranded DNA (dsDNA) are necessary for tumor-specific immunity. There is also the obligatory early transfer of tumor antigens to APCs. We argue that tumor-derived HSPs deliver sufficient chaperoned antigen for cross-priming within the quantitative limits set by nascent tumors. In contrast to late-stage tumors, we are only just beginning to understand the unique interactions of the immune system with precancerous/nascent neoplastic cells, which is important for improved cancer prevention measures.


Assuntos
Proteínas de Choque Térmico , Neoplasias , Animais , Antígenos de Neoplasias , DNA , Proteínas de Choque Térmico/metabolismo , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Monitorização Imunológica
8.
Mol Ther ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38910328

RESUMO

Transforming growth factor (TGF)-ß signaling is a well-established pathogenic mediator of diabetic kidney disease (DKD). However, owing to its pleiotropic actions, its systemic blockade is not therapeutically optimal. The expression of TGF-ß signaling regulators can substantially influence TGF-ß's effects in a cell- or context-specific manner. Among these, leucine-rich α2-glycoprotein 1 (LRG1) is significantly increased in glomerular endothelial cells (GECs) in DKD. As LRG1 is a secreted molecule that can exert autocrine and paracrine effects, we examined the effects of LRG1 loss in kidney cells in diabetic OVE26 mice by single-cell transcriptomic analysis. Gene expression analysis confirmed a predominant expression of Lrg1 in GECs, which further increased in diabetic kidneys. Loss of Lrg1 led to the reversal of angiogenic and TGF-ß-induced gene expression in GECs, which were associated with DKD attenuation. Notably, Lrg1 loss also mitigated the increased TGF-ß-mediated gene expression in both podocytes and mesangial cells in diabetic mice, indicating that GEC-derived LRG1 potentiates TGF-ß signaling in glomerular cells in an autocrine and paracrine manner. Indeed, a significant reduction in phospho-Smad proteins was observed in the glomerular cells of OVE26 mice with LRG1 loss. These results indicate that specific antagonisms of LRG1 may be an effective approach to curb the hyperactive glomerular TGF-ß signaling to attenuate DKD.

9.
Genes Dev ; 31(22): 2282-2295, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29269486

RESUMO

Protein farnesylation is central to molecular cell biology. In plants, protein farnesyl transferase mutants are pleiotropic and exhibit defective meristem organization, hypersensitivity to the hormone abscisic acid, and increased drought resistance. The precise functions of protein farnesylation in plants remain incompletely understood because few relevant farnesylated targets have been identified. Here, we show that defective farnesylation of a single factor-heat-shock protein 40 (HSP40), encoded by the J2 and J3 genes-is sufficient to confer ABA hypersensitivity, drought resistance, late flowering, and enlarged meristems, indicating that altered function of chaperone client proteins underlies most farnesyl transferase mutant phenotypes. We also show that expression of an abiotic stress-related microRNA (miRNA) regulon controlled by the transcription factor SPL7 requires HSP40 farnesylation. Expression of a truncated SPL7 form mimicking its activated proteolysis fragment of the membrane-bound SPL7 precursor partially restores accumulation of SPL7-dependent miRNAs in farnesyl transferase mutants. These results implicate the pathway directing SPL7 activation from its membrane-bound precursor as an important target of farnesylated HSP40, consistent with our demonstration that HSP40 farnesylation facilitates its membrane association. The results also suggest that altered gene regulation via select miRNAs contributes to abiotic stress-related phenotypes of farnesyl transferase mutants.


Assuntos
Ácido Abscísico/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Meristema/metabolismo , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Secas , Farnesiltranstransferase/genética , Proteínas de Choque Térmico HSP90/genética , Meristema/anatomia & histologia , MicroRNAs/metabolismo , Mutação , Prenilação , Transdução de Sinais , Fatores de Transcrição/metabolismo
10.
J Proteome Res ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968604

RESUMO

In conventional crosslinking mass spectrometry, proteins are crosslinked using a highly selective, bifunctional chemical reagent, which limits crosslinks to residues that are accessible and reactive to the reagent. Genetically incorporating a photoreactive amino acid offers two key advantages: any site can be targeted, including those that are inaccessible to conventional crosslinking reagents, and photoreactive amino acids can potentially react with a broad range of interaction partners. However, broad reactivity imposes additional challenges for crosslink identification. In this study, we incorporate benzoylphenylalanine (BPA), a photoreactive amino acid, at selected sites in an intrinsically disordered region of the human protein HSPB5. We report and characterize a workflow for identifying and visualizing residue-level interactions originating from BPA. We routinely identify 30 to 300 crosslinked peptide spectral matches with this workflow, which is up to ten times more than existing tools for residue-level BPA crosslink identification. Most identified crosslinks are assigned to a precision of one or two residues, which is supported by a high degree of overlap between replicate analyses. Based on these results, we anticipate that this workflow will support the more general use of genetically incorporated, photoreactive amino acids for characterizing the structures of proteins that have resisted high-resolution characterization.

11.
Physiol Genomics ; 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38881428

RESUMO

The functions of the Hsp70 genes were studied using a line of D. melanogaster with knockout of six these genes out of thirteen. Namely, effect of knockout of Hsp70 genes on negative geotaxis climbing (locomotor) speed and the ability to adapt to climbing training (0.5-1.5 h/day, 7 days/week, 19 days) were examined. Seven- and 23-day-old Hsp70- flies demonstrated a comparable reduction (2-fold) in locomotor speed and widespread changes in leg skeletal muscle transcriptome (RNA-seq), compared to w1118 flies. To identify the functions of genes related to decreased locomotor speed the overlapped differentially expressed genes at both time points were analyzed: the up-regulated genes encoded extracellular proteins, regulators of drug metabolism and antioxidant response, while down-regulated genes encoded regulators of carbohydrate metabolism and transmembrane proteins. Additionally, in Hsp70- flies, activation of transcription factors related to disruption of the fibril structure and heat shock response (Hsf) were predicted, using the position weight matrix approach. In the control flies, adaptation to chronic exercise training was associated mainly with gene response to a single exercise bout, while the predicted transcription factors were related to stress/immune (Hsf, NF-kB, etc.) and early gene response. In contrast, Hsp70- flies demonstrated no adaptation to training, as well as significantly impaired gene response to a single exercise bout. In conclusion, the knockout of Hsp70 genes not only reduced physical performance, but also disrupted adaptation to chronic physical training, which is associated with changes in leg skeletal muscle transcriptome and impaired gene response to a single exercise bout.

12.
Circulation ; 147(22): 1684-1704, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37066795

RESUMO

BACKGROUND: A large portion of idiopathic and familial dilated cardiomyopathy (DCM) cases have no obvious causal genetic variant. Although altered response to metabolic stress has been implicated, the molecular mechanisms underlying the pathogenesis of DCM remain elusive. The JMJD family proteins, initially identified as histone deacetylases, have been shown to be involved in many cardiovascular diseases. Despite their increasingly diverse functions, whether JMJD family members play a role in DCM remains unclear. METHODS: We examined Jmjd4 expression in patients with DCM, and conditionally deleted and overexpressed Jmjd4 in cardiomyocytes in vivo to investigate its role in DCM. RNA sequencing, metabolites profiling, and mass spectrometry were used to dissect the molecular mechanism of Jmjd4-regulating cardiac metabolism and hypertrophy. RESULTS: We found that expression of Jmjd4 is significantly decreased in hearts of patients with DCM. Induced cardiomyocyte-specific deletion of Jmjd4 led to spontaneous DCM with severely impaired mitochondrial respiration. Pkm2, the less active pyruvate kinase compared with Pkm1, which is normally absent in healthy adult cardiomyocytes but elevated in cardiomyopathy, was found to be drastically accumulated in hearts with Jmjd4 deleted. Jmjd4 was found mechanistically to interact with Hsp70 to mediate degradation of Pkm2 through chaperone-mediated autophagy, which is dependent on hydroxylation of K66 of Pkm2 by Jmjd4. By enhancing the enzymatic activity of the abundant but less active Pkm2, TEPP-46, a Pkm2 agonist, showed a significant therapeutic effect on DCM induced by Jmjd4 deficiency, and heart failure induced by pressure overload, as well. CONCLUSIONS: Our results identified a novel role of Jmjd4 in maintaining metabolic homeostasis in adult cardiomyocytes by degrading Pkm2 and suggest that Jmjd4 and Pkm2 may be therapeutically targeted to treat DCM, and other cardiac diseases with metabolic dysfunction, as well.


Assuntos
Cardiomiopatia Dilatada , Insuficiência Cardíaca , Humanos , Miócitos Cardíacos/metabolismo , Cardiomiopatia Dilatada/patologia , Insuficiência Cardíaca/patologia
13.
BMC Genomics ; 25(1): 509, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783170

RESUMO

BACKGROUND: The increase in temperatures due to the current climate change dramatically affects crop cultivation, resulting in yield losses and altered fruit quality. Tomato is one of the most extensively grown and consumed horticultural products, and although it can withstand a wide range of climatic conditions, heat stress can affect plant growth and development specially on the reproductive stage, severely influencing the final yield. In the present work, the heat stress response mechanisms of one thermotolerant genotype (E42) were investigated by exploring its regulatory gene network. This was achieved through a promoter analysis based on the identification of the heat stress elements (HSEs) mapping in the promoters, combined with a gene co-expression network analysis aimed at identifying interactions among heat-related genes. RESULTS: Results highlighted 82 genes presenting HSEs in the promoter and belonging to one of the 52 gene networks obtained by the GCN analysis; 61 of these also interact with heat shock factors (Hsfs). Finally, a list of 13 candidate genes including two Hsfs, nine heat shock proteins (Hsps) and two GDSL esterase/lipase (GELPs) were retrieved by focusing on those E42 genes exhibiting HSEs in the promoters, interacting with Hsfs and showing variants, compared to Heinz reference genome, with HIGH and/or MODERATE impact on the translated protein. Among these, the Gene Ontology annotation analysis evidenced that only LeHsp100 (Solyc02g088610) belongs to a network specifically involved in the response to heat stress. CONCLUSIONS: As a whole, the combination of bioinformatic analyses carried out on genomic and trascriptomic data available for tomato, together with polymorphisms detected in HS-related genes of the thermotolerant E42 allowed to determine a subset of candidate genes involved in the HS response in tomato. This study provides a novel approach in the investigation of abiotic stress response mechanisms and further studies will be conducted to validate the role of the highlighted genes.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genótipo , Resposta ao Choque Térmico , Regiões Promotoras Genéticas , Solanum lycopersicum , Termotolerância , Solanum lycopersicum/genética , Resposta ao Choque Térmico/genética , Termotolerância/genética , Proteínas de Plantas/genética , Proteínas de Choque Térmico/genética , Perfilação da Expressão Gênica
14.
J Exp Bot ; 75(8): 2246-2255, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38236036

RESUMO

Plants can be primed to withstand otherwise lethal heat stress (HS) through exposure to a preceding temporary and mild HS, commonly known as the 'thermopriming stimulus'. Plants have also evolved mechanisms to establish 'memories' of a previous stress encounter, or to reset their physiology to the original cellular state once the stress has ended. The priming stimulus triggers a widespread change of transcripts, proteins, and metabolites, which is crucial for maintaining the memory state but may not be required for growth and development under optimal conditions or may even be harmful. In such a scenario, recycling mechanisms such as autophagy are crucial for re-establishing cellular homeostasis and optimizing resource use for post-stress growth. While pivotal for eliminating heat-induced protein aggregates and protecting plants from the harmful impact of HS, recent evidence implies that autophagy also breaks down heat-induced protective macromolecules, including heat shock proteins, functioning as a resetting mechanism during the recovery from mild HS. This review provides an overview of the latest advances in understanding the multifaceted functions of autophagy in HS responses, with a specific emphasis on its roles in recovery from mild HS, and the modulation of HS memory.


Assuntos
Proteínas de Choque Térmico , Resposta ao Choque Térmico , Resposta ao Choque Térmico/fisiologia , Autofagia , Homeostase
15.
Exp Eye Res ; 240: 109790, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224848

RESUMO

Corneal dysfunctions associated with Diabetes Mellitus (DM), termed diabetic keratopathy (DK), can cause impaired vision and/or blindness. Hypoxia affects both Type 1 (T1DM) and Type 2 (T2DM) surprisingly, the role of hypoxia in DK is unexplored. The aim of this study was to examine the impact of hypoxia in vitro on primary human corneal stromal cells derived from Healthy (HCFs), and diabetic (T1DMs and T2DMs) subjects, by exposing them to normoxic (21% O2) or hypoxic (2% O2) conditions through 2D and 3D in vitro models. Our data revealed that hypoxia affected T2DMs by slowing their wound healing capacity, leading to significant alterations in oxidative stress-related markers, mitochondrial health, cellular homeostasis, and endoplasmic reticulum health (ER) along with fibrotic development. In T1DMs, hypoxia significantly modulated markers related to membrane permeabilization, oxidative stress via apoptotic marker (BAX), and protein degradation. Hypoxic environment induced oxidative stress (NOQ1 mediated reduction of superoxide in T1DMs and Nrf2 mediated oxidative stress in T2DMs), modulation in mitochondrial health (Heat shock protein 27 (HSP27), and dysregulation of cellular homeostasis (HSP90) in both T1DMs and T2DMs. This data underscores the significant impact of hypoxia on the diabetic cornea. Further studies are warranted to delineate the complex interactions.


Assuntos
Doenças da Córnea , Diabetes Mellitus , Humanos , Substância Própria/metabolismo , Córnea/metabolismo , Doenças da Córnea/etiologia , Doenças da Córnea/metabolismo , Hipóxia/metabolismo
16.
Mol Pharm ; 21(4): 1563-1590, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38466810

RESUMO

Understanding protein sequence and structure is essential for understanding protein-protein interactions (PPIs), which are essential for many biological processes and diseases. Targeting protein binding hot spots, which regulate signaling and growth, with rational drug design is promising. Rational drug design uses structural data and computational tools to study protein binding sites and protein interfaces to design inhibitors that can change these interactions, thereby potentially leading to therapeutic approaches. Artificial intelligence (AI), such as machine learning (ML) and deep learning (DL), has advanced drug discovery and design by providing computational resources and methods. Quantum chemistry is essential for drug reactivity, toxicology, drug screening, and quantitative structure-activity relationship (QSAR) properties. This review discusses the methodologies and challenges of identifying and characterizing hot spots and binding sites. It also explores the strategies and applications of artificial-intelligence-based rational drug design technologies that target proteins and protein-protein interaction (PPI) binding hot spots. It provides valuable insights for drug design with therapeutic implications. We have also demonstrated the pathological conditions of heat shock protein 27 (HSP27) and matrix metallopoproteinases (MMP2 and MMP9) and designed inhibitors of these proteins using the drug discovery paradigm in a case study on the discovery of drug molecules for cancer treatment. Additionally, the implications of benzothiazole derivatives for anticancer drug design and discovery are deliberated.


Assuntos
Inteligência Artificial , Descoberta de Drogas , Descoberta de Drogas/métodos , Desenho de Fármacos , Aprendizado de Máquina , Relação Quantitativa Estrutura-Atividade
17.
Int Microbiol ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898189

RESUMO

Microbes play an essential role in soil fertility by replenishing the nutrients; they encounter various biotic and abiotic stresses disrupting their cellular homeostasis, which expedites activating a conserved signaling pathway for transient over-expression of heat shock proteins (HSPs). In the present study, a versatile soil bacterium Bacillus subtilis strain PSK.A2 was isolated and characterized. Further, the isolated bacterium was exposed with several stresses, viz., heat, salt, acid, alkaline, and antibiotics. Stress-attributed cellular morphological modifications such as swelling, shrinkage, and clump formation were observed under the scanning electron microscope. The comparative protein expression pattern was studied by SDS-PAGE, relative protein stabilization was assessed by protein aggregation assay, and relative survival was mapped by single spot dilution and colony-counting method under control, stressed, lethal, and stressed lethal conditions of the isolate. The findings demonstrated that bacterial stress tolerance was maintained via the activation of various HSPs of molecular weight ranging from 17 to 115 kD to respective stimuli. The treatment of subinhibitory dose of antibiotics not interfering protein synthesis (amoxicillin and ciprofloxacin) resulted in the expression of eight HSPs of molecular weight ranging from 18 to 71 kD. The pre-treatment of short stress dosage showed endured overall tolerance of bacterium to lethal conditions, as evidenced by moderately enhanced total soluble intracellular protein content, better protein stabilization, comparatively over-expressed HSPs, and relatively enhanced cell survival. These findings hold an opportunity for developing novel approaches towards enhancing microbial resilience in a variety of conditions, including industrial bioprocessing, environmental remediation, and infectious disease management.

18.
Naturwissenschaften ; 111(2): 16, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483597

RESUMO

Heat shock proteins are constitutively expressed chaperones induced by cellular stress, such as changes in temperature, pH, and osmolarity. These proteins, present in all organisms, are highly conserved and are recruited for the assembly of protein complexes, transport, and compartmentalization of molecules. In fungi, these proteins are related to their adaptation to the environment, their evolutionary success in acquiring new hosts, and regulation of virulence and resistance factors. These characteristics are interesting for assessment of the host adaptability and ecological transitions, given the emergence of infections by these microorganisms. Based on phylogenetic inferences, we compared the sequences of HSP9, HSP12, HSP30, HSP40, HSP70, HSP90, and HSP110 to elucidate the evolutionary relationships of different fungal organisms to suggest evolutionary patterns employing the maximum likelihood method. By the different reconstructions, our inference supports the hypothesis that these classes of proteins are associated with pathogenic gains against endothermic hosts, as well as adaptations for phytopathogenic fungi.


Assuntos
Proteínas de Choque Térmico , Chaperonas Moleculares , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Filogenia , Sequência de Aminoácidos , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo
19.
Fish Shellfish Immunol ; 145: 109309, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142023

RESUMO

Heat Shock Proteins (HSPs) are a widely distributed family of proteins produced in response to heat and other stresses. To develop a deeper understanding of the mechanisms governing expression of HSPs in the bony fish Trachinotus ovatus, we carried out a whole genome analysis and identified 43 HSP genes. Based on their phylogenetic relationships with Danio rerio, Seriola dumerili, and Seriola lalandi, they were divided into four subfamilies: HSP20, HSP60, HSP70, and HSP90. We performed an analysis of the predicted physicochemical properties and subcellular localization of proteins encoded by these genes. The chromosomal localization results showed that the HSP genes are distributed across 20 chromosomes of T. ovatus.These genes were found to be expressed in different tissues, and they showed differential expression in the immune response against Streptococcus agalactiae. However, there was no significant differential expression in the different skin tissue locations of T. ovatus after infection by Cryptocaryon irritans Brown. This study provides basic information for further research on the evolution and structure and function of HSPs in teleosts.


Assuntos
Proteínas de Choque Térmico , Perciformes , Animais , Proteínas de Choque Térmico/genética , Filogenia , Peixes/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP90/genética
20.
Fish Shellfish Immunol ; 145: 109323, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38147915

RESUMO

Heat shock proteins (HSPs) are molecular chaperones that ubiquitously exist in various organisms and play essential roles in protein folding, transport, and expression. While most HSPs are highly conserved across species, a few HSPs are evolutionarily distinct in some species and may have unique functions. To explore the evolutionary history of the vertebrate HSP family, we identify members of the HSP family at the genome-wide level in lampreys (Lethenteron reissneri), a living representative of jawless vertebrates diverged from jawed vertebrates over 500 million years ago. The phylogenetic analysis reveals that the lamprey HSP family contains HSP90a1, HSP90a2, HSC70, HSP60, HSP30, HSP27, HSP17, and HSP10, which have a primitive status in the molecular evolution of vertebrate HSPs. Transcriptome analysis reveals the expression distribution of members of the HSP family in various tissues of lampreys. It is shown that HSP30, normally found in birds, amphibians, and fish, is also present in lampreys, with remarkable expansion of HSP30 gene copies in the lamprey genome. The transcription of HSP30 is significantly induced in leukocytes and heart of lampreys during various pathogens or poly(I:C) stimulation, indicating that HSP30 may be involved in the immune defense of lampreys in response to bacterial or viral infection. Immunohistochemistry demonstrates significantly increased HSP30 expression in subcutaneous muscle tissue after skin injury in lamprey models of wound repair. Furthermore, transcriptome analysis shows that ectopic expression of HSP30 in 3T3-L1 fibroblasts affect the expression of genes related to the PI3K-AKT signaling pathway, suggesting that HSP30 could serves as a negative regulator of fibrosis. These results indicate that HSP30 may play a critical role in facilitating the process of lamprey skin repair following injury. This study provides new insights into the origin and evolution of the HSP gene family in vertebrates and offers valuable clues to reveal the important role of HSP30 in immune defense and wound healing of lampreys.


Assuntos
Lampreias , Fosfatidilinositol 3-Quinases , Animais , Lampreias/genética , Filogenia , Fosfatidilinositol 3-Quinases/genética , Proteínas de Choque Térmico/genética , Evolução Molecular , Imunidade , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA