Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 21(5): 186, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32638170

RESUMO

The effect of storage condition (% RH) on flufenamic acid:nicotinamide (FFA:NIC) cocrystal compressibility, compactibility, and tabletability profiles was not observed after visual evaluation or linear regression analysis. However, multivariate statistical analysis showed that storage condition had a significant effect on each compressional profile. Shapiro and Heckel equations were used to determine the compression parameters: porosity, Shapiro's compression parameter (f), densification factor (Da), plastic yield pressure (YPpl), and elastic yield pressure (YPel). Latent variable models such as exploratory factor analysis, principal component analysis, and principal component regression were employed to decode complex hidden main, interaction, and quadratic effects of % RH and the compression parameters on FFA:NIC tablet mechanical strength (TMS). Statistically significant correlations between f and Da, f and YPpl, and Da and YPel supported the idea that both rearrangement and fragmentation, and plastic deformation are important to FFA:NIC TMS. To the authors knowledge, this is the first time that simultaneously operating dual mechanisms of fragmentation and plastic deformation in low and midrange compression, and midrange plastic deformation have been identified and reported. A quantitative PCR model showed that f, Da, and YPel had statistically significant main effects along with a significant antagonist storage condition-porosity "conditional interaction effect". f exhibited a 2.35 times greater impact on TMS compared to Da. The model root-mean-square error at calibration and prediction stages were 0.04 MPa and 0.08 MPa, respectively. The R2 values at the calibration stage and at the prediction stage were 0.9005 and 0.7539, respectively. This research demonstrated the need for caution when interpreting the results of bivariate compression data because complex latent inter-relationships may be hidden from visual assessment and linear regression analysis, and result in false data interpretation as illustrated in this report.


Assuntos
Química Farmacêutica , Pressão , Modelos Químicos , Análise Multivariada , Tamanho da Partícula , Porosidade , Análise de Componente Principal , Análise de Regressão , Comprimidos , Resistência à Tração
2.
Int J Pharm ; 627: 122205, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36122616

RESUMO

A parameterization of compaction simulator generated dynamic compression profile with a few grams of powder provides important information about the material deformation and compact elasticity. The Heckel equation is by far the most popular choice among pharmaceutical scientists for such parametrization. A general approach of Heckel analysis uses pycnometric powder density (ρP0) for relative density calculation. However, as 'in-die' tablet bulk density at applied compression pressure (ρBP) becomes greater than or equal to the measured ρP0, the general approach typically poses a negative porosity challenge at high compression pressure regions. It is only theoretically possible to have a tablet with zero or negative porosity. Negative porosity may be detected during 'in-die' compression analysis, but it will not exist after ejection of the tablet in practical aspect. Thus, the present work proposes a new approach to using pycnometric tablet density (ρPP) in the relative density calculations of Heckel analysis. This ρPP may be a better representation of actual tablet particle volume, as it is composed of non-accessible intra-particulate pores, which are broken under applied compression pressure. A new approach showed its immunity for Heckel high-pressure negative porosity. It enables the utilization of the compression and decompression phases of dynamic compression profiles to evaluate macroscopic compaction performance. The proposed approach was validated with a reported modified Heckel approach. The Heckel parameters computed with both methodologies for microcrystalline cellulose and lactose were not statistically different. However, a modified Heckel approach was unable to compute Heckel parameters of poorly compacting starch unlike the new approach. A modified Heckel approach became invalid during starch compaction at low compression pressures (below 400 MPa), where starch was forming weaker but still intact tablets. Certainly, a complete Heckel profiling with a new approach could save time and costs in an early development stage for designing and screening scientifically based lead prototype formulations.


Assuntos
Lactose , Tecnologia Farmacêutica , Porosidade , Pós , Tecnologia Farmacêutica/métodos , Comprimidos , Amido
3.
Curr Drug Deliv ; 17(6): 523-539, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32384027

RESUMO

BACKGROUND: Developing a new excipient and obtaining its market approval is an expensive, time-consuming and complex process. Compared to that, the co-processing of already approved excipients has emerged as a more attractive option for bringing better characteristic excipients to the market. The application of the Design of Experiments (DoE) approach for developing co-processed excipient can make the entire process cost-effective and rapid. OBJECTIVE: The aim of the present investigation was to demonstrate the applicability of the DoE approach, especially 32 full factorial design, to develop a multi-functional co-processed excipient for the direct compression of model drug - cefixime trihydrate using spray drying technique. METHODS: The preliminary studies proved the significant effect of atomization pressure (X1) and polymer ratio (microcrystalline cellulose: mannitol - X2) on critical product characteristics, so they were selected as independent variables. The angle of repose, Carr's index, Hausner's ratio, tensile strength and Kuno's constant were selected as response variables. RESULT: The statistical analysis proved a significant effect of both independent variables on all response variables with a significant p-value < 0.05. The desirability function available in Design Expert 11® software was used to prepare and select the optimized batch. The prepared co-processed excipient had better compressibility than individual excipients and their physical mixture and was able to accommodate more than 40 percent drug without compromising the flow property and compressibility. CONCLUSION: The present investigation successfully proved the applicability of 32 full factorial design as an effective tool for optimizing the spray drying process to prepare a multi-functional co-processed excipient.


Assuntos
Antibacterianos/química , Cefixima/química , Celulose/química , Composição de Medicamentos , Humanos , Manitol/química , Resistência à Tração
4.
Int J Pharm ; 532(1): 124-130, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-28844895

RESUMO

The analysis of powder compressibility data yields useful information for characterizing compaction behavior and mechanical properties of powders, especially plasticity. Among the many compressibility equations proposed in powder compaction research, the Heckel equation and the Kawakita equation are the most commonly used, despite their known limitations. Systematic evaluation of the performance in analyzing compressibility data suggested the Kuentz-Leuenberger equation is superior to both the Heckel equation and the Kawakita equation for characterizing plasticity of powders exhibiting a wide range of mechanical properties.


Assuntos
Algoritmos , Pós/química , Fosfatos de Cálcio/química , Celecoxib/química , Celulose/química , Força Compressiva , Excipientes/química , Dureza , Ibuprofeno/química , Lactose/química , Manitol/química , Ácidos Esteáricos/química
5.
Int J Pharm ; 453(2): 295-9, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23810817

RESUMO

The purpose of the research was to introduce a procedure to derive a powder compression parameter (EM A) representing particle yield stress using an effective medium equation and to compare the EM A parameter with the Heckel compression parameter (1/K). 16 pharmaceutical powders, including drugs and excipients, were compressed in a materials testing instrument and powder compression profiles were derived using the EM and Heckel equations. The compression profiles thus obtained could be sub-divided into regions among which one region was approximately linear and from this region, the compression parameters EM A and 1/K were calculated. A linear relationship between the EM A parameter and the 1/K parameter was obtained with a strong correlation. The slope of the plot was close to 1 (0.84) and the intercept of the plot was small in comparison to the range of parameter values obtained. The relationship between the theoretical EM A parameter and the 1/K parameter supports the interpretation of the empirical Heckel parameter as being a measure of yield stress. It is concluded that the combination of Heckel and EM equations represents a suitable procedure to derive a value of particle plasticity from powder compression data.


Assuntos
Algoritmos , Pós/química , Força Compressiva , Composição de Medicamentos , Excipientes/química , Preparações Farmacêuticas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA