Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.961
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(20): 3671-3688.e23, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36113466

RESUMO

Bacteria encode reverse transcriptases (RTs) of unknown function that are closely related to group II intron-encoded RTs. We found that a Pseudomonas aeruginosa group II intron-like RT (G2L4 RT) with YIDD instead of YADD at its active site functions in DNA repair in its native host and when expressed in Escherichia coli. G2L4 RT has biochemical activities strikingly similar to those of human DNA repair polymerase Î¸ and uses them for translesion DNA synthesis and double-strand break repair (DSBR) via microhomology-mediated end-joining (MMEJ). We also found that a group II intron RT can function similarly in DNA repair, with reciprocal active-site substitutions showing isoleucine favors MMEJ and alanine favors primer extension in both enzymes. These DNA repair functions utilize conserved structural features of non-LTR-retroelement RTs, including human LINE-1 and other eukaryotic non-LTR-retrotransposon RTs, suggesting such enzymes may have inherent ability to function in DSBR in a wide range of organisms.


Assuntos
DNA Polimerase Dirigida por RNA , Retroelementos , Alanina/genética , Reparo do DNA por Junção de Extremidades , Reparo do DNA , RNA Polimerases Dirigidas por DNA/genética , Humanos , Íntrons , Isoleucina/genética , DNA Polimerase Dirigida por RNA/química
2.
Cell ; 182(1): 177-188.e27, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32619423

RESUMO

Comprehensive analysis of neuronal networks requires brain-wide measurement of connectivity, activity, and gene expression. Although high-throughput methods are available for mapping brain-wide activity and transcriptomes, comparable methods for mapping region-to-region connectivity remain slow and expensive because they require averaging across hundreds of brains. Here we describe BRICseq (brain-wide individual animal connectome sequencing), which leverages DNA barcoding and sequencing to map connectivity from single individuals in a few weeks and at low cost. Applying BRICseq to the mouse neocortex, we find that region-to-region connectivity provides a simple bridge relating transcriptome to activity: the spatial expression patterns of a few genes predict region-to-region connectivity, and connectivity predicts activity correlations. We also exploited BRICseq to map the mutant BTBR mouse brain, which lacks a corpus callosum, and recapitulated its known connectopathies. BRICseq allows individual laboratories to compare how age, sex, environment, genetics, and species affect neuronal wiring and to integrate these with functional activity and gene expression.


Assuntos
Conectoma , Regulação da Expressão Gênica , Rede Nervosa/fisiologia , Neurônios/fisiologia , Análise de Sequência de DNA , Animais , Mapeamento Encefálico , Tomada de Decisões , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes Neurológicos , Reprodutibilidade dos Testes , Análise e Desempenho de Tarefas
3.
Cell ; 179(5): 1084-1097.e21, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730851

RESUMO

The ocean is home to myriad small planktonic organisms that underpin the functioning of marine ecosystems. However, their spatial patterns of diversity and the underlying drivers remain poorly known, precluding projections of their responses to global changes. Here we investigate the latitudinal gradients and global predictors of plankton diversity across archaea, bacteria, eukaryotes, and major virus clades using both molecular and imaging data from Tara Oceans. We show a decline of diversity for most planktonic groups toward the poles, mainly driven by decreasing ocean temperatures. Projections into the future suggest that severe warming of the surface ocean by the end of the 21st century could lead to tropicalization of the diversity of most planktonic groups in temperate and polar regions. These changes may have multiple consequences for marine ecosystem functioning and services and are expected to be particularly significant in key areas for carbon sequestration, fisheries, and marine conservation. VIDEO ABSTRACT.


Assuntos
Biodiversidade , Plâncton/fisiologia , Água do Mar/microbiologia , Geografia , Modelos Teóricos , Oceanos e Mares , Filogenia
4.
Cell ; 175(6): 1533-1545.e20, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30415838

RESUMO

Budding yeasts (subphylum Saccharomycotina) are found in every biome and are as genetically diverse as plants or animals. To understand budding yeast evolution, we analyzed the genomes of 332 yeast species, including 220 newly sequenced ones, which represent nearly one-third of all known budding yeast diversity. Here, we establish a robust genus-level phylogeny comprising 12 major clades, infer the timescale of diversification from the Devonian period to the present, quantify horizontal gene transfer (HGT), and reconstruct the evolution of 45 metabolic traits and the metabolic toolkit of the budding yeast common ancestor (BYCA). We infer that BYCA was metabolically complex and chronicle the tempo and mode of genomic and phenotypic evolution across the subphylum, which is characterized by very low HGT levels and widespread losses of traits and the genes that control them. More generally, our results argue that reductive evolution is a major mode of evolutionary diversification.


Assuntos
Evolução Molecular , Transferência Genética Horizontal , Genoma Fúngico , Filogenia , Saccharomycetales/classificação , Saccharomycetales/genética
5.
Genes Dev ; 37(5-6): 243-257, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36810209

RESUMO

Transfer RNAs (tRNAs) are small adaptor RNAs essential for mRNA translation. Alterations in the cellular tRNA population can directly affect mRNA decoding rates and translational efficiency during cancer development and progression. To evaluate changes in the composition of the tRNA pool, multiple sequencing approaches have been developed to overcome reverse transcription blocks caused by the stable structures of these molecules and their numerous base modifications. However, it remains unclear whether current sequencing protocols faithfully capture tRNAs existing in cells or tissues. This is specifically challenging for clinical tissue samples that often present variable RNA qualities. For this reason, we developed ALL-tRNAseq, which combines the highly processive MarathonRT and RNA demethylation for the robust assessment of tRNA expression, together with a randomized adapter ligation strategy prior to reverse transcription to assess tRNA fragmentation levels in both cell lines and tissues. Incorporation of tRNA fragments not only informed on sample integrity but also significantly improved tRNA profiling of tissue samples. Our data showed that our profiling strategy effectively improves classification of oncogenic signatures in glioblastoma and diffuse large B-cell lymphoma tissues, particularly for samples presenting higher levels of RNA fragmentation, further highlighting the utility of ALL-tRNAseq for translational research.


Assuntos
Biossíntese de Proteínas , RNA de Transferência , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA Mensageiro/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos
6.
Mol Cell ; 81(23): 4942-4953.e8, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34655516

RESUMO

The distribution, dynamics, and function of RNA structures in human development are under-explored. Here, we systematically assayed RNA structural dynamics and their relationship with gene expression, translation, and decay during human neurogenesis. We observed that the human ESC transcriptome is globally more structurally accessible than differentiated cells and undergoes extensive RNA structure changes, particularly in the 3' UTR. Additionally, RNA structure changes during differentiation are associated with translation and decay. We observed that RBP and miRNA binding is associated with RNA structural changes during early neuronal differentiation, and splicing is associated during later neuronal differentiation. Furthermore, our analysis suggests that RBPs are major factors in structure remodeling and co-regulate additional RBPs and miRNAs through structure. We demonstrated an example of this by showing that PUM2-induced structure changes on LIN28A enable miR-30 binding. This study deepens our understanding of the widespread and complex role of RNA-based gene regulation during human development.


Assuntos
Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Neurogênese , Neurônios/metabolismo , Transcrição Gênica , Regiões 3' não Traduzidas , Diferenciação Celular , Análise por Conglomerados , Técnicas Genéticas , Células HEK293 , Humanos , MicroRNAs/metabolismo , Modelos Estatísticos , Neurônios/fisiologia , Conformação de Ácido Nucleico , RNA/análise , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo , Especificidade por Substrato , Biologia de Sistemas , Transcriptoma
7.
Mol Cell ; 74(6): 1278-1290.e9, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31031083

RESUMO

7-methylguanosine (m7G) is present at mRNA caps and at defined internal positions within tRNAs and rRNAs. However, its detection within low-abundance mRNAs and microRNAs (miRNAs) has been hampered by a lack of sensitive detection strategies. Here, we adapt a chemical reactivity assay to detect internal m7G in miRNAs. Using this technique (Borohydride Reduction sequencing [BoRed-seq]) alongside RNA immunoprecipitation, we identify m7G within a subset of miRNAs that inhibit cell migration. We show that the METTL1 methyltransferase mediates m7G methylation within miRNAs and that this enzyme regulates cell migration via its catalytic activity. Using refined mass spectrometry methods, we map m7G to a single guanosine within the let-7e-5p miRNA. We show that METTL1-mediated methylation augments let-7 miRNA processing by disrupting an inhibitory secondary structure within the primary miRNA transcript (pri-miRNA). These results identify METTL1-dependent N7-methylation of guanosine as a new RNA modification pathway that regulates miRNA structure, biogenesis, and cell migration.


Assuntos
Guanosina/análogos & derivados , Metiltransferases/genética , MicroRNAs/genética , Processamento Pós-Transcricional do RNA , Células A549 , Sequência de Bases , Bioensaio , Células CACO-2 , Movimento Celular , Proliferação de Células , Guanosina/metabolismo , Células HEK293 , Humanos , Metilação , Metiltransferases/metabolismo , MicroRNAs/metabolismo , Conformação de Ácido Nucleico
8.
Trends Genet ; 39(7): 531-544, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36907721

RESUMO

Insects are crucial for ecosystem health but climate change and pesticide use are driving massive insect decline. To mitigate this loss, we need new and effective monitoring techniques. Over the past decade there has been a shift to DNA-based techniques. We describe key emerging techniques for sample collection. We suggest that the selection of tools should be broadened, and that DNA-based insect monitoring data need to be integrated more rapidly into policymaking. We argue that there are four key areas for advancement, including the generation of more complete DNA barcode databases to interpret molecular data, standardisation of molecular methods, scaling up of monitoring efforts, and integrating molecular tools with other technologies that allow continuous, passive monitoring based on images and/or laser imaging, detection, and ranging (LIDAR).


Assuntos
Biodiversidade , Ecossistema , Animais , Código de Barras de DNA Taxonômico/métodos , DNA/genética , Insetos/genética
9.
RNA ; 30(5): 548-559, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38531647

RESUMO

N 1-methyl adenosine (m1A) is a widespread RNA modification present in tRNA, rRNA, and mRNA. m1A modification sites in tRNAs are evolutionarily conserved and its formation on tRNA is catalyzed by methyltransferase TRMT61A and TRMT6 complex. m1A promotes translation initiation and elongation. Due to its positive charge under physiological conditions, m1A can notably modulate RNA structure. It also blocks Watson-Crick-Franklin base-pairing and causes mutation and truncation during reverse transcription. Several misincorporation-based high-throughput sequencing methods have been developed to sequence m1A. In this study, we introduce a reduction-based m1A sequencing (red-m1A-seq). We report that NaBH4 reduction of m1A can improve the mutation and readthrough rates using commercially available RT enzymes to give a better positive signature, while alkaline-catalyzed Dimroth rearrangement can efficiently convert m1A to m6A to provide good controls, allowing the detection of m1A with higher sensitivity and accuracy. We applied red-m1A-seq to sequence human small RNA, and we not only detected all the previously reported tRNA m1A sites, but also new m1A sites in mt-tRNAAsn-GTT and 5.8S rRNA.


Assuntos
RNA de Transferência , RNA , Humanos , Metilação , RNA de Transferência/química , RNA/genética , tRNA Metiltransferases/genética , tRNA Metiltransferases/metabolismo , Metiltransferases/metabolismo , RNA Mensageiro/genética
10.
Mol Cell ; 71(6): 1051-1063.e6, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30174290

RESUMO

Protein kinase RNA-activated (PKR) induces immune response by sensing viral double-stranded RNAs (dsRNAs). However, growing evidence suggests that PKR can also be activated by endogenously expressed dsRNAs. Here, we capture these dsRNAs by formaldehyde-mediated crosslinking and immunoprecipitation sequencing and find that various noncoding RNAs interact with PKR. Surprisingly, the majority of the PKR-interacting RNA repertoire is occupied by mitochondrial RNAs (mtRNAs). MtRNAs can form intermolecular dsRNAs owing to bidirectional transcription of the mitochondrial genome and regulate PKR and eIF2α phosphorylation to control cell signaling and translation. Moreover, PKR activation by mtRNAs is counteracted by PKR phosphatases, disruption of which causes apoptosis from PKR overactivation even in uninfected cells. Our work unveils dynamic regulation of PKR even without infection and establishes PKR as a sensor for nuclear and mitochondrial signaling cues in regulating cellular metabolism.


Assuntos
eIF-2 Quinase/metabolismo , eIF-2 Quinase/fisiologia , Linhagem Celular , Núcleo Celular , Ativação Enzimática , Fator de Iniciação 2 em Eucariotos/metabolismo , Células HEK293 , Células HeLa , Humanos , Imunoprecipitação/métodos , Mitocôndrias/genética , Fosforilação , RNA de Cadeia Dupla/genética , RNA Mitocondrial/genética , RNA Mitocondrial/fisiologia , RNA não Traduzido/genética , RNA não Traduzido/fisiologia , Transdução de Sinais , eIF-2 Quinase/imunologia
11.
Proc Natl Acad Sci U S A ; 120(27): e2304441120, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37368926

RESUMO

Eating a varied diet is a central tenet of good nutrition. Here, we develop a molecular tool to quantify human dietary plant diversity by applying DNA metabarcoding with the chloroplast trnL-P6 marker to 1,029 fecal samples from 324 participants across two interventional feeding studies and three observational cohorts. The number of plant taxa per sample (plant metabarcoding richness or pMR) correlated with recorded intakes in interventional diets and with indices calculated from a food frequency questionnaire in typical diets (ρ = 0.40 to 0.63). In adolescents unable to collect validated dietary survey data, trnL metabarcoding detected 111 plant taxa, with 86 consumed by more than one individual and four (wheat, chocolate, corn, and potato family) consumed by >70% of individuals. Adolescent pMR was associated with age and household income, replicating prior epidemiologic findings. Overall, trnL metabarcoding promises an objective and accurate measure of the number and types of plants consumed that is applicable to diverse human populations.


Assuntos
Dieta , Estado Nutricional , Adolescente , Humanos , DNA de Plantas/genética , Plantas/genética , Código de Barras de DNA Taxonômico
12.
Brief Bioinform ; 24(2)2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36892171

RESUMO

The adaptive immune receptor repertoire (AIRR), consisting of T- and B-cell receptors, is the core component of the immune system. The AIRR sequencing is commonly used in cancer immunotherapy and minimal residual disease (MRD) detection of leukemia and lymphoma. The AIRR is captured by primers and sequenced to yield paired-end (PE) reads. The PE reads could be merged into one sequence by the overlapped region between them. However, the wide range of AIRR data raises the difficulty, so a special tool is required. We developed a software package for IMmune PE reads merger of sequencing data, named IMperm. We used the k-mer-and-vote strategy to pin down the overlapped region rapidly. IMperm could handle all types of PE reads, eliminate adapter contamination and successfully merge low-quality and minor/non-overlapping reads. Compared with existing tools, IMperm performed better in both simulated and sequencing data. Notably, IMperm was well suited to processing the data of MRD detection in leukemia and lymphoma and detected 19 novel MRD clones in 14 patients with leukemia from previously published data. Additionally, IMperm can handle PE reads from other sources, and we demonstrated its effectiveness on two genomic and one cell-free deoxyribonucleic acid datasets. IMperm is implemented in the C programming language and consumes little runtime and memory. It is freely available at https://github.com/zhangwei2015/IMperm.


Assuntos
Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de DNA , Software , Genoma , Algoritmos
13.
Mass Spectrom Rev ; 43(1): 5-38, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36052666

RESUMO

The discovery of RNA silencing has revealed that non-protein-coding sequences (ncRNAs) can cover essential roles in regulatory networks and their malfunction may result in severe consequences on human health. These findings have prompted a general reassessment of the significance of RNA as a key player in cellular processes. This reassessment, however, will not be complete without a greater understanding of the distribution and function of the over 170 variants of the canonical ribonucleotides, which contribute to the breathtaking structural diversity of natural RNA. This review surveys the analytical approaches employed for the identification, characterization, and detection of RNA posttranscriptional modifications (rPTMs). The merits of analyzing individual units after exhaustive hydrolysis of the initial biopolymer are outlined together with those of identifying their position in the sequence of parent strands. Approaches based on next generation sequencing and mass spectrometry technologies are covered in depth to provide a comprehensive view of their respective merits. Deciphering the epitranscriptomic code will require not only mapping the location of rPTMs in the various classes of RNAs, but also assessing the variations of expression levels under different experimental conditions. The fact that no individual platform is currently capable of meeting all such demands implies that it will be essential to capitalize on complementary approaches to obtain the desired information. For this reason, the review strived to cover the broadest possible range of techniques to provide readers with the fundamental elements necessary to make informed choices and design the most effective possible strategy to accomplish the task at hand.


Assuntos
Processamento Pós-Transcricional do RNA , RNA , Humanos , RNA/genética , Análise de Sequência de RNA/métodos
14.
Mol Cell ; 65(4): 604-617.e6, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28212748

RESUMO

Precise gene expression patterns are established by transcription factor (TFs) binding to regulatory sequences. While these events occur in the context of chromatin, our understanding of how TF-nucleosome interplay affects gene expression is highly limited. Here, we present an assay for high-resolution measurements of both DNA occupancy and gene expression on large-scale libraries of systematically designed regulatory sequences. Our assay reveals occupancy patterns at the single-cell level. It provides an accurate quantification of the fraction of the population bound by a nucleosome and captures distinct, even adjacent, TF binding events. By applying this assay to over 1,500 promoter variants in yeast, we reveal pronounced differences in the dependency of TF activity on chromatin and classify TFs by their differential capacity to alter chromatin and promote expression. We further demonstrate how different regulatory sequences give rise to nucleosome-mediated TF collaborations that quantitatively account for the resulting expression.


Assuntos
Cromatina/metabolismo , DNA Fúngico/metabolismo , Nucleossomos/metabolismo , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Sítios de Ligação , Cromatina/genética , Biologia Computacional , DNA Fúngico/genética , Bases de Dados Genéticas , Regulação Fúngica da Expressão Gênica , Biblioteca Gênica , Ensaios de Triagem em Larga Escala , Nucleossomos/genética , Ligação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
15.
BMC Biol ; 22(1): 125, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38807090

RESUMO

BACKGROUND: Bacterial epigenetics is a rapidly expanding research field. DNA methylation by diverse bacterial methyltransferases (MTases) contributes to genomic integrity and replication, and many recent studies extended MTase function also to global transcript regulation and phenotypic variation. Helicobacter pylori is currently one of those bacterial species which possess the highest number and the most variably expressed set of DNA MTases. Next-generation sequencing technologies can directly detect DNA base methylation. However, they still have limitations in their quantitative and qualitative performance, in particular for cytosine methylation. RESULTS: As a complementing approach, we used enzymatic methyl sequencing (EM-Seq), a technology recently established that has not yet been fully evaluated for bacteria. Thereby, we assessed quantitatively, at single-base resolution, whole genome cytosine methylation for all methylated cytosine motifs in two different H. pylori strains and isogenic MTase mutants. EM-Seq reliably detected both m5C and m4C methylation. We demonstrated that three different active cytosine MTases in H. pylori provide considerably different levels of average genome-wide single-base methylation, in contrast to isogenic mutants which completely lost specific motif methylation. We found that strain identity and changed environmental conditions, such as growth phase and interference with methyl donor homeostasis, significantly influenced quantitative global and local genome-wide methylation in H. pylori at specific motifs. We also identified significantly hyper- or hypo-methylated cytosines, partially linked to overlapping MTase target motifs. Notably, we revealed differentially methylated cytosines in genome-wide coding regions under conditions of methionine depletion, which can be linked to transcript regulation. CONCLUSIONS: This study offers new knowledge on H. pylori global and local genome-wide methylation and establishes EM-Seq for quantitative single-site resolution analyses of bacterial cytosine methylation.


Assuntos
Metilação de DNA , Genoma Bacteriano , Helicobacter pylori , Helicobacter pylori/genética , Genoma Bacteriano/genética , Homeostase , Citosina/metabolismo , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos
16.
J Cell Mol Med ; 28(4): e18120, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38358010

RESUMO

Our previous study confirmed that umbilical cord mesenchymal stem cells-exosomes (ucMSC-Ex) inhibit apoptosis of pancreatic acinar cells to exert protective effects. However, the relationship between apoptosis and autophagy in traumatic pancreatitis (TP) has rarely been reported. We dissected the transcriptomics after pancreatic trauma and ucMSC-Ex therapy by high-throughput sequencing. Additionally, we used rapamycin and MHY1485 to regulate mTOR. HE, inflammatory factors and pancreatic enzymatic assays were used to comprehensively determine the local versus systemic injury level, fluorescence staining and electron microscopy were used to detect the effect of autophagy, and observe the expression levels of autophagy-related markers at the gene and protein levels. High-throughput sequencing identified that autophagy played a crucial role in the pathophysiological process of TP and ucMSC-Ex therapy. The results of electron microscopy, immunofluorescence staining, polymerase chain reaction and western blot suggested that therapeutic effect of ucMSC-Ex was mediated by activation of autophagy in pancreatic acinar cells through inhibition of mTOR. ucMSC-Ex can attenuate pancreas injury by inhibiting mTOR to regulate acinar cell autophagy after TP. Future studies will build on the comprehensive sequencing of RNA carried by ucMSC-Ex to predict and verify specific non-coding RNA.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Pancreatite , Humanos , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical , Serina-Treonina Quinases TOR/metabolismo , Pancreatite/metabolismo , Autofagia/genética , Apoptose
17.
BMC Genomics ; 25(1): 561, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840044

RESUMO

BACKGROUND: Artemisia selengensis, classified within the genus Artemisia of the Asteraceae family, is a perennial herb recognized for its dual utility in culinary and medicinal domains. There are few studies on the chloroplast genome of A. selengensis, and the phylogeographic classification is vague, which makes phylogenetic analysis and evolutionary studies very difficult. RESULTS: The chloroplast genomes of 10 A. selengensis in this study were highly conserved in terms of gene content, gene order, and gene intron number. The genome lengths ranged from 151,148 to 151,257 bp and were typical of a quadripartite structure with a total GC content of approximately 37.5%. The chloroplast genomes of all species encode 133 genes, including 88 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Due to the contraction and expansion of the inverted repeats (IR), the overlap of ycf1 and ndhF genes occurred at the inverted repeats B (IRB) and short single copy sequence (SSC) boundaries. According to a codon use study, the frequent base in the chloroplast genome of A. selengensis' third codon position was A/T. The number of SSR repeats was 42-44, most of which were single nucleotide A/T repeats. Sequence alignment analysis of the chloroplast genome showed that variable regions were mainly distributed in single copy regions, nucleotide diversity values of 0 to 0.009 were calculated by sliding window analysis, 8 mutation hotspot regions were detected, and coding regions were more conserved than non-coding regions. Analysis of non-synonymous substitution (Ka) and synonymous substitution (Ks) revealed that accD, rps12, petB, and atpF genes were affected by positive selection and no genes were affected by neutral selection. Based on the findings of the phylogenetic analysis, Artemisia selengensis was sister to the genus Artemisia Chrysanthemum and formed a monophyletic group with other Artemisia genera. CONCLUSIONS: In this research, the present study systematically compared the chloroplast genomic features of A. selengensis and provided important information for the study of the chloroplast genome of A. selengensis and the evolutionary relationships among Asteraceae species.


Assuntos
Artemisia , Genoma de Cloroplastos , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Artemisia/genética , Artemisia/classificação , Composição de Bases , Repetições de Microssatélites , Evolução Molecular , Uso do Códon
18.
BMC Genomics ; 25(1): 229, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429670

RESUMO

BACKGROUND: Alfalfa (Medicago sativa. L) is one of the best leguminous herbage in China and even in the world, with high nutritional and ecological value. However, one of the drawbacks of alfalfa is its sensitivity to dry conditions, which is a global agricultural problem. The objective of this study was to investigate the regulatory effects of endogenous nitric oxide (NO) on endogenous hormones and related miRNAs in alfalfa seedling leaves under drought stress. The effects of endogenous NO on endogenous hormones such as ABA, GA3, SA, and IAA in alfalfa leaves under drought stress were studied. In addition, high-throughput sequencing technology was used to identify drought-related miRNAs and endogenous NO-responsive miRNAs in alfalfa seedling leaves under drought stress. RESULT: By measuring the contents of four endogenous hormones in alfalfa leaves, it was found that endogenous NO could regulate plant growth and stress resistance by inducing the metabolism levels of IAA, ABA, GA3, and SA in alfalfa, especially ABA and SA in alfalfa. In addition, small RNA sequencing technology and bioinformatics methods were used to analyze endogenous NO-responsive miRNAs under drought stress. It was found that most miRNAs were enriched in biological pathways and molecular functions related to hormones (ABA, ETH, and JA), phenylpropane metabolism, and plant stress tolerance. CONCLUSION: In this study, the analysis of endogenous hormone signals and miRNAs in alfalfa leaves under PEG and PEG + cPTIO conditions provided an important basis for endogenous NO to improve the drought resistance of alfalfa at the physiological and molecular levels. It has important scientific value and practical significance for endogenous NO to improve plant drought resistance.


Assuntos
MicroRNAs , Plântula , Plântula/genética , Plântula/metabolismo , Medicago sativa/genética , Óxido Nítrico/metabolismo , Secas , MicroRNAs/genética , MicroRNAs/metabolismo , Hormônios/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
19.
Ecol Lett ; 27(3): e14393, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38430049

RESUMO

Long-term (press) disturbances like the climate crisis and other anthropogenic pressures are fundamentally altering ecosystems and their functions. Many critical ecosystem functions, such as biogeochemical cycling, are facilitated by microbial communities. Understanding the functional consequences of microbiome responses to press disturbances requires ongoing observations of the active populations that contribute to functions. This study leverages a 7-year time series of a 60-year-old coal seam fire (Centralia, Pennsylvania, USA) to examine the resilience of soil bacterial microbiomes to a press disturbance. Using 16S rRNA and 16S rRNA gene amplicon sequencing, we assessed the interannual dynamics of the active subset and the 'whole' bacterial community. Contrary to our hypothesis, the whole communities demonstrated greater resilience than active subsets, suggesting that inactive members contributed to overall structural resilience. Thus, in addition to selection mechanisms of active populations, perceived microbiome resilience is also supported by mechanisms of dispersal, persistence, and revival from the local dormant pool.


Assuntos
Microbiota , Resiliência Psicológica , Solo/química , RNA Ribossômico 16S/genética , Microbiologia do Solo , Bactérias/genética , Microbiota/fisiologia
20.
Mol Cancer ; 23(1): 129, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902727

RESUMO

Malignant tumors have increasing morbidity and high mortality, and their occurrence and development is a complicate process. The development of sequencing technologies enabled us to gain a better understanding of the underlying genetic and molecular mechanisms in tumors. In recent years, the spatial transcriptomics sequencing technologies have been developed rapidly and allow the quantification and illustration of gene expression in the spatial context of tissues. Compared with the traditional transcriptomics technologies, spatial transcriptomics technologies not only detect gene expression levels in cells, but also inform the spatial location of genes within tissues, cell composition of biological tissues, and interaction between cells. Here we summarize the development of spatial transcriptomics technologies, spatial transcriptomics tools and its application in cancer research. We also discuss the limitations and challenges of current spatial transcriptomics approaches, as well as future development and prospects.


Assuntos
Perfilação da Expressão Gênica , Neoplasias , Transcriptoma , Humanos , Neoplasias/genética , Neoplasias/patologia , Animais , Regulação Neoplásica da Expressão Gênica , Biologia Computacional/métodos , Biomarcadores Tumorais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA