Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.661
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(14): 3095-3110.e19, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37321219

RESUMO

The human body contains thousands of metabolites derived from mammalian cells, the microbiota, food, and medical drugs. Many bioactive metabolites act through the engagement of G-protein-coupled receptors (GPCRs); however, technological limitations constrain current explorations of metabolite-GPCR interactions. Here, we developed a highly multiplexed screening technology called PRESTO-Salsa that enables simultaneous assessment of nearly all conventional GPCRs (>300 receptors) in a single well of a 96-well plate. Using PRESTO-Salsa, we screened 1,041 human-associated metabolites against the GPCRome and uncovered previously unreported endogenous, exogenous, and microbial GPCR agonists. Next, we leveraged PRESTO-Salsa to generate an atlas of microbiome-GPCR interactions across 435 human microbiome strains from multiple body sites, revealing conserved patterns of cross-tissue GPCR engagement and activation of CD97/ADGRE5 by the Porphyromonas gingivalis protease gingipain K. These studies thus establish a highly multiplexed bioactivity screening technology and expose a diverse landscape of human, diet, drug, and microbiota metabolome-GPCRome interactions.


Assuntos
Microbiota , Receptores Acoplados a Proteínas G , Animais , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Metaboloma , Mamíferos/metabolismo
2.
Cell ; 185(18): 3408-3425.e29, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35985322

RESUMO

Genetically encoded voltage indicators are emerging tools for monitoring voltage dynamics with cell-type specificity. However, current indicators enable a narrow range of applications due to poor performance under two-photon microscopy, a method of choice for deep-tissue recording. To improve indicators, we developed a multiparameter high-throughput platform to optimize voltage indicators for two-photon microscopy. Using this system, we identified JEDI-2P, an indicator that is faster, brighter, and more sensitive and photostable than its predecessors. We demonstrate that JEDI-2P can report light-evoked responses in axonal termini of Drosophila interneurons and the dendrites and somata of amacrine cells of isolated mouse retina. JEDI-2P can also optically record the voltage dynamics of individual cortical neurons in awake behaving mice for more than 30 min using both resonant-scanning and ULoVE random-access microscopy. Finally, ULoVE recording of JEDI-2P can robustly detect spikes at depths exceeding 400 µm and report voltage correlations in pairs of neurons.


Assuntos
Microscopia , Neurônios , Animais , Interneurônios , Camundongos , Microscopia/métodos , Neurônios/fisiologia , Fótons , Vigília
3.
Cell ; 181(5): 1176-1187.e16, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32437660

RESUMO

Dysfunctional mitochondria accumulate in many human diseases. Accordingly, mitophagy, which removes these mitochondria through lysosomal degradation, is attracting broad attention. Due to uncertainties in the operational principles of conventional mitophagy probes, however, the specificity and quantitativeness of their readouts are disputable. Thorough investigation of the behaviors and fates of fluorescent proteins inside and outside lysosomes enabled us to develop an indicator for mitophagy, mito-SRAI. Through strict control of its mitochondrial targeting, we were able to monitor mitophagy in fixed biological samples more reproducibly than before. Large-scale image-based high-throughput screening led to the discovery of a hit compound that induces selective mitophagy of damaged mitochondria. In a mouse model of Parkinsons disease, we found that dopaminergic neurons selectively failed to execute mitophagy that promoted their survival within lesions. These results show that mito-SRAI is an essential tool for quantitative studies of mitochondrial quality control.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Lisossomos/metabolismo , Mitofagia/fisiologia , Animais , Autofagia/fisiologia , Imunofluorescência/métodos , Corantes Fluorescentes/química , Humanos , Lisossomos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitofagia/genética
4.
Cell ; 183(7): 2020-2035.e16, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33326746

RESUMO

Thousands of proteins localize to the nucleus; however, it remains unclear which contain transcriptional effectors. Here, we develop HT-recruit, a pooled assay where protein libraries are recruited to a reporter, and their transcriptional effects are measured by sequencing. Using this approach, we measure gene silencing and activation for thousands of domains. We find a relationship between repressor function and evolutionary age for the KRAB domains, discover that Homeodomain repressor strength is collinear with Hox genetic organization, and identify activities for several domains of unknown function. Deep mutational scanning of the CRISPRi KRAB maps the co-repressor binding surface and identifies substitutions that improve stability/silencing. By tiling 238 proteins, we find repressors as short as ten amino acids. Finally, we report new activator domains, including a divergent KRAB. These results provide a resource of 600 human proteins containing effectors and demonstrate a scalable strategy for assigning functions to protein domains.


Assuntos
Ensaios de Triagem em Larga Escala , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Sistemas CRISPR-Cas/genética , Feminino , Inativação Gênica , Genes Reporter , Células HEK293 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Células K562 , Lentivirus/fisiologia , Anotação de Sequência Molecular , Mutação/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Domínios Proteicos , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Reprodutibilidade dos Testes , Transcrição Gênica , Dedos de Zinco
5.
Cell ; 177(4): 1067-1079.e19, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31051099

RESUMO

The precise control of CRISPR-Cas9 activity is required for a number of genome engineering technologies. Here, we report a generalizable platform that provided the first synthetic small-molecule inhibitors of Streptococcus pyogenes Cas9 (SpCas9) that weigh <500 Da and are cell permeable, reversible, and stable under physiological conditions. We developed a suite of high-throughput assays for SpCas9 functions, including a primary screening assay for SpCas9 binding to the protospacer adjacent motif, and used these assays to screen a structurally diverse collection of natural-product-like small molecules to ultimately identify compounds that disrupt the SpCas9-DNA interaction. Using these synthetic anti-CRISPR small molecules, we demonstrated dose and temporal control of SpCas9 and catalytically impaired SpCas9 technologies, including transcription activation, and identified a pharmacophore for SpCas9 inhibition using structure-activity relationships. These studies establish a platform for rapidly identifying synthetic, miniature, cell-permeable, and reversible inhibitors against both SpCas9 and next-generation CRISPR-associated nucleases.


Assuntos
Proteína 9 Associada à CRISPR/antagonistas & inibidores , Sistemas CRISPR-Cas/fisiologia , Ensaios de Triagem em Larga Escala/métodos , Proteína 9 Associada à CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/fisiologia , DNA/metabolismo , Endonucleases/metabolismo , Edição de Genes/métodos , Genoma , Bibliotecas de Moléculas Pequenas , Streptococcus pyogenes/genética , Especificidade por Substrato
6.
Cell ; 172(3): 618-628.e13, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29307492

RESUMO

Peptides have great potential to combat antibiotic resistance. While many platforms can screen peptides for their ability to bind to target cells, there are virtually no platforms that directly assess the functionality of peptides. This limitation is exacerbated when identifying antimicrobial peptides because the phenotype, death, selects against itself and has caused a scientific bottleneck that confines research to a few naturally occurring classes of antimicrobial peptides. We have used this seeming dissonance to develop Surface Localized Antimicrobial Display (SLAY), a platform that allows screening of unlimited numbers of peptides of any length, composition, and structure in a single tube for antimicrobial activity. Using SLAY, we screened ∼800,000 random peptide sequences for antimicrobial function and identified thousands of active sequences, dramatically increasing the number of known antimicrobial sequences. SLAY hits present with different potential mechanisms of peptide action and access to areas of antimicrobial physicochemical space beyond what nature has evolved. VIDEO ABSTRACT.


Assuntos
Antibacterianos/farmacologia , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Biblioteca de Peptídeos , Animais , Antibacterianos/química , Escherichia coli , Camundongos
7.
Cell ; 175(1): 266-276.e13, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30166209

RESUMO

A fundamental challenge of biology is to understand the vast heterogeneity of cells, particularly how cellular composition, structure, and morphology are linked to cellular physiology. Unfortunately, conventional technologies are limited in uncovering these relations. We present a machine-intelligence technology based on a radically different architecture that realizes real-time image-based intelligent cell sorting at an unprecedented rate. This technology, which we refer to as intelligent image-activated cell sorting, integrates high-throughput cell microscopy, focusing, and sorting on a hybrid software-hardware data-management infrastructure, enabling real-time automated operation for data acquisition, data processing, decision-making, and actuation. We use it to demonstrate real-time sorting of microalgal and blood cells based on intracellular protein localization and cell-cell interaction from large heterogeneous populations for studying photosynthesis and atherothrombosis, respectively. The technology is highly versatile and expected to enable machine-based scientific discovery in biological, pharmaceutical, and medical sciences.


Assuntos
Citometria de Fluxo/métodos , Ensaios de Triagem em Larga Escala/métodos , Processamento de Imagem Assistida por Computador/métodos , Animais , Aprendizado Profundo , Humanos
8.
Cell ; 171(4): 966-979.e18, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29056345

RESUMO

Protein aggregation is a hallmark of many diseases but also underlies a wide range of positive cellular functions. This phenomenon has been difficult to study because of a lack of quantitative and high-throughput cellular tools. Here, we develop a synthetic genetic tool to sense and control protein aggregation. We apply the technology to yeast prions, developing sensors to track their aggregation states and employing prion fusions to encode synthetic memories in yeast cells. Utilizing high-throughput screens, we identify prion-curing mutants and engineer "anti-prion drives" that reverse the non-Mendelian inheritance pattern of prions and eliminate them from yeast populations. We extend our technology to yeast RNA-binding proteins (RBPs) by tracking their propensity to aggregate, searching for co-occurring aggregates, and uncovering a group of coalescing RBPs through screens enabled by our platform. Our work establishes a quantitative, high-throughput, and generalizable technology to study and control diverse protein aggregation processes in cells.


Assuntos
Técnicas Genéticas , Príons/genética , Engenharia Genética , Técnicas Genéticas/economia , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Biologia Sintética/métodos , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo
9.
Mol Cell ; 84(12): 2382-2396.e9, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906116

RESUMO

The construction of synthetic gene circuits requires the rational combination of multiple regulatory components, but predicting their behavior can be challenging due to poorly understood component interactions and unexpected emergent behaviors. In eukaryotes, chromatin regulators (CRs) are essential regulatory components that orchestrate gene expression. Here, we develop a screening platform to investigate the impact of CR pairs on transcriptional activity in yeast. We construct a combinatorial library consisting of over 1,900 CR pairs and use a high-throughput workflow to characterize the impact of CR co-recruitment on gene expression. We recapitulate known interactions and discover several instances of CR pairs with emergent behaviors. We also demonstrate that supervised machine learning models trained with low-dimensional amino acid embeddings accurately predict the impact of CR co-recruitment on transcriptional activity. This work introduces a scalable platform and machine learning approach that can be used to study how networks of regulatory components impact gene expression.


Assuntos
Cromatina , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Saccharomyces cerevisiae , Biologia Sintética , Transcrição Gênica , Cromatina/metabolismo , Cromatina/genética , Biologia Sintética/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Aprendizado de Máquina Supervisionado , Montagem e Desmontagem da Cromatina , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
10.
Mol Cell ; 82(16): 2982-2999.e14, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35914530

RESUMO

Alternative splicing (AS) is a critical regulatory layer; yet, factors controlling functionally coordinated splicing programs during developmental transitions are poorly understood. Here, we employ a screening strategy to identify factors controlling dynamic splicing events important for mammalian neurogenesis. Among previously unknown regulators, Rbm38 acts widely to negatively control neural AS, in part through interactions mediated by the established repressor of splicing, Ptbp1. Puf60, a ubiquitous factor, is surprisingly found to promote neural splicing patterns. This activity requires a conserved, neural-differential exon that remodels Puf60 co-factor interactions. Ablation of this exon rewires distinct AS networks in embryonic stem cells and at different stages of mouse neurogenesis. Single-cell transcriptome analyses further reveal distinct roles for Rbm38 and Puf60 isoforms in establishing neuronal identity. Our results describe important roles for previously unknown regulators of neurogenesis and establish how an alternative exon in a widely expressed splicing factor orchestrates temporal control over cell differentiation.


Assuntos
Neurogênese , Splicing de RNA , Processamento Alternativo , Animais , Éxons/genética , Mamíferos , Camundongos , Neurogênese/genética , Neurônios , Proteínas de Ligação a RNA/genética
11.
Mol Cell ; 82(16): 3103-3118.e8, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35752172

RESUMO

The development of CRISPR-based barcoding methods creates an exciting opportunity to understand cellular phylogenies. We present a compact, tunable, high-capacity Cas12a barcoding system called dual acting inverted site array (DAISY). We combined high-throughput screening and machine learning to predict and optimize the 60-bp DAISY barcode sequences. After optimization, top-performing barcodes had ∼10-fold increased capacity relative to the best random-screened designs and performed reliably across diverse cell types. DAISY barcode arrays generated ∼12 bits of entropy and ∼66,000 unique barcodes. Thus, DAISY barcodes-at a fraction of the size of Cas9 barcodes-achieved high-capacity barcoding. We coupled DAISY barcoding with single-cell RNA-seq to recover lineages and gene expression profiles from ∼47,000 human melanoma cells. A single DAISY barcode recovered up to ∼700 lineages from one parental cell. This analysis revealed heritable single-cell gene expression and potential epigenetic modulation of memory gene transcription. Overall, Cas12a DAISY barcoding is an efficient tool for investigating cell-state dynamics.


Assuntos
Sistemas CRISPR-Cas , Código de Barras de DNA Taxonômico , Linhagem da Célula/genética , Código de Barras de DNA Taxonômico/métodos , Humanos , Aprendizado de Máquina , Filogenia
12.
Trends Biochem Sci ; 48(10): 894-909, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37422364

RESUMO

G-quadruplexes (G4s) are peculiar nucleic acid secondary structures formed by DNA or RNA and are considered as fundamental features of the genome. Many proteins can specifically bind to G4 structures. There is increasing evidence that G4-protein interactions involve in the regulation of important cellular processes, such as DNA replication, transcription, RNA splicing, and translation. Additionally, G4-protein interactions have been demonstrated to be potential targets for disease treatment. In order to unravel the detailed regulatory mechanisms of G4-binding proteins (G4BPs), biochemical methods for detecting G4-protein interactions with high specificity and sensitivity are highly demanded. Here, we review recent advances in screening and validation of new G4BPs and highlight both their features and limitations.


Assuntos
Quadruplex G , DNA/química , Replicação do DNA , RNA/química
13.
EMBO J ; 42(3): e112100, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36545802

RESUMO

All multicellular life relies on differential gene expression, determined by regulatory DNA elements and DNA-binding transcription factors that mediate activation and repression via cofactor recruitment. While activators have been extensively characterized, repressors are less well studied: the identities and properties of their repressive domains (RDs) are typically unknown and the specific co-repressors (CoRs) they recruit have not been determined. Here, we develop a high-throughput, next-generation sequencing-based screening method, repressive-domain (RD)-seq, to systematically identify RDs in complex DNA-fragment libraries. Screening more than 200,000 fragments covering the coding sequences of all transcription-related proteins in Drosophila melanogaster, we identify 195 RDs in known repressors and in proteins not previously associated with repression. Many RDs contain recurrent short peptide motifs, which are conserved between fly and human and are required for RD function, as demonstrated by motif mutagenesis. Moreover, we show that RDs that contain one of five distinct repressive motifs interact with and depend on different CoRs, such as Groucho, CtBP, Sin3A, or Smrter. These findings advance our understanding of repressors, their sequences, and the functional impact of sequence-altering mutations and should provide a valuable resource for further studies.


Assuntos
Proteínas de Drosophila , Fatores de Transcrição , Animais , Humanos , Fatores de Transcrição/metabolismo , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Correpressoras/metabolismo , DNA/metabolismo
14.
Proc Natl Acad Sci U S A ; 121(22): e2310677121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38753503

RESUMO

Seasonal and pandemic-associated influenza strains cause highly contagious viral respiratory infections that can lead to severe illness and excess mortality. Here, we report on the optimization of our small-molecule inhibitor F0045(S) targeting the influenza hemagglutinin (HA) stem with our Sulfur-Fluoride Exchange (SuFEx) click chemistry-based high-throughput medicinal chemistry (HTMC) strategy. A combination of SuFEx- and amide-based lead molecule diversification and structure-guided design led to identification and validation of ultrapotent influenza fusion inhibitors with subnanomolar EC50 cellular antiviral activity against several influenza A group 1 strains. X-ray structures of six of these compounds with HA indicate that the appended moieties occupy additional pockets on the HA surface and increase the binding interaction, where the accumulation of several polar interactions also contributes to the improved affinity. The compounds here represent the most potent HA small-molecule inhibitors to date. Our divergent HTMC platform is therefore a powerful, rapid, and cost-effective approach to develop bioactive chemical probes and drug-like candidates against viral targets.


Assuntos
Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Humanos , Antivirais/farmacologia , Antivirais/química , Química Farmacêutica/métodos , Ensaios de Triagem em Larga Escala/métodos , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Cristalografia por Raios X/métodos , Química Click/métodos , Animais , Vírus da Influenza A/efeitos dos fármacos , Células Madin Darby de Rim Canino , Inibidores de Proteínas Virais de Fusão/farmacologia , Inibidores de Proteínas Virais de Fusão/química , Cães
15.
Proc Natl Acad Sci U S A ; 120(47): e2303978120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37963252

RESUMO

Robust high-throughput assays are crucial for the effective functioning of a drug discovery pipeline. Herein, we report the development of Invasion-Block, an automated high-content screening platform for measuring invadopodia-mediated matrix degradation as a readout for the invasive capacity of cancer cells. Combined with Smoothen-Mask and Reveal, a custom-designed, automated image analysis pipeline, this platform allowed us to evaluate melanoma cell invasion capacity posttreatment with two libraries of compounds comprising 3840 U.S. Food and Drug Administration (FDA)-approved drugs with well-characterized safety and bioavailability profiles in humans as well as a kinase inhibitor library comprising 210 biologically active compounds. We found that Abl/Src, PKC, PI3K, and Ataxia-telangiectasia mutated (ATM) kinase inhibitors significantly reduced melanoma cell invadopodia formation and cell invasion. Abrogation of ATM expression in melanoma cells via CRISPR-mediated gene knockout reduced 3D invasion in vitro as well as spontaneous lymph node metastasis in vivo. Together, this study established a rapid screening assay coupled with a customized image-analysis pipeline for the identification of antimetastatic drugs. Our study implicates that ATM may serve as a potent therapeutic target for the treatment of melanoma cell spread in patients.


Assuntos
Antineoplásicos , Ataxia Telangiectasia , Melanoma , Humanos , Ataxia Telangiectasia/tratamento farmacológico , Linhagem Celular Tumoral , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Antineoplásicos/farmacologia , Ensaios de Triagem em Larga Escala , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
16.
Proc Natl Acad Sci U S A ; 120(11): e2207974120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36897987

RESUMO

Small beta barrel proteins are attractive targets for computational design because of their considerable functional diversity despite their very small size (<70 amino acids). However, there are considerable challenges to designing such structures, and there has been little success thus far. Because of the small size, the hydrophobic core stabilizing the fold is necessarily very small, and the conformational strain of barrel closure can oppose folding; also intermolecular aggregation through free beta strand edges can compete with proper monomer folding. Here, we explore the de novo design of small beta barrel topologies using both Rosetta energy-based methods and deep learning approaches to design four small beta barrel folds: Src homology 3 (SH3) and oligonucleotide/oligosaccharide-binding (OB) topologies found in nature and five and six up-and-down-stranded barrels rarely if ever seen in nature. Both approaches yielded successful designs with high thermal stability and experimentally determined structures with less than 2.4 Å rmsd from the designed models. Using deep learning for backbone generation and Rosetta for sequence design yielded higher design success rates and increased structural diversity than Rosetta alone. The ability to design a large and structurally diverse set of small beta barrel proteins greatly increases the protein shape space available for designing binders to protein targets of interest.


Assuntos
Aminoácidos , Proteínas , Estrutura Secundária de Proteína , Modelos Moleculares , Proteínas/química , Conformação Proteica em Folha beta , Dobramento de Proteína
17.
J Biol Chem ; : 107528, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960038

RESUMO

Therapeutic inhibition of the viral protein Nef is an intriguing direction of antiretroviral drug discovery-it may revitalize immune mechanisms to target, and potentially clear, HIV-1-infected cells. Of the many cellular functions of Nef, the most conserved is the downregulation of surface CD4, which takes place through Nef hijacking the clathrin adaptor protein complex 2 (AP2)-dependent endocytosis. Our recent crystal structure has unraveled the molecular details of the CD4-Nef-AP2 interaction. Guided by the new structural knowledge, we have developed a fluorescence polarization-based assay for inhibitor screening against Nef's activity on CD4. In our assay, AP2 is included along with Nef to facilitate the proper formation of the CD4-binding pocket, and a fluorescently labeled CD4 cytoplasmic tail binds competently to the Nef-AP2 complex generating the desired polarization signal. The optimized assay has a good signal-to-noise ratio, excellent tolerance of DMSO and detergent, and the ability to detect competitive binding at the targeted Nef pocket, making it suitable for high-throughput screening.

18.
J Biol Chem ; : 107529, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38960039

RESUMO

The multifunctional, HIV-1 accessory protein Nef enables infected cells to evade host immunity and thus plays a key role in viral pathogenesis. One prominent function of Nef is the downregulation of major histocompatibility complex class I (MHC-I), which disrupts antigen presentation and thereby allows the infected cells to evade immune surveillance by the cytotoxic T cells. Therapeutic inhibition of this Nef function is a promising direction of antiretroviral drug discovery as it may revitalize cytotoxic T cells to identify, and potentially clear, hidden HIV-1 infections. Guided by the crystal structure of the protein complex formed between Nef, MHC-I, and the hijacked clathrin adaptor protein complex 1 (AP1), we have developed a fluorescence polarization-based assay for inhibitor screening against Nef's activity on MHC-I. The optimized assay has a good signal-to-noise ratio, substantial tolerance of DMSO, and excellent ability to detect competitive inhibition, indicating that it is suitable for high-throughput screening.

19.
J Biol Chem ; 300(6): 107410, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38796062

RESUMO

Over the past decade, the connection between APOBEC3 cytosine deaminases and cancer mutagenesis has become increasingly apparent. This growing awareness has created a need for biochemical tools that can be used to identify and characterize potential inhibitors of this enzyme family. In response to this challenge, we have developed a Real-time APOBEC3-mediated DNA Deamination assay. This assay offers a single-step set-up and real-time fluorescent read-out, and it is capable of providing insights into enzyme kinetics. The assay also offers a high-sensitivity and easily scalable method for identifying APOBEC3 inhibitors. This assay serves as a crucial addition to the existing APOBEC3 biochemical and cellular toolkit and possesses the versatility to be readily adapted into a high-throughput format for inhibitor discovery.


Assuntos
Citidina Desaminase , DNA , Humanos , Desaminação , Citidina Desaminase/metabolismo , DNA/metabolismo , DNA/química , Cinética , Desaminases APOBEC/metabolismo , Inibidores Enzimáticos/farmacologia
20.
RNA ; 29(2): 252-261, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36456183

RESUMO

Untranslatable mitochondrial transcripts in kinetoplastids are decrypted post-transcriptionally through an RNA editing process that entails uridine insertion/deletion. This unique stepwise process is mediated by the editosome, a multiprotein complex that is a validated drug target of considerable interest in addressing the unmet medical needs for kinetoplastid diseases. With that objective, several in vitro RNA editing assays have been developed, albeit with limited success in discovering potent inhibitors. This manuscript describes the development of three hammerhead ribozyme (HHR) FRET reporter-based RNA editing assays for precleaved deletion, insertion, and ligation assays that bypass the rate-limiting endonucleolytic cleavage step, providing information on U-deletion, U-insertion, and ligation activities. These assays exhibit higher editing efficiencies in shorter incubation times while requiring significantly less purified editosome and 10,000-fold less ATP than the previously published full round of in vitro RNA editing assay. Moreover, modifications in the reporter ribozyme sequence enable the feasibility of multiplexing a ribozyme-based insertion/deletion editing (RIDE) assay that simultaneously surveils U-insertion and deletion editing suitable for HTS. These assays can be used to find novel chemical compounds with chemotherapeutic applications or as probes for studying the editosome machinery.


Assuntos
RNA Catalítico , Trypanosoma brucei brucei , Edição de RNA , RNA Catalítico/genética , RNA Catalítico/metabolismo , Trypanosoma brucei brucei/genética , Uridina/genética , RNA de Protozoário/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA