RESUMO
During early development, the hindbrain is sub-divided into rhombomeres that underlie the organisation of neurons and adjacent craniofacial tissues. A gene regulatory network of signals and transcription factors establish and pattern segments with a distinct anteroposterior identity. Initially, the borders of segmental gene expression are imprecise, but then become sharply defined, and specialised boundary cells form. In this Review, we summarise key aspects of the conserved regulatory cascade that underlies the formation of hindbrain segments. We describe how the pattern is sharpened and stabilised through the dynamic regulation of cell identity, acting in parallel with cell segregation. Finally, we discuss evidence that boundary cells have roles in local patterning, and act as a site of neurogenesis within the hindbrain.
Assuntos
Padronização Corporal/fisiologia , Rombencéfalo/crescimento & desenvolvimento , Rombencéfalo/fisiologia , Vertebrados/crescimento & desenvolvimento , Vertebrados/fisiologia , Animais , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Redes Reguladoras de Genes/fisiologia , HumanosRESUMO
Segmentation of the vertebrate hindbrain leads to the formation of rhombomeres, each with a distinct anteroposterior identity. Specialised boundary cells form at segment borders that act as a source or regulator of neuronal differentiation. In zebrafish, there is spatial patterning of neurogenesis in which non-neurogenic zones form at boundaries and segment centres, in part mediated by Fgf20 signalling. To further understand the control of neurogenesis, we have carried out single cell RNA sequencing of the zebrafish hindbrain at three different stages of patterning. Analyses of the data reveal known and novel markers of distinct hindbrain segments, of cell types along the dorsoventral axis, and of the transition of progenitors to neuronal differentiation. We find major shifts in the transcriptome of progenitors and of differentiating cells between the different stages analysed. Supervised clustering with markers of boundary cells and segment centres, together with RNA-seq analysis of Fgf-regulated genes, has revealed new candidate regulators of cell differentiation in the hindbrain. These data provide a valuable resource for functional investigations of the patterning of neurogenesis and the transition of progenitors to neuronal differentiation.
Assuntos
Padronização Corporal/genética , Rombencéfalo/embriologia , Rombencéfalo/metabolismo , Transcriptoma/fisiologia , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Atlas como Assunto , Diferenciação Celular/genética , Embrião não Mamífero , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Neurônios/citologia , Neurônios/fisiologia , Análise de Célula Única/métodos , Distribuição Tecidual , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismoRESUMO
Meis genes are known to play important roles in the hindbrain and neural crest cells of jawed vertebrates. To explore the roles of Meis genes in head development during evolution of vertebrates, we have identified four meis genes in the sea lamprey genome and characterized their patterns of expression and regulation, with a focus on the hindbrain and pharynx. Each of the lamprey meis genes displays temporally and spatially dynamic patterns of expression, some of which are coupled to rhombomeric domains in the developing hindbrain and select pharyngeal arches. Studies of Meis loci in mouse and zebrafish have identified enhancers that are bound by Hox and TALE (Meis and Pbx) proteins, implicating these factors in the direct regulation of Meis expression. We examined the lamprey meis loci and identified a series of cis-elements conserved between lamprey and jawed vertebrate meis genes. In transgenic reporter assays we demonstrated that these elements act as neural enhancers in lamprey embryos, directing reporter expression in appropriate domains when compared to expression of their associated endogenous meis gene. Sequence alignments reveal that these conserved elements are in similar relative positions of the meis loci and contain a series of consensus binding motifs for Hox and TALE proteins. This suggests that ancient Hox and TALE-responsive enhancers regulated expression of ancestral vertebrate meis genes in segmental domains in the hindbrain and have been retained in the meis loci during vertebrate evolution. The presence of conserved Meis, Pbx and Hox binding sites in these lamprey enhancers links Hox and TALE factors to regulation of lamprey meis genes in the developing hindbrain, indicating a deep ancestry for these regulatory interactions prior to the divergence of jawed and jawless vertebrates.
Assuntos
Lampreias/genética , Tubo Neural/embriologia , Rombencéfalo/embriologia , Animais , Sítios de Ligação , Padronização Corporal/genética , Sequência Conservada , Elementos Facilitadores Genéticos , Expressão Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes Homeobox/genética , Proteínas de Homeodomínio/metabolismo , Lampreias/metabolismo , Proteína Meis1/genética , Proteína Meis1/metabolismo , Crista Neural/metabolismo , Tubo Neural/metabolismo , Fator de Transcrição 1 de Leucemia de Células Pré-B/genética , Fator de Transcrição 1 de Leucemia de Células Pré-B/metabolismo , Rombencéfalo/metabolismo , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND: The basic ground plan of vertebrate hindbrain is established through a process of segmentation, which generates eight transient lineage-restricted cellular compartments called rhombomeres (r). The segments adopt distinct individual identities in response to axial patterning signals. It is unclear whether signaling between rhombomeres plays a conserved role in regulating segmental patterning during hindbrain development. RESULTS: Using tissue manipulations of rhombomeres in chicken embryos, we have uncovered roles for r2 and r4 in regulating the expression of EphA4 in r3 and r5. Perturbations of signaling pathways reveal that these regulatory inputs from r2 and r4 into EphA4 expression are mediated independent of inputs from Krox20 through cues involving fibroblast growth factor (FGF) signaling. These interactions are stage dependent and are set up in embryos with <10 somites. CONCLUSIONS: We show that r2 and r4 function as temporally dynamic signaling centers in the early patterning of adjacent hindbrain segments and this activity is dependent upon the FGF pathway. These results reveal that inter-rhombomeric signaling is a conserved feature of the regulatory networks that control the specification of individual rhombomere identities in vertebrate hindbrain segmentation. However, the timing of when restricted domains of FGF signaling are coupled to formation of r4 may vary between the species.
Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Receptor EphA4/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Rombencéfalo/metabolismo , Animais , Embrião de Galinha , Fatores de Crescimento de Fibroblastos/genética , Hibridização In Situ , Receptor EphA4/genética , Receptores da Família Eph/genética , Receptores da Família Eph/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Rombencéfalo/embriologiaRESUMO
In the hindbrain and the adjacent cranial neural crest (NC) cells of jawed vertebrates (gnathostomes), nested and segmentally-restricted domains of Hox gene expression provide a combinatorial Hox-code for specifying regional properties during head development. Extant jawless vertebrates, such as the sea lamprey (Petromyzon marinus), can provide insights into the evolution and diversification of this Hox-code in vertebrates. There is evidence for gnathostome-like spatial patterns of Hox expression in lamprey; however, the expression domains of the majority of lamprey hox genes from paralogy groups (PG) 1-4 are yet to be characterized, so it is unknown whether they are coupled to hindbrain segments (rhombomeres) and NC. In this study, we systematically describe the spatiotemporal expression of all 14 sea lamprey hox genes from PG1-PG4 in the developing hindbrain and pharynx to investigate the extent to which their expression conforms to the archetypal gnathostome hindbrain and pharyngeal hox-codes. We find many similarities in Hox expression between lamprey and gnathostome species, particularly in rhombomeric domains during hindbrain segmentation and in the cranial neural crest, enabling inference of aspects of Hox expression in the ancestral vertebrate embryonic head. These data are consistent with the idea that a Hox regulatory network underlying hindbrain segmentation is a pan vertebrate trait. We also reveal differences in hindbrain domains at later stages, as well as expression in the endostyle and in pharyngeal arch (PA) 1 mesoderm. Our analysis suggests that many Hox expression domains that are observed in extant gnathostomes were present in ancestral vertebrates but have been partitioned differently across Hox clusters in gnathostome and cyclostome lineages after duplication.
Assuntos
Embrião não Mamífero/metabolismo , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Cabeça/embriologia , Petromyzon/embriologia , Petromyzon/genética , Animais , Faringe/embriologia , Rombencéfalo/embriologiaRESUMO
Segregating cells into compartments during embryonic development is essential for growth and pattern formation. In the developing hindbrain, boundaries separate molecularly, physically and neuroanatomically distinct segments called rhombomeres. After rhombomeric cells have acquired their identity, interhombomeric boundaries restrict cell intermingling between adjacent rhombomeres and act as signaling centers to pattern the surrounding tissue. Several works have stressed the relevance of Eph/ephrin signaling in rhombomeric cell sorting. Recent data have unveiled the role of this pathway in the assembly of actomyosin cables as an important mechanism for keeping cells from different rhombomeres segregated. In this Review, we will provide a short summary of recent evidences gathered in different systems suggesting that physical actomyosin barriers can be a general mechanism for tissue separation. We will discuss current evidences supporting a model where cell-cell signaling pathways, such as Eph/ephrin, govern compartmental cell sorting through modulation of the actomyosin cytoskeleton and cell adhesive properties to prevent cell intermingling.
Assuntos
Comunicação Celular/fisiologia , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Modelos Neurológicos , Morfogênese/fisiologia , Rombencéfalo/embriologia , Actomiosina/biossíntese , Animais , Adesão Celular/fisiologia , Humanos , Especificidade da EspécieRESUMO
Retinoic acid (RA) is involved in antero-posterior patterning of the chordate body axis and, in jawed vertebrates, has been shown to play a major role at multiple levels of the gene regulatory network (GRN) regulating hindbrain segmentation. Knowing when and how RA became coupled to the core hindbrain GRN is important for understanding how ancient signaling pathways and patterning genes can evolve and generate diversity. Hence, we investigated the link between RA signaling and hindbrain segmentation in the sea lamprey Petromyzon marinus, an important jawless vertebrate model providing clues to decipher ancestral vertebrate features. Combining genomics, gene expression, and functional analyses of major components involved in RA synthesis (Aldh1as) and degradation (Cyp26s), we demonstrate that RA signaling is coupled to hindbrain segmentation in lamprey. Thus, the link between RA signaling and hindbrain segmentation is a pan vertebrate feature of the hindbrain and likely evolved at the base of vertebrates.
RESUMO
The segregation of distinct cell populations to form sharp boundaries is crucial for stabilising tissue organisation, for example during hindbrain segmentation in craniofacial development. Two types of mechanisms have been found to underlie cell segregation: differential adhesion mediated by cadherins, and Eph receptor and ephrin signalling at the heterotypic interface which regulates cell adhesion, cortical tension and repulsion. An interplay occurs between these mechanisms since cadherins have been found to contribute to Eph-ephrin-mediated cell segregation. This may reflect that Eph receptor activation acts through multiple pathways to decrease cadherin-mediated adhesion which can drive cell segregation. However, Eph receptors mainly drive cell segregation through increased heterotypic tension or repulsion. Cadherins contribute to cell segregation by antagonising homotypic tension within each cell population. This suppression of homotypic tension increases the difference with heterotypic tension triggered by Eph receptor activation, and it is this differential tension that drives cell segregation and border sharpening.
RESUMO
The patterning of tissues to form subdivisions with distinct and homogeneous regional identity is potentially disrupted by cell intermingling. Transplantation studies suggest that homogeneous segmental identity in the hindbrain is maintained by identity switching of cells that intermingle into another segment. We show that switching occurs during normal development and is mediated by feedback between segment identity and the retinoic acid degrading enzymes, cyp26b1 and cyp26c1. egr2, which specifies the segmental identity of rhombomeres r3 and r5, underlies the lower expression level of cyp26b1 and cyp26c1 in r3 and r5 compared with r2, r4, and r6. Consequently, r3 or r5 cells that intermingle into adjacent segments encounter cells with higher cyp26b1/c1 expression, which we find is required for downregulation of egr2b expression. Furthermore, egr2b expression is regulated in r2, r4, and r6 by non-autonomous mechanisms that depend upon the number of neighbors that express egr2b. These findings reveal that a community regulation of retinoid signaling maintains homogeneous segmental identity.
Assuntos
Padronização Corporal/efeitos dos fármacos , Linhagem da Célula/efeitos dos fármacos , Embrião não Mamífero/fisiologia , Rombencéfalo/fisiologia , Tretinoína/farmacologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Animais , Antineoplásicos/farmacologia , Reprogramação Celular , Embrião não Mamífero/citologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Crista Neural/citologia , Crista Neural/fisiologia , Rombencéfalo/citologia , Rombencéfalo/efeitos dos fármacos , Transdução de Sinais , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genéticaRESUMO
The hindbrain develops through a process of segmentation which is coupled with the ordered expression of Hox genes to generate regional diversity of key neural and craniofacial derivatives during head development. This is a fundamental feature governed by a gene regulatory network conserved to the base of vertebrate evolution.
Assuntos
Evolução Biológica , Padronização Corporal/genética , Redes Reguladoras de Genes , Genes Homeobox/genética , Rombencéfalo/embriologia , Animais , Regulação da Expressão Gênica no Desenvolvimento , HumanosRESUMO
The vertebrate hindbrain develops as a series of well-defined neuroepithelial segments or rhombomeres. While rhombomeres are visible in all vertebrate embryos, generally there is not any visible segmental anatomy in the brains of adults. Teleost fish are exceptional in retaining a rhombomeric pattern of reticulospinal neurons through embryonic, larval, and adult periods. We use this feature to map more precisely the segmental imprint in the reticular and motor basal hindbrain of adult goldfish. Analysis of serial sections cut in three planes and computer reconstructions of retrogradely labeled reticulospinal neurons yielded a segmental framework compatible with previous reports and more amenable to correlation with surrounding neuronal features. Cranial nerve motoneurons and octavolateral efferent neurons were aligned to the reticulospinal scaffold by mapping neurons immunopositive for choline acetyltransferase or retrogradely labeled from cranial nerve roots. The mapping corresponded well with the known ontogeny of these neurons and helps confirm the segmental territories defined by reticulospinal anatomy. Because both the reticulospinal and the motoneuronal segmental patterns persist in the hindbrain of adult goldfish, we hypothesize that a permanent "hindbrain framework" may be a general property that is retained in adult vertebrates. The establishment of a relationship between individual segments and neuronal phenotypes provides a convenient method for future studies that combine form, physiology, and function in adult vertebrates.