Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 515
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 137(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38587100

RESUMO

During development, neurons achieve a stereotyped neuron type-specific morphology, which relies on dynamic support by microtubules (MTs). An important player is the augmin complex (hereafter augmin), which binds to existing MT filaments and recruits the γ-tubulin ring complex (γ-TuRC), to form branched MTs. In cultured neurons, augmin is important for neurite formation. However, little is known about the role of augmin during neurite formation in vivo. Here, we have revisited the role of mammalian augmin in culture and then turned towards the class four Drosophila dendritic arborization (c4da) neurons. We show that MT density is maintained through augmin in cooperation with the γ-TuRC in vivo. Mutant c4da neurons show a reduction of newly emerging higher-order dendritic branches and in turn also a reduced number of their characteristic space-filling higher-order branchlets. Taken together, our data reveal a cooperative function for augmin with the γ-TuRC in forming enough MTs needed for the appropriate differentiation of morphologically complex dendrites in vivo.


Assuntos
Dendritos , Proteínas de Drosophila , Proteínas Associadas aos Microtúbulos , Microtúbulos , Animais , Microtúbulos/metabolismo , Dendritos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Drosophila melanogaster/metabolismo , Tubulina (Proteína)/metabolismo , Drosophila/metabolismo , Humanos , Neurônios/metabolismo , Neurônios/citologia
2.
Development ; 150(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37823352

RESUMO

Dendritic outgrowth in immature neurons is enhanced by neuronal activity and is considered one of the mechanisms of neural circuit optimization. It is known that calcium signals affect transcriptional regulation and cytoskeletal remodeling necessary for dendritic outgrowth. Here, we demonstrate that activity-dependent calcium signaling also controls mitochondrial homeostasis via AMP-activated protein kinase (AMPK) in growing dendrites of differentiating mouse hippocampal neurons. We found that the inhibition of neuronal activity induced dendritic hypotrophy with abnormally elongated mitochondria. In growing dendrites, AMPK is activated by neuronal activity and dynamically oscillates in synchrony with calcium spikes, and this AMPK oscillation was inhibited by CaMKK2 knockdown. AMPK activation led to phosphorylation of MFF and ULK1, which initiate mitochondrial fission and mitophagy, respectively. Dendritic mitochondria in AMPK-depleted neurons exhibited impaired fission and mitophagy and displayed multiple signs of dysfunction. Genetic inhibition of fission led to dendritic hypoplasia that was reminiscent of AMPK-deficient neurons. Thus, AMPK activity is finely tuned by the calcium-CaMKK2 pathway and regulates mitochondrial homeostasis by facilitating removal of damaged components of mitochondria in growing neurons during normal brain development.


Assuntos
Proteínas Quinases Ativadas por AMP , Cálcio , Camundongos , Animais , Fosforilação , Proteínas Quinases Ativadas por AMP/genética , Cálcio/metabolismo , Neurônios/metabolismo , Mitocôndrias/metabolismo , Dendritos/metabolismo , Homeostase
3.
J Cell Sci ; 135(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35019135

RESUMO

The adapter protein SH2B1 is recruited to neurotrophin receptors, including TrkB (also known as NTRK2), the receptor for brain-derived neurotrophic factor (BDNF). Herein, we demonstrate that the four alternatively spliced isoforms of SH2B1 (SH2B1α-SH2B1δ) are important determinants of neuronal architecture and neurotrophin-induced gene expression. Primary hippocampal neurons from Sh2b1-/- [knockout (KO)] mice exhibit decreased neurite complexity and length, and BDNF-induced expression of the synapse-related immediate early genes Egr1 and Arc. Reintroduction of each SH2B1 isoform into KO neurons increases neurite complexity; the brain-specific δ isoform also increases total neurite length. Human obesity-associated variants, when expressed in SH2B1δ, alter neurite complexity, suggesting that a decrease or increase in neurite branching may have deleterious effects that contribute to the severe childhood obesity and neurobehavioral abnormalities associated with these variants. Surprisingly, in contrast to SH2B1α, SH2B1ß and SH2B1γ, which localize primarily in the cytoplasm and plasma membrane, SH2B1δ resides primarily in nucleoli. Some SH2B1δ is also present in the plasma membrane and nucleus. Nucleolar localization, driven by two highly basic regions unique to SH2B1δ, is required for SH2B1δ to maximally increase neurite complexity and BDNF-induced expression of Egr1, Arc and FosL1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Neurônios/citologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Camundongos , Neuritos/metabolismo , Neurônios/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
4.
Neurochem Res ; 49(7): 1655-1664, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38217758

RESUMO

Studies have demonstrated that LIN28 is expressed in the CNS and may exert protective effects on neurons. However, it remains unknown whether LIN28 regulates ferroptosis in the context of epilepsy. In this study, we established an epilepsy model by culturing hippocampal neurons from rats in a magnesium-free (Mg2+-free) medium. In Mg2+-depleted conditions, hippocampal neurons exhibited reduced LIN28 expression, heightened miR-142-5p expression, decreased glutathione peroxidase (GPX) activity and expression, elevated levels of reactive oxygen species (ROS) and malondialdehyde (MDA), resulting in a significant decline in cell viability and an increase in ferroptosis. Conversely, overexpression of LIN28 reversed these trends in the mentioned indices. Altogether, this study reveals that LIN28 may exert neuroprotective effects by inhibiting the miR-142-5p expression and suppressing ferroptosis in hippocampal neurons induced by Mg2+-free via increasing GPX4 expression.


Assuntos
Epilepsia , Ferroptose , Hipocampo , Magnésio , Neurônios , Ratos Sprague-Dawley , Animais , Ferroptose/fisiologia , Ferroptose/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Magnésio/metabolismo , Ratos , Epilepsia/metabolismo , Epilepsia/patologia , Células Cultivadas , Proteínas de Ligação a RNA/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , MicroRNAs/metabolismo , MicroRNAs/genética , Espécies Reativas de Oxigênio/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo
5.
Cell Biol Toxicol ; 40(1): 41, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833095

RESUMO

Hippocampal neurons maintain the ability of proliferation throughout life to support neurogenesis. Deoxynivalenol (DON) is a mycotoxin that exhibits brain toxicity, yet whether and how DON affects hippocampal neurogenesis remains unknown. Here, we use mouse hippocampal neuron cells (HT-22) as a model to illustrate the effects of DON on neuron proliferation and to explore underlying mechanisms. DON exposure significantly inhibits the proliferation of HT-22 cells, which is associated with an up-regulation of cell cycle inhibitor p21 at both mRNA and protein levels. Global and site-specific m6A methylation levels on the 3'UTR of p21 mRNA are significantly increased in response to DON treatment, whereas inhibition of m6A hypermethylation significantly alleviates DON-induced cell cycle arrest. Further mechanistic studies indicate that the m6A readers YTHDF1 and IGF2BP1 are responsible for m6A-mediated increase in p21 mRNA stability. Meanwhile, 3'UTR of E3 ubiquitin ligase TRIM21 mRNA is also m6A hypermethylated, and another m6A reader YTHDF2 binds to the m6A sites, leading to decreased TRIM21 mRNA stability. Consequently, TRIM21 suppression impairs ubiquitin-mediated p21 protein degradation. Taken together, m6A-mediated upregulation of p21, at both post-transcriptional and post-translational levels, contributes to DON-induced inhibition of hippocampal neuron proliferation. These results may provide new insights for epigenetic therapy of neurodegenerative diseases.


Assuntos
Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21 , Hipocampo , Neurônios , Tricotecenos , Regulação para Cima , Animais , Tricotecenos/toxicidade , Tricotecenos/farmacologia , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/citologia , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação para Cima/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Linhagem Celular , Regiões 3' não Traduzidas/genética , Neurogênese/efeitos dos fármacos , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Estabilidade de RNA/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Metilação/efeitos dos fármacos
6.
Cell Mol Life Sci ; 80(10): 289, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37690046

RESUMO

Major depressive disorder (MDD) is a pervasive and devastating mental disease. Broad spectrum histone deacetylase (HDAC) inhibitors are considered to have potential for the treatment of depressive phenotype in mice. However, due to its non-specific inhibition, it has extensive side effects and can not be used in clinical treatment of MDD. Therefore, finding specific HDAC subtypes that play a major role in the etiology of MDD is the key to develop corresponding specific inhibitors as antidepressants in the future. Copy number variation in HDAC9 gene is thought to be associated with the etiology of some psychiatric disorders. Herein, we found that HDAC9 was highly expressed in the hippocampus of chronic restraint stress (CRS) mouse model of depression. Upregulation of HDAC9 expression in hippocampal neurons of mice induced depression-like phenotypes, including anhedonia, helplessness, decreased dendritic spine density, and neuronal hypoexcitability. Moreover, knockdown or knockout of HDAC9 in hippocampal neurons alleviated depression-like phenotypes caused by chronic restraint stress (CRS) in WT mice. Importantly, using immunoprecipitation-mass spectrometry (IP-MS), we further found that Annexin A2 (ANXA2) was coupled to and deacetylated by HDAC9. This coupling resulted in the inhibition of ubiquitinated ANXA2 degradation and then mediates depression-like behavior. Overall, we discovered a previously unrecognized role for HDAC9 in hippocampal neurons in the pathogenesis of depression, indicating that inhibition of HDAC9 might be a promising clinical strategy for the treatment of depressive disorders.


Assuntos
Anexina A2 , Transtorno Depressivo Maior , Histona Desacetilases , Animais , Camundongos , Anexina A2/genética , Depressão/genética , Variações do Número de Cópias de DNA , Hipocampo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Regulação para Cima
7.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33782113

RESUMO

In nerve cells the genes encoding for α2δ subunits of voltage-gated calcium channels have been linked to synaptic functions and neurological disease. Here we show that α2δ subunits are essential for the formation and organization of glutamatergic synapses. Using a cellular α2δ subunit triple-knockout/knockdown model, we demonstrate a failure in presynaptic differentiation evidenced by defective presynaptic calcium channel clustering and calcium influx, smaller presynaptic active zones, and a strongly reduced accumulation of presynaptic vesicle-associated proteins (synapsin and vGLUT). The presynaptic defect is associated with the downscaling of postsynaptic AMPA receptors and the postsynaptic density. The role of α2δ isoforms as synaptic organizers is highly redundant, as each individual α2δ isoform can rescue presynaptic calcium channel trafficking and expression of synaptic proteins. Moreover, α2δ-2 and α2δ-3 with mutated metal ion-dependent adhesion sites can fully rescue presynaptic synapsin expression but only partially calcium channel trafficking, suggesting that the regulatory role of α2δ subunits is independent from its role as a calcium channel subunit. Our findings influence the current view on excitatory synapse formation. First, our study suggests that postsynaptic differentiation is secondary to presynaptic differentiation. Second, the dependence of presynaptic differentiation on α2δ implicates α2δ subunits as potential nucleation points for the organization of synapses. Finally, our results suggest that α2δ subunits act as transsynaptic organizers of glutamatergic synapses, thereby aligning the synaptic active zone with the postsynaptic density.


Assuntos
Canais de Cálcio/metabolismo , Ácido Glutâmico/metabolismo , Terminações Pré-Sinápticas/metabolismo , Animais , Canais de Cálcio/genética , Células Cultivadas , Hipocampo/citologia , Camundongos Knockout , Terminações Pré-Sinápticas/ultraestrutura , Isoformas de Proteínas/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33903230

RESUMO

Neuropeptides and neurotrophic factors secreted from dense core vesicles (DCVs) control many brain functions, but the calcium sensors that trigger their secretion remain unknown. Here, we show that in mouse hippocampal neurons, DCV fusion is strongly and equally reduced in synaptotagmin-1 (Syt1)- or Syt7-deficient neurons, but combined Syt1/Syt7 deficiency did not reduce fusion further. Cross-rescue, expression of Syt1 in Syt7-deficient neurons, or vice versa, completely restored fusion. Hence, both sensors are rate limiting, operating in a single pathway. Overexpression of either sensor in wild-type neurons confirmed this and increased fusion. Syt1 traveled with DCVs and was present on fusing DCVs, but Syt7 supported fusion largely from other locations. Finally, the duration of single DCV fusion events was reduced in Syt1-deficient but not Syt7-deficient neurons. In conclusion, two functionally redundant calcium sensors drive neuromodulator secretion in an expression-dependent manner. In addition, Syt1 has a unique role in regulating fusion pore duration.


Assuntos
Encéfalo/metabolismo , Neurônios/metabolismo , Neurotransmissores/química , Sinaptotagmina I/genética , Sinaptotagminas/genética , Animais , Cálcio/química , Cálcio/metabolismo , Vesículas de Núcleo Denso/genética , Vesículas de Núcleo Denso/metabolismo , Regulação da Expressão Gênica/genética , Hipocampo/metabolismo , Humanos , Camundongos , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/metabolismo , Neurônios/patologia , Neuropeptídeos/química , Neuropeptídeos/metabolismo , Neurotransmissores/metabolismo
9.
J Integr Neurosci ; 23(3): 61, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38538223

RESUMO

BACKGROUND: Tanshinone IIA (TSIIA) is an element of the effective ingredients of Salvia miltiorrhiza Bunge (Labiatae), exhibits a significant therapeutic effect in brain neuroprotection. The focus of this study was the examination of synaptic plasticity of in Mg2+-free-induced epileptic hippocampus neurons and how TSIIA protects against it. METHODS: The purity of the primary hippocampal neurons extracted from Sprague Dawley rats was assessed within 24 hours by microtubule-associated protein (MAP2) immunofluorescence staining. A hippocampal neuron model for Mg2+-free-induced spontaneous recurrent epileptiform discharge was developed, five experimental groups were then randomized: blank (Blank), model (Model), TSIIA (TSIIA, 20 µM), LY294002 (LY294002, 25 µM), and TSIIA+LY294002 (TSIIA+LY294002, 20 µM+25 µM). FIJI software was used to examine variations of neurite complexity, total length of hippocampal neurons, number of primary dendrites and density of dendritic spines. Developmental regulation brain protein (Drebrin) and brain-derived neurotrophic factor (BDNF) expression was evaluated using immunofluorescence staining and the relative expression of phospho-protein kinase B (p-Akt)/Akt, BDNF, synaptophysin (SYN) and postsynaptic density 95 (PSD-95) determined by Western blot. RESULTS: In contrast to the model group, TSIIA drastically reduced damage to synaptic plasticity of hippocampal neurons caused by epilepsy (p < 0.05). The TSIIA group showed a significant increase in the relative expression of PSD-95, SYN, BDNF, and p-Akt/Akt (p < 0.01). CONCLUSIONS: TSIIA was effective in reducing harm to the synaptic plasticity of hippocampal neurons induced by persistent status epilepticus, with the possible mechanism being regulation of the phosphatidylinositol 3-kinase 56 (PI3K)/Akt signaling pathway.


Assuntos
Abietanos , Epilepsia , Proteínas Proto-Oncogênicas c-akt , Animais , Ratos , Abietanos/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Epilepsia/metabolismo , Hipocampo/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais
10.
Environ Toxicol ; 39(4): 2043-2051, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38095104

RESUMO

Environmental cadmium exposure during pregnancy or adolescence can cause neurodevelopmental toxicity, lead to neurological impairment, and reduce cognitive abilities, such as learning and memory. However, the mechanisms by which cadmium causes neurodevelopmental toxicity and cognitive impairment are still not fully elucidated. This study used hippocampal neurons cultured in vitro to observe the impact of cadmium exposure on mitochondrial dynamics and apoptosis. Exposure to 5 µM cadmium causes degradation of hippocampal neuron cell bodies and axons, morphological destruction, low cell viability, and apoptosis increase. Cadmium exposure upregulates the expression of mitochondrial fission proteins Drp1 and Fis1, reduces the expression of mitochondrial fusion-related proteins MFN1, MFN2, and OPA1, as well as reduces the expression of PGC-1a. Mitochondrial morphology detection demonstrated that cadmium exposure changes the morphological structure of mitochondria in hippocampal neurons, increasing the number of punctate and granular mitochondria, reducing the number of tubular and reticular mitochondria, decreasing mitochondrial mass, dissipating mitochondrial membrane potential (ΔΨm), and reducing adenosine triphosphate (ATP) production. Cadmium exposure increases the global methylation level of the genome and upregulates the expression of DNMT1 and DNMT3α in hippocampal neurons. 5-Aza-CdR reduces cadmium-induced genome methylation levels in hippocampal neurons, increases the number of tubular and reticular mitochondria, and promotes cell viability. In conclusion, cadmium regulates the expression of mitochondrial dynamics-related proteins by increasing hippocampal neuron genome methylation, changing mitochondrial morphology and function, and exerting neurotoxic effects.


Assuntos
Cádmio , Dinâmica Mitocondrial , Feminino , Gravidez , Humanos , Cádmio/metabolismo , Neurônios , Hipocampo/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , DNA/metabolismo
11.
Environ Toxicol ; 39(5): 3149-3159, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38323385

RESUMO

Methylmercury (MeHg) causes selective neuronal damage to cerebrocortical neurons (CCNs) in the central nervous system, but not to hippocampal neurons (HiNs), which are highly vulnerable to neurodegenerative diseases. In our previous study using cultured rat neurons, we performed a comprehensive gene expression analysis and found that the brain-derived neurotrophic factor (BDNF), a neurotrophin (NT), was specifically expressed in HiNs. Therefore, to elucidate the causal factors of MeHg toxicity resistance in HiNs, we conducted a comparative study of the protein expression and function of several NTs, including BDNF, using CCNs showing vulnerability to MeHg toxicity and HiNs showing resistance. BDNF was specifically expressed in HiNs, whereas nerve growth factor was barely detectable in either neuron type. In addition, other NTs, NT3 and NT4/5, were expressed in small but nearly equal amounts in both neuron types. Furthermore, among the various pathways involved in MeHg neurotoxicity, the p44/42 MAPK pathway was specifically activated in HiNs, even without MeHg treatment. siRNAs were used to reduce NTs in both neuron types. Only a specific reduction in BDNF attenuated the resistance to MeHg toxicity and p44/42 MAPK activation in HiNs. In addition, the external addition of BDNF and NT4/5, which act on the same tyrosine receptor kinase (Trk), TrkB, suppressed MeHg neurotoxicity in both neuron types. These results suggest that BDNF, expressed specifically in HiNs, is involved in the resistance to MeHg neurotoxicity via TrkB. Additionally, the activation of the p44/42 MAPK pathway may contribute to the inhibitory effect of BDNF on MeHg neurotoxicity.


Assuntos
Compostos de Metilmercúrio , Síndromes Neurotóxicas , Ratos , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Compostos de Metilmercúrio/toxicidade , Neurônios , Síndromes Neurotóxicas/metabolismo , Hipocampo/metabolismo
12.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38928009

RESUMO

The COVID-19 pandemic was caused by infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which may lead to serious respiratory, vascular and neurological dysfunctions. The SARS-CoV-2 envelope protein (E protein) is a structural viroporin able to form ion channels in cell membranes, which is critical for viral replication. However, its effects in primary neurons have not been addressed. Here we used fluorescence microscopy and calcium imaging to study SARS-CoV-2 viroporin E localization and the effects on neuron damage and intracellular Ca2+ homeostasis in a model of rat hippocampal neurons aged in vitro. We found that the E protein quickly enters hippocampal neurons and colocalizes with the endoplasmic reticulum (ER) in both short-term (6-8 days in vitro, DIV) and long-term (20-22 DIV) cultures resembling young and aged neurons, respectively. Strikingly, E protein treatment induces apoptosis in aged neurons but not in young neurons. The E protein induces variable increases in cytosolic Ca2+ concentration in hippocampal neurons. Ca2+ responses to the E protein are due to Ca2+ release from intracellular stores at the ER. Moreover, E protein-induced Ca2+ release is very small in young neurons and increases dramatically in aged neurons, consistent with the enhanced Ca2+ store content in aged neurons. We conclude that the SARS-CoV-2 E protein quickly translocates to ER endomembranes of rat hippocampal neurons where it releases Ca2+, probably acting like a viroporin, thus producing Ca2+ store depletion and neuron apoptosis in aged neurons and likely contributing to neurological damage in COVID-19 patients.


Assuntos
Cálcio , Retículo Endoplasmático , Hipocampo , Neurônios , SARS-CoV-2 , Animais , Ratos , Neurônios/metabolismo , Neurônios/virologia , Neurônios/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/citologia , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas do Envelope de Coronavírus/metabolismo , COVID-19/virologia , COVID-19/metabolismo , Células Cultivadas , Apoptose/efeitos dos fármacos , Cultura Primária de Células , Morte Celular/efeitos dos fármacos , Proteínas Viroporinas/metabolismo
13.
Glia ; 71(8): 1804-1829, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37026600

RESUMO

Autoantibodies against the NR1 subunit of NMDA receptors (NMDARs) have been shown to promote crosslinking and internalization of bound receptors in NMDAR encephalitis (NMDARE). This internalization-mediated loss of NMDARs is thought to be the major mechanism leading to pathogenic outcomes in patients. However, the role of bound autoantibody in engaging the resident immune cells, microglia, remains poorly understood. Here, using a patient-derived monoclonal NR1 autoantibody (hNR1-mAb) and a co-culture system of microglia and neurons, we could show that hNR1-mAb bound to hippocampal neurons led to microglia-mediated removal of hNR1-mAb bound NMDARs. These complexes were found to accumulate inside endo-lysosomal compartments of microglia. Utilizing another patient isolated monoclonal autoantibody, against the α1-subunit of GABAA receptors (α1-GABAA -mAb), such removal of receptors was found to be specific to the antibody-bound receptor targets. Interestingly, along with receptor removal, we also observed a reduction in synapse number, more specifically in the numbers of post-synaptic proteins like PSD95 and Homer 1, when microglia were present in the culture. Importantly, mutations in the Fc region of hNR1-mAb, blocking its Fcγ receptor (FcγR) and complement binding, attenuated hNR1-mAb driven loss of NMDARs and synapses, indicating that microglia engagement by bound hNR1-mAb is critical for receptor and synapse loss. Our data argues for an active involvement of microglia in removal of NMDARs and other receptors in individuals with autoimmune encephalitis, thereby contributing to the etiology of these diseases.


Assuntos
Autoanticorpos , Receptores de N-Metil-D-Aspartato , Humanos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Autoanticorpos/metabolismo , Técnicas de Cocultura , Microglia/metabolismo , Neurônios/metabolismo , Ácido gama-Aminobutírico/metabolismo
14.
J Neurophysiol ; 129(4): 862-871, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36919939

RESUMO

Intracerebral hemorrhage (ICH) is classified as a lethal neurological injury associated with cerebrovascular disorders. Ferroptosis is a unique form of cell death and participates in ICH pathogenesis. Herein, the role of SRY-box transcription factor 10 (SOX10) in ferroptosis of hippocampal neurons after ICH was investigated. The in vitro ICH models were established by treating immortalized mouse hippocampal cell line HT-22 with Hemin. Quantitative real-time polymerase chain reaction and Western blotting revealed that the transcription factor SOX10 and microRNA (miR)-29a-3p were decreased whereas acyl-CoA synthetase long-chain family member 4 (ACSL4) was increased in the ICH cell models. Subsequently, the assays of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, the commercial kits, and fluorescent labeling revealed that SOX10 overexpression improved cell viability, decreased the amount of reactive oxygen species (ROS) and Fe2+, and increased the amount of glutathione (GSH) and glutathione peroxidase 4 (GPX4) in ICH models. Thereafter, chromatin immunoprecipitation and dual-luciferase assays showed that SOX10 binding to the miR-29a-3p promoter region increased miR-29a-3p expression, and miR-29a-3p targeted and limited ACSL4 transcription. Rescue experiments showed that miR-29a-3p downregulation or ACSL4 overexpression expedited ferroptosis of Hemin-treated HT-22 cells. Taken together, SOX10 contributed to ferroptosis of hippocampal neurons after ICH via increasing miR-29a-3p to limit ACSL4 transcription.NEW & NOTEWORTHY SOX10 promotes the expression of Mir-29a-3p by binding to the promoter region of Mir-29a-3p, thereby targeting the expression of ACSL4 and inhibiting the iron death of hippocampal neuronal cells in mice with ICH.


Assuntos
Ferroptose , MicroRNAs , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Hemina/metabolismo , Hemorragia Cerebral/genética , Hemorragia Cerebral/metabolismo , Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição SOXE/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo
15.
Mol Med ; 29(1): 130, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37740187

RESUMO

BACKGROUND: It has been documented that aerobic exercise (AE) has a positive effect on improving cognitive function in type 2 diabetes (T2DM) patients. Here, we tried to explore how AE regulates the expression of long non-coding RNA in serum-exosomes (Exos), thereby affecting cognitive impairment in T2DM mice as well as its potential molecular mechanism. METHODS: T2DM mouse models were constructed, and serum-Exos were isolated for whole transcriptome sequencing to screen differentially expressed lncRNA and mRNA, followed by prediction of downstream target genes. The binding ability of miR-382-3p with a long non-coding RNA MALAT1 and brain-derived neurotrophic factor (BDNF) was explored. Then, primary mouse hippocampal neurons were collected for in vitro mechanism verification, as evidenced by the detection of hippocampal neurons' vitality, proliferation, and apoptosis capabilities, and insulin resistance. Finally, in vivo mechanism verification was performed to assess the effect of AE on insulin resistance and cognitive disorder. RESULTS: Transcriptome sequencing analysis showed that MALAT1 was lowly expressed and miR-382-3p was highly expressed in serum-Exos samples of T2DM mice. There were targeted binding sites between MALAT1 and miR-382-3p and between miR-382-3p and BDNF. In vitro experiments showed that MALAT1 upregulated BDNF expression by inhibiting miR-382-3p. Silencing MALAT1 or overexpressing miR-382-3p could reduce the expression of INSR, IRS-1, IRS-2, PI3K/AKT, and Ras/MAPK, inhibit neuronal proliferation, and promote apoptosis. In vivo experiments further confirmed that AE could increase the expression of MALAT1 in serum-Exos to competitively inhibit miR-382-3p and upregulate BDNF expression, thereby improving cognitive impairment in T2DM mice. CONCLUSION: AE may upregulate the expression of MALAT1 in serum-Exos to competitively inhibit miR-382-3p and upregulate BDNF expression, thus improving cognitive impairment in T2DM mice.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Exossomos , Resistência à Insulina , MicroRNAs , RNA Longo não Codificante , Animais , Camundongos , Fator Neurotrófico Derivado do Encéfalo/genética , Disfunção Cognitiva/genética , Disfunção Cognitiva/terapia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Resistência à Insulina/genética , MicroRNAs/genética , Fosfatidilinositol 3-Quinases , RNA Longo não Codificante/genética , Transdução de Sinais
16.
Biochem Biophys Res Commun ; 643: 77-87, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36587525

RESUMO

Investigating novel mechanisms of neurite outgrowth via cytoskeleton is critical for developing therapeutic strategies against neural disorders. Rab3A is a vesicle-related protein distributed throughout the nervous system, but the detailed mechanism related to cytoskeleton remains largely unknown. Our previous reports show that spastin serves microtubule to regulate neurite outgrowth. Here, we asked whether Rab3A could function via modulating spastin during neuronal development. The results revealed that Rab3A colocalized with spastin in cultured hippocampal neurons. Immunoprecipitation assays showed that Rab3A physically interacted with spastin in rat brain lysates. Rab3A overexpression significantly induced spastin degradation; this effect was reversed by leupeptin- or MG-132- administration, suggesting the lysosomal and ubiquitin-mediated degradation system. Immunofluorescence staining further confirmed that Rab3A and spastin immune-colocalized with the lysosome marker lysotracker. In COS7 cells, Rab3A overexpression significantly downregulated spastin expression and abolished the spastin-mediated microtubule severing. Furthermore, overexpression inhibited while genetic knockdown of Rab3A promoted neurite outgrowth. However, this inhibitory effect on neurite outgrowth in hippocampal neurons could be reversed via co-transfection of spastin, indicating that Rab3A functions via its interaction protein spastin. In general, our data identify an interaction between Rab3A and spastin, and this interaction affects the protein stability of spastin and eliminates its microtubule severing function, thereby modulating neurite outgrowth.


Assuntos
Adenosina Trifosfatases , Paraplegia Espástica Hereditária , Animais , Ratos , Adenosina Trifosfatases/metabolismo , Neuritos/metabolismo , Crescimento Neuronal , Neurônios/metabolismo , Proteína rab3A de Ligação ao GTP , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/metabolismo , Espastina/metabolismo , Espastina/farmacologia
17.
Cell Mol Neurobiol ; 43(3): 1335-1353, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35840808

RESUMO

Alzheimer's disease (AD) is characterized by the increase of hippocampal Ca2+ influx-induced apoptosis and mitochondrial oxidative stress (OS). The OS is a stimulator of TRPM2, although N-(p-amylcinnamoyl)anthranilic acid (ACA), 2-aminoethyl diphenylborinate (2/APB), and glutathione (GSH) are non-specific antagonists of TRPM2. In the present study, we investigated the protective roles of GSH and TRPM2 antagonist treatments on the amyloid ß42 peptide (Aß)-caused oxidative neurotoxicity and apoptosis in the hippocampus of mice with AD model. After the isolation of hippocampal neurons from the newborn mice, they were divided into five incubation groups as follows: control, ACA, Aß, Aß+ACA, and Aß+GSH. The levels of apoptosis, hippocampus death, cytosolic ROS, cytosolic Zn2+, mitochondrial ROS, caspase-3, caspase-9, lipid peroxidation, and cytosolic Ca2+ were increased in the primary hippocampus cultures by treatments of Aß, although their levels were decreased in the neurons by the treatments of GSH, PARP-1 inhibitors (PJ34 and DPQ), and TRPM2 blockers (ACA and 2/APB). The Aß-induced decreases of cell viability, cytosolic GSH, reduced GSH, and GSH peroxidase levels were also increased in the groups of Aß+ACA and Aß+GSH by the treatments of ACA and GSH. However, the Aß-caused changes were not observed in the hippocampus of TRPM2-knockout mice. In conclusion, the present data demonstrate that maintaining the activation of TRPM2 is not only important for the quenching OS and neurotoxicity in the hippocampal neurons of mice with experimental AD but also equally critical to the modulation of Aß-induced apoptosis. The possible positive effects of GSH and TRPM2 antagonist treatments on the amyloid-beta (Aß)-induced oxidative toxicity in the hippocampus of mice. The ADP-ribose (ADPR) is produced via the stimulation of PARP-1 in the nucleus of neurons. The NUT9 in the C terminus of TRPM2 channel acts as a key role for the activation of TRPM2. The antagonists of TRPM2 are glutathione (GSH), ACA, and 2/APB in the hippocampus. The Aß incubation-mediated TRPM2 stimulation increases the concentration of cytosolic-free Ca2+ and Zn2+ in the hippocampus. In turn, the increased concentration causes the increase of mitochondrial membrane potential (ΔΨm), which causes the excessive generations of mitochondria ROS and the decrease of cytosolic GSH and GSH peroxidase (GSH-Px). The ROS production and GSH depletion are two main causes in the neurobiology of Alzheimer's disease. However, the effect of Aß was not shown in the hippocampus of TRPM2-knockout mice. The Aß and TRPM2 stimulation-caused overload Ca2+ entry cause apoptosis and cell death via the activations of caspase-3 (Casp/3) and caspase-9 (Casp/9) in the hippocampus. The actions of Aß-induced oxidative toxicity were modulated in the primary hippocampus by the incubations of ACA, GSH, 2/APB, and PARP-1 inhibitors (PJ34 and DPQ). (↑) Increase. (↓) Decrease.


Assuntos
Doença de Alzheimer , Canais de Cátion TRPM , Ratos , Camundongos , Animais , Caspase 3/metabolismo , Caspase 9/metabolismo , Caspase 9/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Canais de Cátion TRPM/metabolismo , Doença de Alzheimer/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Ratos Wistar , Estresse Oxidativo , Apoptose , Glutationa/metabolismo , Glutationa/farmacologia , Hipocampo/metabolismo , Peroxidases/metabolismo , Peroxidases/farmacologia , Camundongos Knockout , Cálcio/metabolismo
18.
Synapse ; 77(1): e22255, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36121930

RESUMO

The regulation of dendritic spine morphology is a critical aspect of neuronal network refinement during development and modulation of neurotransmission. Previous studies revealed that glutamatergic transmission plays a central role in synapse development. AMPA receptors and NMDA receptors regulate spine morphology in an activity dependent manner. However, whether and how Kainate receptors (KARs) regulate synapse development remains poorly understood. In this study, we found that GluK1 and GluK2 may play distinct roles in synapse development. In primary cultured hippocampal neurons, we found overexpression of the calcium-permeable GluK2(Q) receptor variant increased spine length and spine head area compared to overexpression of the calcium-impermeable GluK2(R) variant or EGFP transfected, control neurons, indicating that Q/R editing may play a role in GluK2 regulation of synapse development. Intriguingly, neurons transfected with GluK1(Q) showed decreased spine length and spine head area, while the density of dendritic spines was increased, suggesting that GluK1(Q) and GluK2(Q) have different effects on synaptic development. Swapping the critical domains between GluK2 and GluK1 demonstrated the N-terminal domain (NTD) is responsible for the different effects of GluK1 and GluK2. In conclusion, Kainate receptors GluK1 and GluK2 have distinct roles in regulating spine morphology and development, a process likely relying on the NTD.


Assuntos
Cálcio , Receptores de Ácido Caínico , Receptores de Ácido Caínico/genética , Receptores de AMPA , Sinapses , Receptores de N-Metil-D-Aspartato
19.
Neurochem Res ; 48(10): 3212-3227, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37402036

RESUMO

Astrocytes release numerous factors known to contribute to the process of synaptogenesis, yet knowledge about the signals that control their release is limited. We hypothesized that neuron-derived signals stimulate astrocytes, which respond to neurons through the modulation of astrocyte-released synaptogenic factors. Here we investigate the effect of cholinergic stimulation of astrocytes on synaptogenesis in co-cultured neurons. Using a culture system where primary rat astrocytes and primary rat neurons are first grown separately allowed us to independently manipulate astrocyte cholinergic signaling. Subsequent co-culture of pre-stimulated astrocytes with naïve neurons enabled us to assess how prior stimulation of astrocyte acetylcholine receptors uniquely modulates neuronal synapse formation. Pre-treatment of astrocytes with the acetylcholine receptor agonist carbachol increased the expression of synaptic proteins, the number of pre- and postsynaptic puncta, and the number of functional synapses in hippocampal neurons after 24 h in co-culture. Astrocyte secretion of the synaptogenic protein thrombospondin-1 increased after cholinergic stimulation and inhibition of the receptor for thrombospondins prevented the increase in neuronal synaptic structures. Thus, we identified a novel mechanism of neuron-astrocyte-neuron communication, where neuronal release of acetylcholine stimulates astrocytes to release synaptogenic proteins leading to increased synaptogenesis in neurons. This study provides new insights into the role of neurotransmitter receptors in developing astrocytes and into our understanding of the modulation of astrocyte-induced synaptogenesis.


Assuntos
Astrócitos , Sinapses , Ratos , Animais , Astrócitos/metabolismo , Sinapses/metabolismo , Neurônios/metabolismo , Técnicas de Cocultura , Colinérgicos/farmacologia , Colinérgicos/metabolismo
20.
Neurochem Res ; 48(1): 62-71, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35939173

RESUMO

The mitochondrial unfolded protein response (mtUPR)-a stress response pathway for maintaining protein homeostasis-is critical in seizures-induced neuronal injury. The activating transcription factor 5 (ATF5) regulates mtUPR; however, whether ATF5-regulated mtUPR has a role in neuronal injury in epilepsy remains uncertain. Here, we investigated the effects of ATF5-regulated mtUPR on neuronal injury in hippocampal neurons with seizures evoked by Mg2+-free medium. HSP60 and ClpP, key proteins of mtUPR, were upregulated, indicating mtUPR activation. ATF5 overexpression by lentiviral vector infection potentiated mtUPR, whereas ATF5 downregulation by lentiviral vector infection attenuated this response. Moreover, ATF5 overexpression elevated mitochondrial membrane potential and reduced reactive oxygen species (ROS) generation, suggesting that ATF5 overexpression protected mitochondrial homeostasis, while ATF5 downregulation had the opposite effect. ATF5 overexpression also reversed Bcl2 downregulation and Bax upregulation and attenuated seizures-induced neuronal apoptosis, while ATF5 downregulation aggravated the injury. Our study demonstrates that ATF5 attenuates seizures-induced neuronal injury, possibly by regulating mtUPR pathways, to prevent mitochondrial dysfunction.


Assuntos
Apoptose , Resposta a Proteínas não Dobradas , Humanos , Mitocôndrias/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Convulsões/induzido quimicamente , Convulsões/metabolismo , Neurônios/metabolismo , Fatores Ativadores da Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA