Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 33(15): e17459, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38994921

RESUMO

Hybridization between divergent lineages can result in losses of distinct evolutionary taxa. Alternatively, hybridization can lead to increased genetic variability that may fuel local adaptation and the generation of novel traits and/or taxa. Here, we examined single-nucleotide polymorphisms generated using genotyping-by-sequencing in a population of Dolly Varden char (Pisces: Salmonidae) that is highly admixed within a contact zone between two subspecies (Salvelinus malma malma, Northern Dolly Varden [NDV] and S. m. lordi, Southern Dolly Varden [SDV]) in southwestern Alaska to assess the spatial distribution of hybrids and to test hypotheses on the origin of the admixed population. Ancestry analysis revealed that this admixed population is composed of advanced generation hybrids between NDV and SDV or advanced backcrosses to SDV; no F1 hybrids were detected. Coalescent-based demographic modelling supported the origin of this population about 55,000 years ago by secondary contact between NDV and SDV with low levels of contemporary gene flow. Ancestry in NDV and SDV varies within the watershed and ancestry in NDV was positively associated with distance upstream from the sea, contingent on habitat-type sampled, and negatively associated with the number of migrations that individual fish made to the sea. Our results suggest that divergence between subspecies over hundreds of thousands of years may not be associated with significant reproductive isolation, but that elevated diversity owing to hybridization may have contributed to adaptive divergence in habitat use and life history.


Assuntos
Fluxo Gênico , Genética Populacional , Hibridização Genética , Polimorfismo de Nucleotídeo Único , Animais , Alaska , Polimorfismo de Nucleotídeo Único/genética , Truta/genética , Truta/classificação , Genótipo
2.
Ann Bot ; 120(2): 257-269, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334098

RESUMO

Background and Aims: The genetic and morphological consequences of natural selection and selective breeding are explored in the genus Abelia . The genus consists of ornamental shrubs endemic to China, which have been bred to create attractive and diverse cultivars. Methods: DNA fingerprinting (AFLP) and DNA sequence data are used to investigate the genetic diversity among 46 accessions of Abelia (22 natural taxa and 24 horticultural breeds). In the cultivated varieties these data are used to explore taxon boundaries, hybridisation and backcrossing. The genetic analysis dataset is also used to investigate morphological variation within natural species complexes and subsequently to inform a taxonomic treatment. Key Results: Abelia comprises five species: A. forrestii , A. schumannii , A. macrotera , A. uniflora and A. chinensis and has a total of 11 varieties. Abelia uniflora and A. macrotera do not occur in sympatry and are disjunctly distributed to the east and west of the A. chinensis distribution range. Abelia chinensis is widespread in eastern China and creates hybrids and introgressive taxa, including A. uniflora , along the contact zones with the previous taxa. Abelia `Maurice Foster' is a horticultural variety collected from wild stocks in Sichuan (China). Bayesian clustering methods (inferred in STRUCTURE based on AFLP data) indicate admixture between A. macrotera and A. schumannii in this variety. Hybridization probably occurred in the wild where these progenitor taxa co-occur and naturally form hybrids. AFLP results also reveal that a few diagnostic morphological characters such as sepal number or inflorescence structure were transferred between natural species and this is mirrored by taxa such as in Abelia `Saxon Gold' and A. forrestii . Conclusions: Studying both natural and cultivated species from the same group has helped understanding both differentiation mechanisms and how to improve cultivated plants in the future by studying which morphological characters are transferred between species and which taxa may already have arisen through hybridisation.


Assuntos
Caprifoliaceae/classificação , Filogenia , Melhoramento Vegetal , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Teorema de Bayes , China , Impressões Digitais de DNA , DNA de Plantas/genética , Hibridização Genética , Análise de Sequência de DNA
3.
Mol Phylogenet Evol ; 87: 65-79, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25800283

RESUMO

Climatic changes and tectonic events in the Cenozoic have greatly influenced the evolution and geographic distribution of the temperate flora. Such consequences should be most evident in plant groups that are ancient, widespread, and diverse. As one of the most widespread genera of trees, Pinus provides a good model for investigating the history of species diversification and biogeographic disjunction in the Northern Hemisphere. In this study, we reconstructed the phylogeny and investigated the evolutionary and biogeographic history of sect. Quinquefoliae (Pinus), a species-rich lineage disjunctly distributed in Asia, Europe and North America, based on complete taxon sampling and by using nine DNA fragments from chloroplast (cp), mitochondrial (mt) and nuclear genomes. The monophyly of the three subsections, Krempfianae, Gerardianae, and Strobus, is well-supported by cpDNA and nuclear gene phylogenies. However, neither subsect. Gerardianae nor subsect. Strobus forms a monophyletic group in the mtDNA phylogeny, in which sect. Quinquefoliae was divided into two major clades, one consisting of the North American and northeastern Asian species as well as the European P. peuce of subsect. Strobus, and the other comprising the remaining Eurasian species belonging to three subsections. The significant topological incongruence among the gene trees, in conjunction with divergence time estimation and ancestral area reconstruction, indicates that both ancient and relatively recent introgressive hybridization events occurred in the evolution of sect. Quinquefoliae, particularly in northeastern Asia and northwestern North America. In addition, the phylogenetic analysis suggests that the species of subsect. Strobus from subtropical eastern Asia and neighboring areas may have a single origin, although species non-monophyly is very widespread in the nuclear gene trees. Moreover, our study seems to support a Tethyan origin of sect. Quinquefoliae given the distributions and phylogenetic positions of subsects. Krempfianae and Gerardianae, and also highlights the importance of active mountain buildings and climatic changes during the Late Neogene in shaping the species diversity and geographic distribution of Pinus.


Assuntos
Evolução Biológica , Filogenia , Pinus/classificação , Ásia , Teorema de Bayes , Núcleo Celular/genética , DNA de Cloroplastos/genética , DNA Mitocondrial/genética , DNA de Plantas/genética , Europa (Continente) , Ásia Oriental , Genes de Plantas , Hibridização Genética , Funções Verossimilhança , Modelos Genéticos , América do Norte , Pinus/genética , Análise de Sequência de DNA
4.
Ecol Evol ; 11(13): 8573-8584, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34257917

RESUMO

Coexisting species may experience population and range changes alone or jointly in response to environmental change. Here, we used six climate variables and ten modeling algorithms to predict the distribution of two Takydromus species (T. septentrionalis and T. sexlineatus) in China. We identified the sympatric and allopatric areas by comparing projections between the two species based on habitat suitability under present and future climate scenarios. We constructed the hypervolumes of six climate variables for the two species and then evaluated overlaps between hypervolumes. From this study, we know the following. First, minimum temperature of coldest month contributes the most to the prediction of habitat suitability. Second, habitats suitable for the two species will shift northward in response to climate warming. Third, the range of T. sexlineatus will expand across the four future time intervals before 2,100, namely the 2021-2040, 2041-2060, 2061-2080, and 2081-2100 intervals, under both Shared socioeconomic pathway (SSP) 245 and SSP585 scenarios, and the range of T. septentrionalis will also expand in the future except at the 2081-2100 interval under the SSP585 scenario. Fourth, the sympatric areas will contract or expand under the SSP245 scenario and expand across the four future time intervals before 2,100 under the SSP585 scenario. Fifth, the niche hypervolumes of the two species partially overlapped, and the differences in niche centroid show some degree of niche differentiation between the two species. These results allow to conclude that climate warming will not only drive the northward drift of sympatric areas but also increase the size of these areas if nothing is done to limit the emission of greenhouse gases. Given the existence of hybridization and introgression between T. septentrionalis and T. sexlineatus in the field where they coexist, we also conclude that climate warming will increase chances of hybridization and introgression between the two species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA