Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Environ Sci Technol ; 56(7): 4345-4355, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35319869

RESUMO

The oxidation-precipitation process of Fe(II) is ubiquitous in the environment and critically affects the fate of contaminants and nutrients in natural systems where Fe(II) is present. Here, we explored the effect of H2O2 concentration on the structure of precipitates formed by Fe(II) oxidation and compared the precipitates to those formed by Fe(III) hydrolysis. Additionally, the phosphate retention under different H2O2 concentrations was evaluated. XRD, TEM, PDA, XPS, and UV-visible absorbance spectroscopy were used to characterize the structure of the formed precipitates; UV-visible absorbance spectroscopy was also used to determine the residual phosphate and Fe(II) in solution. It was found that the predominant precipitates in Fe(II) solution changed from planar-shaped crystalline lepidocrocite (γ-FeOOH) to poor short-range order (poorly crystalline) spherical-shaped hydrous ferric oxide (HFO) with increasing H2O2 concentrations. Although the HFO precipitates formed from Fe(II) resembled those formed from Fe(III) hydrolysis, the former was larger and had clearer lattice fringes. During the formation of γ-FeOOH, both Fe(II)-Fe(III) complexes and ligand-to-metal charge transfer processes were observed, and it was found that Fe(II) was present in the planar-shaped precipitates. Fe(II) might be present in the interior of precipitates as Fe(OH)2, which could serve as a nucleus for the epitaxial growth of γ-FeOOH. In addition, the extent of phosphate retention increased with the H2O2 concentration, indicating the increased reactivity of formed precipitates with H2O2 concentration. More phosphate was retained via coprecipitation with Fe than adsorption on the preformed Fe precipitates due to the incorporation of phosphate within the structure of the formed Fe hydroxyphosphate via coprecipitation.


Assuntos
Compostos Férricos , Fosfatos , Compostos Férricos/química , Compostos Ferrosos , Peróxido de Hidrogênio , Oxirredução , Fosfatos/química
2.
Environ Monit Assess ; 192(2): 110, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31938851

RESUMO

Arsenic removal by nanoscale zero-valent iron (NZVI) was modeled using the USGS geochemical program PHREEQC. The Dzombak and Morel adsorption model was used. The adsorption of As(V) onto NZVI was assumed to happen because of the hydrous ferric oxide (Hfo) which was the surface oxide for the model. The model predicted results were compared with the experimental data. While the experimental study reported that 99.57% arsenic removal by NZVI, the model predicted 99.82% removal which is about 0.25% variation. All the arsenic species have also been predicted to be significantly removed by adsorption onto NZVI surface. The effect of pH on As(V) removal efficiency was also evaluated using the model and it was found that above point-of-zero-charge (PZC), the adsorption of As(V) decreases with the increase of pH. The authors conclude that PHREEQC can be used to model contaminant adsorption by nanomaterials.


Assuntos
Arsênio , Poluentes Químicos da Água , Adsorção , Arsênio/química , Arsênio/isolamento & purificação , Monitoramento Ambiental , Ferro , Modelos Teóricos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água
3.
Water Environ Res ; 91(2): 132-143, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30735297

RESUMO

This study evaluated the ability of hydrous ferric oxide reactive filtration (HFO-RF) to remove mercury (Hg) from municipal secondary effluent at four study sites. Pilot HFO-RF systems (136 m3 /day) at two sites demonstrated total Hg concentration removal efficiencies of 96% (inflow/outflow mean total Hg: 43.6/1.6  ng/L) and 80% (4.2/0.8 ng/L). A lightly loaded medium-scale HFO-RF system (950 m3 /day) had a concentration removal efficiency of 53% (0.98/0.46 ng/L) and removed 0.52 mg/day of total Hg and 2.2 µg/day of methyl-Hg. A full-scale HFO-RF system (11,400 m3 /day) yielded a total Hg concentration removal efficiency of 97% (87/2.7 ng/L) and removed an estimated 0.36 kg/year of Hg. Results suggest that the quality of secondary effluent, including dissolved organic matter content, affects achievable minimum total Hg concentrations in effluent from HFO-RF systems. Low HFO-RF effluent concentrations (<1 ng/L) can be expected when treating secondary effluent from suspended-growth biological treatment systems. PRACTITIONER POINTS: Trace levels of mercury in municipal secondary effluent can negatively impact receiving waters. Hydrous ferric oxide reactive filtration (HFO-RF) can remove mercury from municipal secondary effluent to levels below the Great Lakes Initiative discharge standard of 1.3 ng/L. Mercury removal to low concentrations (< 1 ng/L) using HFO-RF appears to be associated with secondary effluents with low dissolved organic matter content. HFO-RF can also remove total phosphorus and turbidity to low concentrations.


Assuntos
Cidades , Compostos Férricos/química , Filtração/métodos , Mercúrio/química , Mercúrio/isolamento & purificação , Purificação da Água/métodos , Compostos de Metilmercúrio/química , Compostos de Metilmercúrio/isolamento & purificação , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
4.
Water Environ Res ; 91(3): 250-258, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30624834

RESUMO

The impact of solids residence time (SRT) on the dynamics of phosphorus (P) removal by hydrous ferric oxide (HFO) floc was characterized through experimental and modeling studies. Three abiotic process conditions were considered in systems operated over a range of SRTs (~3 to 27 days): uptake in sequencing batch reactors (SBRs) under (a) constant and (b) dynamic P loading conditions, and (c) uptake in batch sorption tests with preformed HFO solids. P removal under all conditions was characterized by an initial period of fast removal followed by a period of slower removal until pseudo-equilibrium was reached. The initial removal rate increased with increasing P concentrations and was attributed to a larger concentration gradient between soluble- and adsorbed-phase concentrations. A kinetic model was developed and found to describe the dynamic behavior of P adsorption onto HFO floc under all conditions tested. A consistent mass transfer rate coefficient (k) was found to describe mass transfer over a range of SRTs for low initial P concentrations. At elevated SRTs (23-27 days) and elevated influent P concentrations, k values were found to deviate from those estimated at reduced SRTs. Differences in process mixing conditions were reflected in the estimated rate coefficients (k). Integration of the kinetic model with existing equilibrium models in wastewater process simulators will improve the ability to predict P uptake onto HFO floc under dynamic loading conditions in water resource recovery facilities. Models that consider the kinetics of P uptake will be particularly relevant for facilities that are required to achieve ultralow P concentrations. PRACTITIONER POINTS: This work provides a kinetic model that can be integrated with existing equilibrium models in wastewater process simulators to improve the ability to predict P uptake onto HFO floc under dynamic loading conditions. This research can be used to assist WRRFs to achieve ultralow effluent P requirements.


Assuntos
Compostos Férricos/química , Fósforo/química , Fósforo/isolamento & purificação , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Cinética , Águas Residuárias/química
5.
Materials (Basel) ; 17(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38473639

RESUMO

Acid mine drainage (AMD) is a major environmental problem caused by the release of acidic, toxic, and sulfate-rich water from mining sites. This study aimed to develop novel adsorbents for the removal of chromium (Cr(VI)), cadmium (Cd(II)), and lead (Pb(II)) from simulated and actual AMD using hybrid ion-exchange resins embedded with hydrous ferric oxide (HFO). Two types of resins were synthesized: anionic exchange resin (HAIX-HFO) for Cr(VI) removal and cationic exchange resin (HCIX-HFO) for Cd(II) and Pb(II) removal. The resins were characterized using scanning electron microscopy and Raman spectroscopy, which confirmed the presence of HFO particles. Batch adsorption experiments were conducted under acidic and sulfate-enhanced conditions to evaluate the adsorption capacity and kinetics of the resins. It was found that both resins exhibited high adsorption efficiencies and fast adsorption rates for their respective metal ions. To explore the potential adsorption on actual AMD, HCIX-HFO demonstrated significant removal of some metal ions. The saturated HCIX-HFO resin was regenerated using NaCl, and a high amount of the adsorbed Cd(II) and Pb(II) was recovered. This study demonstrates that HFO-embedded hybrid ion-exchange resins are promising adsorbents for treating AMD contaminated with heavy metals.

6.
Environ Sci Pollut Res Int ; 30(24): 65250-65266, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37081367

RESUMO

Polyether sulfone (PES)-based thin-film nanofiltration (TFN) membranes embedded with ferric hydroxide (FeIII(OH)x) functionalized graphene oxide (GO) nanoparticles were fabricated through interfacial polymerization for a generalized application in removal of a plethora of anionic and toxic water contaminants. Following the most relevant characterization, the newly synthesized membranes were fitted in a novel flat sheet cross-flow module, for experimental investigation on purification of live contaminated groundwater collected from different affected areas. The separation performances of the membranes in the flat sheet cross-flow module demonstrated that GOF membranes had higher selectivity for monovalent and divalent salt rejections than pristine GO membranes. Furthermore, both membranes were tested for simultaneously removing widely occurring hazardous ions of heavy metals and metalloids in groundwater, such as arsenic, selenium, chromium, and fluoride. Compared to the pristine GO and the reported membranes in the literature, the GOF membrane exhibited remarkable performance in terms of rejection efficiency (Cr (VI): 97.2%, Se (IV): 96.6%, As(V): 96.3%, F- 88.4%) and sustained flux of 184 LMH (Lm-2 h-1) at an optimum transmembrane pressure of 16 bar. The investigated membrane module equipped with the GOF membrane proved to be a low-cost system with higher anionic rejection and sustained high flux at a comprehensive pH range, as evident over long hours of study vis-à-vis reported systems.


Assuntos
Água Potável , Grafite , Nanocompostos , Grafite/química , Compostos Férricos , Nanocompostos/química
7.
J Hazard Mater ; 438: 129518, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35999720

RESUMO

Three primary mechanisms (adsorption to iron oxides or analogous surfaces, co-precipitation with Ca, and substitution in ettringite) controlling oxyanion retention in coal fly ashes (CFAs) were identified by differentiating the leaching behavior of As, B, Cr, Mo, Se, and V from 30 CFAs. Fidelity evaluation of geochemical speciation modeling focused on six reference CFAs representing a range of CFA compositions, whereby different leaching-controlling mechanisms of oxyanions were systematically considered. For three reference CFAs with low Ca and S content, calibration of adsorption reactions for the diffuse double-layer model for hydrous ferric oxides improved the simultaneous prediction of oxyanion leaching, which reduced uncertainties in Se and V predictions caused by nonideal adsorption surfaces and competitive adsorption effects. For two reference CFAs with intermediate Ca content, the solubility constants for Ca-arsenates from literature and postulated phases of B, Cr, Se, and V were used to describe co-precipitation of oxyanions with Ca-bearing minerals under alkaline conditions. For the reference CFA with high Ca and S content, an ettringite solid solution was used to capture the simultaneous retention of all oxyanions at pH> 9.5. Overall, the simultaneous leaching predictions of oxyanions from a wide range of CFAs were improved by calibration of adsorption reactions and controlling solid phases.

8.
J Hazard Mater ; 428: 128255, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35042166

RESUMO

A closed coal ash impoundment case study characterized the effects of field redox conditions on arsenic and selenium partitioning through monitoring of porewater and subsurface gas in conjunction with geochemical speciation modeling. When disposed coal ash materials and porewater were recovered for testing, oxidation led to lower arsenic and higher selenium concentrations in leaching test extracts compared to porewater measurements. Multiple lines of evidence suggest multiple mechanisms of arsenic retention are plausible and the concurrent presence of several redox processes and conditions (e.g., methanogenesis, sulfate reduction, and Fe(III)-reduction) controlled by spatial gradients and dis-equilibrium. Geochemical speciation modeling indicated that, under reducing field conditions, selenium was immobilized through the formation of insoluble precipitates Se(0) or FeSe while arsenic partitioning was affected by a progression of reactions including changes in arsenic speciation, reduction in adsorption due to dissolution and recrystallization of hydrous ferric oxides, and precipitation of arsenic sulfide minerals.


Assuntos
Arsênio , Selênio , Carvão Mineral/análise , Cinza de Carvão , Compostos Férricos , Oxirredução
9.
Sci Total Environ ; 815: 152672, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34968601

RESUMO

Hydrous ferric-oxide (HFO) coatings on streambed sediments may attenuate dissolved phosphate (PO4) concentrations at acidic to neutral pH conditions, limiting phosphorus (P) transport and availability in aquatic ecosystems. Mesh-covered tiles on which "natural" HFO from abandoned mine drainage (AMD) had precipitated were exposed to treated municipal wastewater (MWW) effluent or a mixture of stream water and effluent. Between 42 and 99% of the dissolved P in effluent was removed from the water to a thin coating (~2 µm) of HFO on the mesh. Geochemical equilibrium model results predicted the removal of 76 to 99% of PO4 from the water by adsorption to the HFO, depending on the HFO quantity, initial PO4 concentration, and pH. The measurements and model results indicated the capacity for P removal decreased as the concentration of P associated with the HFO increased. Continuing accumulation of HFO from upstream AMD sources replenish the in-stream capacity for P attenuation below the MWW discharge. This indicates AMD pollution may conceal P inputs and limit the amount of dissolved P transported to downstream ecosystems. However, HFO-rich sediments also represent a potential source of "legacy" P that could confound management practices intended to decrease nutrient and metal loadings.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Ecossistema , Mineração , Fosfatos , Água , Poluentes Químicos da Água/análise
10.
Polymers (Basel) ; 13(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573140

RESUMO

Membrane filtration is an attractive process in water and wastewater treatment, but largely restricted by membrane fouling. In this study, the membrane fouling issue is addressed by developing polyethersulfone (PES)-based mixed matrix membranes (MMMs) with the incorporation of hydrophilic nanoparticles as an additive. Ultrafiltration MMMs were successfully fabricated by incorporating different loadings of halloysite nanotube-ferrihydrates (HNT-HFO) into a polyethersulfone (PES) matrix and their performance was evaluated for the separation of bovine serum albumin (BSA) solution and oil/water emulsion. The results show that wettability is endowed to the membrane by introducing the additive aided by the presence of abundant -OH groups from the HFO. The loading of additive also leads to more heterogeneous surface morphology and higher pure water fluxes (516.33-640.82 L/m2h) more than twice that of the pristine membrane as reference (34.69 L/m2h) without affecting the rejection. The MMMs also provide much enhanced antifouling properties. The filtration results indicate that the flux recovery ratio of the modified membrane reached 100% by washing with only distilled water and a total flux recovery ratio of >98% ± 0.0471 for HNT-HFO-loaded membranes in comparison with 59% ± 0.0169 for pristine PES membrane.

11.
Environ Sci Pollut Res Int ; 27(10): 11303-11319, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31965506

RESUMO

Removal of phosphorus (P) from municipal wastewater is of vital importance to the control of eutrophication in receiving freshwater bodies. Typical cations such as Ca2+ and Mg2+ generally exist in municipal wastewater, and they may affect the sorption behavior and mechanism of iron oxide-based materials for aqueous phosphate (HxPO4x - 3, x = 0, 1, 2, or 3 depending on solution pH). To better apply iron oxide-containing materials as adsorbents to eliminate HxPO4x - 3 in municipal wastewater, a hydrous ferric oxide (HFEO) was prepared and characterized at first and then the impact of coexisting Ca2+ and Mg2+ on the uptake of HxPO4x - 3 by HFEO was studied. The results showed that, without coexisting Ca2+ and Mg2+, the kinetic data for HxPO4x - 3 sorption onto HFEO were better described by the Elovich model (R2 = 0.953) than the pseudo-second-order (R2 = 0.838) and pseudo-first-order (R2 = 0.641) models, and the isotherm data were fitted better with the Dubinin-Radushkevich (R2 = 0.966) and Freundlich (R2 = 0.953) models than with the Langmuir (R2 = 0.924) model. The ligand exchange of the Fe-bound hydroxyl group with HxPO4x - 3 and the generation of Fe-O-P bonding played a key role in the uptake of HxPO4x - 3 by HFEO in the absence of Ca2+ and Mg2+. Coexisting Ca2+ and Mg2+ greatly improved the adsorptive removal of HxPO4x - 3 by HFEO, including the adsorption capacity and initial adsorption rate. According to the Langmuir isotherm equation, the predicted maximum HxPO4x - 3 adsorption capacity for HFEO at pH 7 in the presence of 2 mmol/L Ca2+ (24.7 mg P/g) or 2 mmol/L Mg2+ (18.4 mg P/g) was much larger than that without coexisting Ca2+ and Mg2+ (10.7 mg P/g). The formation of aqueous CaHPO40 and MgHPO40 species firstly and then the adsorption of the formed CaHPO40 and MgHPO40 species on the HFEO surface to generate the HPO42--bridged ternary complexes (i.e., Fe(OPO3H)Ca+ and Fe(OPO3H)Mg+) had an important role in the improvement of HxPO4x - 3 adsorption onto HFEO by coexisting Ca2+ and Mg2+.


Assuntos
Magnésio , Fosfatos , Adsorção , Cálcio , Compostos Férricos , Concentração de Íons de Hidrogênio , Cinética
12.
Artigo em Inglês | MEDLINE | ID: mdl-31752348

RESUMO

The removal of tetracycline (TC) from solution is an important environmental issue. Here we prepared an adsorbent hydrous ferric oxide (HFO) by adjusting a FeCl3·6H2O solution to neutral pH. HFO was characterized by a surface area analyzer, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS), and was used to remove TC from solution. The influence of pH, solid-to-liquid ratio, ionic type, and strength on TC removal was investigated. Adsorption kinetics and isotherms were also determined. HFO after adsorption of TC was analyzed by FTIR and XPS to investigate the adsorption mechanism. The results showed that the adsorption of TC increased from 88.3% to 95% with increasing pH (3.0-7.0) and then decreased. K+ ions had little effect on TC adsorption by HFO. However, Ca2+ and Mg2+ reduced the adsorption of TC on HFO. When the concentrations of Ca2+ and Mg2+ were increased, the inhibitory effect was more obvious. Pseudo-second-order kinetics and the Langmuir model fitted the adsorption process well. The maximum adsorption capacity of TC on HFO reached 99.49 mg·g-1. The adsorption process was spontaneous, endothermic, and increasingly disordered. Combination analysis with FTIR and XPS showed that the mechanism between TC and HFO involved electrostatic interactions, hydrogen interactions, and complexation. Therefore, the environmental behavior of TC could be affected by HFO.


Assuntos
Adsorção , Antibacterianos/química , Recuperação e Remediação Ambiental/métodos , Compostos Férricos/química , Tetraciclina/química , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Cinética
13.
Sci Total Environ ; 691: 64-70, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31319259

RESUMO

Molybdenum is an essential trace element for humans but can be harmful with excess assimilations or chronic exposures. In this study a polymer-functionalized nanocomposite (HFO-PsAX) was fabricated for selective adsorption of molybdate from aqueous solution. HFO-PsAX was prepared by grafting hydrous ferric oxide nanoparticles (HFOs) into the porous structure of a polystyrene anion exchanger (PsAX) by in situ synthesis method. The resultant HFO-PsAX exhibited greatly enhanced selectivity toward molybdate as compared with the matrix, PsAX, which is also a fair adsorbent for scavenging molybdate. The competitive abilities of the ubiquitous anions, i.e., chloride, carbonate, sulfate, and phosphate, on the adsorption of molybdate by HFO-PsAX followed the order: chloride < phosphate < carbonate < sulfate. The unexpectedly weak competitive ability of trivalent phosphate may be due to incompletely dissociated state and formation of molybdate-phosphate complexes. The optimal pH for the adsorption of molybdate was determined as pH≈4, which is associated with the dissociation constants of molybdic acid; certain adsorption capacities were also observed even under extremely alkaline condition (pH=14) for single-component molybdate solution. Temperature (10, 25, and 40°C) has negligible effect on the adsorption capacities by HFO-PsAX, and Freundlich model and Dubinin-Radushkevich (D-R), Temkin model can describe the adsorption isotherms well. The adsorption potential of Temkin model is calculated as ≈100J/mol, which is between those of physisorption and chemisorption process. Fixed-bed column adsorption experiments validated the potential of HFO-PsAX in treating Mo(VI) contaminated water for practical application, and the exhausted HFO-PsAX can be regenerated by a binary NaOH-NaCl solution (both 5% in mass) without loss in adsorption capacities.

14.
Environ Technol ; 38(3): 377-384, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27241800

RESUMO

Paramagnetic materials, such as ferric hydroxides, which are cost-effective and highly-efficient, have been little studied in relation to the magnetic separation process. In this study, freshly formed hydrous ferric oxide (HFO) sols were used to remove aqueous phosphate, followed by superconducting magnetic separation. The magnetization of HFO was determined to be 5.7 emu/g in 5.0 T. The particle size distributions ranged from 1 to 80 µm. Ferrihydrite was the primary mineral phase according to XRD analysis. Dissolved P (DP) was first adsorbed on HFO, and second, the P-containing HFO were separated by high gradient superconducting magnetic separation (HGSMS) to remove the Total P (TP). To obtain a P concentration of <0.05 mg/l in the effluent, 0.3, 1.0 and 1.3 g/l HFO were added to 2.5, 5 and 10 mg/l P solutions. The capacity of the HGSMS canister for capturing P-adsorbed HFO depends on the magnetic intensity and flow rate. In the 5.0 T HGSMS at a 1.0 cm/s flow rate, there were 75 column volumes in a single HGSMS cycle. The P concentration increased by 37.5 times after regeneration. Approximately 170 mg/l TP was measured in the backwash water.


Assuntos
Compostos Férricos/química , Fosfatos/química , Poluentes Químicos da Água/química , Adsorção , Fenômenos Magnéticos , Purificação da Água/métodos
15.
Environ Sci Pollut Res Int ; 24(36): 27710-27723, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27778268

RESUMO

Historic applications of lead arsenate pesticides and smelting activities have resulted in elevated concentrations of arsenic in Washington State soils. For example, old orchard topsoils in Washington have concentrations reaching upwards of 350 mg As/kg soil with an estimated 187,590 acres of arsenic contamination from pesticide application alone. Iron oxides have been indicated as a key factor in modulating the fate and transport of arsenic in the soil environment. We employed a factorial design to investigate the role of a specific iron oxide, hydrous ferric oxide (HFO), and terrestrial organisms on the mobility, bioavailability, and fate of arsenic and iron in locally collected soils. Earthworms in soils amended with both arsenic and HFO had 47.2 % lower arsenic tissue concentrations compared to those in soils only amended with arsenic. Similarly, arsenic leachate concentrations and plant tissue concentrations were lower when HFO was present, although this was with a reduced magnitude and was not consistently significant. A lack of significance of HFO in three of the linear models for leachate and plant bioavailability, however, indicates that the role of HFO in arsenic mobility, bioavailability, and fate is more complicated than can be explained by the simple addition or not of HFO. For example, our analyses showed that earthworms decreased pH and increased bioavailability for both arsenic and iron as demonstrated by increases in leachate and plant tissue concentrations. The mechanisms for this could include a biotransformation of earthworm-ingested arsenic combined with an earthworm-induced change in pH. We also found that arsenic amendments increased the mobility and bioavailability of iron, evidenced by increased iron concentrations in earthworms, plants, and leachate. A mechanistic explanation for this change in bioavailability is not readily apparent but does support a need for more work on bioavailability when mixtures are present. From these results, it is clear that a combination of biotic and abiotic factors influences metal/metalloid fate and transport in soils, with earthworms being one of the most important factors in our work. Study designs such as the factorial analysis can help to address the role each factor plays while efficiently generating new hypotheses and areas of inquiry; this approach can also bridge knowledge generated through reductionist and holistic approaches to complex environmental problems.


Assuntos
Arsênio/metabolismo , Compostos Férricos/química , Compostos Férricos/metabolismo , Ferro/metabolismo , Oligoquetos/metabolismo , Poluentes do Solo/metabolismo , Solo/química , Animais , Arsênio/análise , Disponibilidade Biológica , Praguicidas/metabolismo , Washington
16.
Sci Total Environ ; 580: 776-786, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27986316

RESUMO

A new polymer-supported hybrid adsorbent (HFO-P(TAA/HEA)) for highly efficient removal of Pb2+, Cu2+, Cd2+ and Ni2+ from wastewater was developed by supporting hydrous ferric oxide (HFO) nanoparticles onto a porous poly(trans-Aconitic acid/2-hydroxyethyl acrylate) hydrogel (P(TAA/HEA)) with in situ precipitation method. Swelling kinetics, scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), Fourier transform infrared spectra (FTIR) and X-ray photoelectron spectroscopy (XPS) were used for characterization of the prepared HFO-P(TAA/HEA). The characterization data demonstrated that the hybrid hydrogel HFO-P(TAA/HEA) was successfully fabricated, and swelling ability as well as thermal stability was promoted after loading. The results of batch equilibrium experiments indicated that pH and temperature significantly influenced the adsorption process and adsorption of heavy metals was better fitted to Langmuir and pseudo-second-order models. Selectivity of HFO-P(TAA/HEA) towards heavy metals was greatly improved under the calcium ions competition at higher concentration compared to P(TAA/HEA). Competitive adsorption evidenced the priority order in multifold metal species system was Pb2+>Cu2+>Ni2+>Cd2+. What's more, FTIR and XPS analyses manifested that heavy metals might mainly be adsorbed via inner sphere complexation. These findings revealed that hydrogel HFO-P(TAA/HEA) is a potential adsorption material to remove the heavy metals from polluted water.

17.
Water Res ; 84: 323-32, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26265079

RESUMO

The impact of solids residence time (SRT) on phosphate adsorption to hydrous ferric oxide (HFO) floc when striving for ultra-low P concentrations was characterized and an equilibrium model that describes the adsorption of P onto HFO floc of different ages was developed. The results showed that fresh HFO had a higher adsorption capacity in comparison to aged (2.8, 7.4, 10.8 and 22.8 days) HFO and contributed substantially to P removal at steady state. P adsorption onto HFO solids was determined to be best described by the Freundlich isotherm. P desorption from HFO solids was negligible supporting the hypothesis that chemisorption is the mechanism of P adsorption on HFO solids. A model that included the contribution of different classes of HFO solids (i.e. High, Low or Old, containing high concentration, low concentration or no active surface sites, respectively) to adsorption onto HFO from a sequencing batch reactor (SBR) system was found to adequately describe P adsorption onto HFO solids of different ages. From the model it was determined that the fractions of High and Low HFO decreased with SRT while the fraction of Old HFO increased with SRT. The transformation of High HFO to Low HFO did not limit the overall production of Old HFO and the fresh HFO solids contributed more to P removal at steady state than the aged solids.


Assuntos
Compostos Férricos/química , Fósforo/química , Adsorção
18.
Water Res ; 73: 157-70, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25655322

RESUMO

A dynamic physico-chemical model for chemical phosphorus removal in wastewater is presented as a tool to optimize chemical dosing simultaneously while ensuring compliant effluent phosphorus concentration. This new model predicts the kinetic and stoichiometric variable processes of precipitation of hydrous ferric oxides (HFO), phosphates adsorption and co-precipitation. It is combined with chemical equilibrium and physical precipitation reactions in order to model observed bulk dynamics in terms of pH. The model is calibrated and validated based on previous studies and experimental data from Smith et al. (2008) and Szabo et al. (2008) as a first step for full-plant implementation. The simulation results show that the structure of the model describes adequately the mechanisms of adsorption and co-precipitation of phosphate species onto HFO and that the model is robust under various experimental conditions.


Assuntos
Modelos Químicos , Fosfatos/química , Fósforo/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Adsorção , Precipitação Química , Cinética
19.
Water Res ; 47(14): 5003-17, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23866131

RESUMO

There is increasing interest in recovering phosphorus (P) from various wastewater streams for beneficial use as fertilizer and to minimize environmental impacts of excess P on receiving waters. One such example is P recovery from human urine, which has a high concentration of phosphate (200-800 mg P/L) and accounts for a small volume (≈ 1%) of total wastewater flow. Accordingly, the goal of this study was to evaluate the potential to recover P from source-separated and combined wastewater streams that included undiluted human urine, urine diluted with tap water, greywater, mixture of urine and greywater, anaerobic digester supernatant, and secondary wastewater effluent. A hybrid anion exchange (HAIX) resin containing hydrous ferric oxide was used to recover P because of its selectivity for phosphate and the option to precipitate P minerals in the waste regeneration solution. The P recovery potential was fresh urine > hydrolyzed urine > greywater > biological wastewater effluent > anaerobic digester supernatant. The maximum loading of P on HAIX resin was fresh urine > hydrolyzed urine > anaerobic digester supernatant ≈ greywater > biological wastewater effluent. Results indicated that the sorption capacity of HAIX resin for phosphate and the total P recovery potential were greater for source-separated urine than the combined wastewater streams of secondary wastewater effluent and anaerobic digester supernatant. Dilution of urine with tap water decreased the phosphate loading on HAIX resin. The results of this work advance the current understanding of nutrient recovery from complex wastewater streams by sorption processes.


Assuntos
Fosfatos/isolamento & purificação , Urina/química , Eliminação de Resíduos Líquidos/métodos , Adsorção , Anaerobiose , Resinas de Troca Aniônica , Compostos Férricos/química , Fertilizantes , Fosfatos/química , Fósforo/isolamento & purificação , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA