Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 300
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int Arch Allergy Immunol ; 184(2): 111-121, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36323243

RESUMO

INTRODUCTION: Symptoms of allergic rhinitis can be reduced by nonpharmacological nasal sprays that create a barrier between allergens and the nasal mucosa. A new nasal spray (AM-301) containing the clay mineral bentonite was tested for its ability to reduce symptoms of grass pollen. METHODS: This open-label, crossover, noninferiority trial compared the efficacy and safety of AM-301 to that of hydroxypropyl methylcellulose (HPMC; Nasaleze® Allergy Blocker), an established barrier method. Adults with seasonal allergic rhinitis were exposed to Dactylis glomerata pollen, in a controlled setting, the Fraunhofer allergen challenge chamber, first without protection and then protected by HPMC or AM-301 (7 days apart). Efficacy was assessed from total nasal symptom score (TNSS), nasal secretion weight, and subjective rating. The primary endpoint was the difference, between AM-301 and HPMC, in least square mean change in TNSS over a 4-h exposure to allergen. RESULTS: The study enrolled 36 persons, and 35 completed all study visits. The mean TNSS was 5.91 (SD = 1.45) during unprotected exposure, 5.20 (SD = 1.70) during protection with HPMC, and 4.82 (SD = 1.74) during protection with AM-301. The difference in least square means between the two treatments was -0.39 (95% CI: -0.89 to 0.10), establishing the noninferiority of AM-301. No difference in mean weight of nasal secretions was observed between the treatments. Efficacy was rated as good or very good for AM-301 by 31% and for HPMC by 14% of subjects. Sixteen subjects reported adverse events with a relationship to AM-301 or HPMC; most adverse events were mild, and none was serious. DISCUSSION/CONCLUSION: AM-301 demonstrated noninferiority toward HPMC in the primary endpoint and was perceived better in subjective secondary endpoints. Both barrier-forming products had a persisting protective effect over 4 h and were safe.


Assuntos
Rinite Alérgica Sazonal , Rinite Alérgica , Adulto , Humanos , Sprays Nasais , Rinite Alérgica Sazonal/tratamento farmacológico , Rinite Alérgica Sazonal/prevenção & controle , Alérgenos/uso terapêutico , Mucosa Nasal , Método Duplo-Cego , Administração Intranasal
2.
Mol Pharm ; 20(8): 4196-4209, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37358932

RESUMO

In an earlier investigation, the critical cooling rate to prevent drug crystallization (CRcrit) during the preparation of nifedipine (NIF) amorphous solid dispersions (ASDs) was determined through a time-temperature transformation (TTT) diagram (Lalge et al. Mol. Pharmaceutics 2023, 20 (3), 1806-1817). The current study aims to use the TTT diagram to determine the critical cooling rate to prevent drug nucleation (CRcrit N) during the preparation of ASDs. ASDs were prepared with each polyvinylpyrrolidone (PVP) and hydroxypropyl methylcellulose acetate succinate (HPMCAS). The dispersions were first stored under conditions promoting nucleation and then heated to the temperature that favors crystallization. The crystallization onset time (tC) was determined by differential scanning calorimetry and synchrotron X-ray diffractometry. TTT diagrams for nucleation were generated, which provided the critical nucleation temperature (50 °C) and the critical cooling rate to avoid nucleation (CRcrit N). The strength of the drug-polymer interactions as well as the polymer concentration affected the CRcrit N, with PVP having a stronger interaction than HPMCAS. The CRcrit of amorphous NIF was ∼17.5 °C/min. The addition of a 20% w/w polymer resulted in CRcrit of ∼0.05 and 0.2 °C/min and CRcrit N of ∼4.1 and 8.1 °C/min for the dispersions prepared with PVP and HPMCAS, respectively.


Assuntos
Polímeros , Povidona , Temperatura , Povidona/química , Polímeros/química , Cristalização , Transição de Fase , Solubilidade , Metilcelulose/química , Estabilidade de Medicamentos
3.
Drug Dev Ind Pharm ; 48(11): 646-656, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36469628

RESUMO

OBJECTIVE: To study the new formulation and technology of composite cellulose-based enteric capsule shell with one-time dipping molding without organic solvent. METHODS: Hydroxypropyl methylcellulose phthalate-55S (Hp55S) was used as the main film-forming material, agar as gelling agent, and hydroxypropyl methylcellulose (HPMC) as disintegrating regulator. The preparation technology was as follows: ① Hp55S was dissolved in dilute ammonia solution with pH of 10 ∼ 11 at room temperature to obtain transparent Hp55S solution. ② The mixture of HPMC, KCl, and Tween-80 was fully dispersed in the agar solution at 90 ∼ 100 °C and cooled to 50 ∼ 55 °C under continuous stirring to obtain a transparent agar/HPMC solution. ③The Hp55S solution was heated to 50 ∼ 55 °C and poured into the agar/HPMC solution and stirred evenly to obtain the composite cellulose solution, which was kept at 50 ∼ 55 °C for standby. ④The composite cellulose-based enteric capsule shells were prepared by dipping, spinning, drying, stripping and trimming, and joining. RESULTS: The composite cellulose-based enteric capsule shell prepared according to this formula and process met the quality requirements of 'enterosoluble vacant capsules' in Chinese Pharmacopeia. CONCLUSION: Compared with the traditional formula and preparation technology of enteric capsule shell, the product is a plant type enteric capsule shell, no organic solvent is used in the formula, and the forming steps of multiple dipping solution is not used in the process. The advantages of this study are that the production steps are simplified, the production process is environmentally friendly, and the production cost is reduced.


Assuntos
Celulose , Química Farmacêutica , Ágar , Metilcelulose , Derivados da Hipromelose , Tecnologia , Solventes , Cápsulas
4.
Molecules ; 27(9)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35566103

RESUMO

Intelligent packaging with indicators that provide information about the quality of food products can inform the consumer regarding food safety and reduce food waste. A solid material for a pH-responsive indicator was developed from hydroxypropyl methylcellulose (HPMC) composited with microcrystalline cellulose (MCC). MCC at 5%, 10%, 20%, and 30% w/w was introduced into the HPMC matrix and the physical, barrier, thermal, and optical properties of the HPMC/MCC bio-composite (HMB) films were analyzed. At 5, 10, and 20% MCC, improved mechanical, transparency, and barrier properties were observed, where HMB with 20% of MCC (H20MB) showed the best performance. Therefore, H20MB was selected as the biodegradable solid material for fabricating Roselle anthocyanins (RA) pH sensing indicators. The performance of the RA-H20MB indicator was evaluated by monitoring its response to ammonia vapor and tracking freshness status of chicken tenderloin. The RA-H20MB showed a clear color change with respect to ammonia exposure and quality change of chicken tenderloin; the color changed from red to magenta, purple and green, respectively. These results indicated that RA-H20MB can be used as a biodegradable pH sensing indicator to determine food quality and freshness.


Assuntos
Hibiscus , Eliminação de Resíduos , Amônia , Animais , Antocianinas/química , Celulose , Galinhas , Alimentos , Embalagem de Alimentos/métodos , Hibiscus/química , Concentração de Íons de Hidrogênio , Derivados da Hipromelose/química
5.
AAPS PharmSciTech ; 23(1): 52, 2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35018574

RESUMO

Despite the fact that capsules play an important role in many dry powder inhalation (DPI) systems, few studies have been conducted to investigate the capsules' interactions with respirable powders. The effect of four commercially available hydroxypropyl methylcellulose (HPMC)inhalation-grade capsule types on the aerosol performance of two model DPI formulations (lactose carrier and a carrier-free formulation) at two different pressure drops was investigated in this study. There were no statistically significant differences in performance between capsules by using the carrier-based formulation. However, there were some differences between the capsules used for the carrier-free rifampicin formulation. At 2-kPa pressure drop conditions, Embocaps® VG capsules had a higher mean emitted fraction (EF) (89.86%) and a lower mean mass median aerodynamic diameter (MMAD) (4.19 µm) than Vcaps® (Capsugel) (85.54%, 5.10 µm) and Quali-V® I (Qualicaps) (85.01%, 5.09 µm), but no significant performance differences between Embocaps® and ACGcaps™ HI. Moreover, Embocaps® VG capsules exhibited a higher mean respirable fraction (RF)/fine particle fraction (FPF) with a 3-µm-sized cutoff (RF/FPF< 3 µm) (33.05%/35.36%) against Quali-V® I (28.16%/31.75%) (P < 0.05), and a higher RF/FPF with a 5-µm-sized cutoff (RF/FPF< 5 µm) (49.15%/52.57%) versus ACGcaps™ HI (38.88%/41.99%) (P < 0.01) at 4-kPa pressure drop condition. Aerosol performance variability, pierced-flap detachment, as well as capsule hardness and stiffness, may all influence capsule type selection in a carrier-based formulation. The capsule type influenced EF, RF, FPF, and MMAD in the carrier-free formulation.


Assuntos
Budesonida , Rifampina , Administração por Inalação , Aerossóis , Cápsulas , Química Farmacêutica , Inaladores de Pó Seco , Derivados da Hipromelose , Tamanho da Partícula , Pós
6.
AAPS PharmSciTech ; 23(5): 157, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35672486

RESUMO

Gastroretentive drug delivery systems (GRDDS) get retained in the stomach for a long time, thus facilitating the absorption of drugs in the upper gastrointestinal tract. However, drugs that are difficult to dissolve or unstable in an acidic environment are not suitable for GRDDS. The current study designs GRDDS combined with a self-micro-emulsifying drug delivery system (SMEDDS) for drugs with solubility or stability problems in the stomach. The model drug fenofibrate was formulated into the optimized liquid SMEDDS composed of 50 w/w% Capryol® PGMC, 40 w/w% Kolliphor® RH40, and 10 w/w% Transcutol® HP and solidified through adsorption on several porous adsorbents. In a dissolution medium at pH 1.2, the powdered SMEDDS using Fujicalin® dissolved quickly and achieved higher drug dissolution than other adsorbents. Based on these results, a gastroretentive bilayer tablet consisting of a drug release layer and a swelling layer was designed. The drug release layer was formulated with the powdered SMEDDS and hydroxypropyl methylcellulose (HPMC) as a release modifier. HPMC was also added to the swelling layer as a water-swellable polymer. The dissolution rate depended on the viscosity of the HPMC in the drug release layer. The time for 90% drug release was extended from 3.7 to 12.0 h by increasing the viscosity grade of HPMC from 0.1 to 100 K. Moreover, the tablet swelled and maintained a size comparable to a human pylorus diameter or more for at least 24 h. This GRDDS could apply to a broader range of drug candidates.


Assuntos
Sistemas de Liberação de Medicamentos , Excipientes , Fosfatos de Cálcio , Preparações de Ação Retardada , Humanos , Derivados da Hipromelose , Pós , Solubilidade , Comprimidos
7.
Mol Pharm ; 18(10): 3882-3893, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34529437

RESUMO

Compression-induced destabilization was investigated in various celecoxib amorphous solid dispersions containing hydroxypropyl methylcellulose (HPMC), poly(vinylpyrrolidone)/vinyl acetate copolymer (PVP/VA), or poly(vinylpyrrolidone) (PVP) at a concentration range of 1-10% w/w. Pharmaceutically relevant (125 MPa pressure with a minimal dwell time) and extreme (500 MPa pressure with a 60 s dwell time) compression conditions were applied to these systems, and the changes in their physical stability were monitored retrospectively (i.e., in the supercooled state) using dynamic differential scanning calorimetry (DSC) and low-frequency Raman (LFR) measurements over a broad temperature range (-90 to 200 and -150 to 140 °C, respectively). Both techniques revealed similar changes in the crystallization behavior between samples, where the application of a higher compression force of 500 MPa resulted in a more pronounced destabilization effect that was progressively mitigated with increasing polymer content. However, other aspects such as more favorable intermolecular interactions did not appear to have any effect on reducing this undesirable effect. Additionally, for the first time, LFR spectroscopy was used as a viable technique to determine the secondary or local glass-transition temperature, Tg,ß, a major indicator of the physical stability of neat amorphous pharmaceutical systems.


Assuntos
Celecoxib/química , Composição de Medicamentos , Estabilidade de Medicamentos , Varredura Diferencial de Calorimetria , Cristalização , Derivados da Hipromelose/química , Povidona/química , Pressão , Pirrolidinas , Análise Espectral Raman , Compostos de Vinila
8.
Biopharm Drug Dispos ; 42(2-3): 78-84, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33400825

RESUMO

The present study was aimed to develop a novel sustained-release formulation for allopurinol (ALP/SR) with the use of a pH-sensitive polymer, hydroxypropyl methylcellulose acetate succinate, to reduce nephrotoxicity. ALP/SR was evaluated in terms of crystallinity, the dissolution profile, pharmacokinetic behavior, and nephrotoxicity in a rat model of nephropathy. Under acidic conditions (pH1.2), sustained release behavior was seen for ALP/SR, although both crystalline ALP and ALP/SR exhibited rapid dissolution at neutral condition. After multiple oral administrations of ALP samples (10 mg-ALP/kg) for 4 days in a rat model of nephropathy, ALP/SR led to a low and sustained plasma concentration of ALP, as evidenced by half the maximum concentration of ALP and a 2.5-fold increase in the half-life of ALP compared with crystalline ALP, possibly due to suppressed dissolution behavior under acidic conditions. Repeated-dosing of ALP/SR resulted in significant reductions in plasma creatinine and blood urea nitrogen levels by 73% and 69%, respectively, in comparison with crystalline ALP, suggesting the low nephrotoxic risk of ALP/SR. From these findings, a strategic SR formulation approach might be an efficacious dosage option for ALP to avoid severe nephrotoxicity in patients with nephropathy.


Assuntos
Alopurinol/farmacocinética , Supressores da Gota/farmacocinética , Metilcelulose/análogos & derivados , Administração Oral , Alopurinol/efeitos adversos , Alopurinol/sangue , Alopurinol/química , Animais , Antineoplásicos , Nitrogênio da Ureia Sanguínea , Cisplatino , Creatinina/sangue , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Liberação Controlada de Fármacos , Supressores da Gota/efeitos adversos , Supressores da Gota/sangue , Supressores da Gota/química , Meia-Vida , Rim/efeitos dos fármacos , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Masculino , Metilcelulose/química , Metilcelulose/farmacocinética , Ratos Sprague-Dawley
9.
J Wound Care ; 30(Sup9a): IVi-IVx, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34597167

RESUMO

AIM: Self-healing, swellable and biodegradable polymers are vital materials that may facilitate the different stages of wound healing. The aim of this research was to prepare wound healing films using self-healing polyvinyl alcohol (PVA), swellable hydroxypropyl methylcellulose (HPMC), biodegradable polyglycolic acid (PGA) sutures and ciprofloxacin antibiotic for improved treatment outcome. METHODS: Films were formulated through aqueous-based mixing of varying amounts of polyvinyl alcohol (10-20% weight/weight (w/w)) and hydroxypropyl methylcellulose (0.5, 1% w/w) with fixed quantities of ciprofloxacin. PGA sutures were placed as grids within the wet mixtures of the polymers and ciprofloxacin, and thereafter products were air dried. The formulated films were evaluated for swelling ratio, breaking elongation, folding endurance, moisture uptake and loss, compatibility and in vitro antibiotic release. Furthermore, in vivo wound healing was studied using excision model and histopathological examinations. RESULTS: Swelling ratios were above 1.0 and the films were minimally stretchable, with folding endurance greater than 500. Films were stable while moisture uptake and loss were observed to be less than 30%. Among the optimised hydrogel batches, those containing 10% w/w PVA and 1% w/w HPMC with no PGA showed the highest drug release of 73%, whereas the batches with higher PGA content showed higher percentage wound size reduction with minimal scar. The completeness of wound healing with batches containing PVA, HPMC, ciprofloxacin and PGA, along with the standard, is evident considering the massive cornification, regeneration of the epithelial front and stratum spinosum. CONCLUSION: The findings show that polymer-based multifunctional composite films are suitable for use as dressings for improved wound healing.


Assuntos
Ciprofloxacina , Polímeros , Bandagens , Hidrogéis , Cicatrização
10.
Pharm Res ; 37(10): 192, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32914239

RESUMO

PURPOSE: The objective was to characterize hydroxypropyl methylcellulose acetate succinate (HMPCAS) grades L, M, and H to enhance itraconazole (ITZ) release and permeation from spray dried dispersions (SDDs), and to investigate underpinning molecular ITZ-HPMCAS interactions that differentiated grade performance. METHODS: ITZ or its SDDs were subjected to solution stabilization assessment, one-dimensional proton nuclear magnetic resonance (NMR) spectroscopy, saturation transfer difference NMR studies, small volume dissolution, solid state transformation studies, and in vitro dissolution/permeation flux studies. RESULTS: HPMCAS-L was the best performing grade overall and exhibited greatest ITZ supersaturation concentration, small volume dissolution, and in vitro dissolution/permeation flux. Meanwhile, H grade retarded ITZ precipitation to the greatest extent in solution stabilization studies and exhibited greater hydrophobic interaction with ITZ in NMR studies. However, this apparent advantage of H grade through hydrophobic interactions between drug-polymer appeared to limit overall dissolution/permeation performance of SDD. CONCLUSIONS: In vitro SDD studies and drug-polymer interaction studies provided insight into the performance of HPMCAS grades, as well as the relative contributions of various mechanisms that polymer can promote ITZ absorption from SDD.


Assuntos
Itraconazol/química , Metilcelulose/análogos & derivados , Química Farmacêutica , Tecnologia de Fibra Óptica , Cinética , Espectroscopia de Ressonância Magnética , Metilcelulose/química , Solubilidade
11.
Mar Drugs ; 18(5)2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403219

RESUMO

Women are the most affected by genital herpes, which is one of the most common sexually transmitted infections, affecting more than 400 million people worldwide. The application of vaginal microbicides could provide a safe method of protection. Acyclovir is a safe and effective medication for vaginal administration, and numerous benefits have been observed in the treatment of primary or recurrent lesions due to genital herpes. Vaginal tablets based on a combination of the polymers iota-carrageenan and hydroxypropyl methylcellulose were developed for the controlled release of acyclovir. Swelling, mucoadhesion and drug release studies were carried out in simulated vaginal fluid. The tablets, containing a combination of iota-carrageenan and hydroxypropyl methylcellulose, have an adequate uptake of the medium that allows them to develop the precise consistency and volume of gel for the controlled release of acyclovir. Its high mucoadhesive capacity also allows the formulation to remain in the vaginal area long enough to ensure the complete release of acyclovir. These promising formulations for the prevention of genital herpes deserve further evaluation.


Assuntos
Aciclovir/administração & dosagem , Antivirais/administração & dosagem , Carragenina/química , Excipientes/química , Herpes Genital/prevenção & controle , Aciclovir/farmacocinética , Adesividade , Administração Intravaginal , Antivirais/química , Antivirais/farmacocinética , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacocinética , Liberação Controlada de Fármacos , Feminino , Herpes Genital/virologia , Humanos , Derivados da Hipromelose/química , Mucosa/metabolismo , Vagina/metabolismo , Cremes, Espumas e Géis Vaginais/administração & dosagem , Cremes, Espumas e Géis Vaginais/química , Cremes, Espumas e Géis Vaginais/farmacocinética
12.
Chem Pharm Bull (Tokyo) ; 68(12): 1178-1183, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33268650

RESUMO

Hydrophobically modified hydroxypropyl methylcellulose (HM-HPMC), a polymer in which a small amount of HPMC is stearoxyl substituted, was used as an emulsifier of emulsion-type lotion. A high-pressure homogenizer (microfluidizer) was used. The viscosity of the 1% HM-HPMC aqueous gel decreased after passing through the microfluidizer from 5.5 to 2.7 Pa·s. When liquid paraffin (LP) was used as the oil phase, a stable emulsion was obtained with an LP ratio of 1-40%. The apparent viscosity decreased with LP ratios up to 20%, and then increased with increasing LP concentration. The emulsions with an LP ratio <20% presented a pseudo-viscous flow, similar to that of the diluted polymer solution. HM-HPMC likely adsorbed onto the oil with a stearoxyl group; thus, the interaction between the stearoxyl group, which explained the high viscosity of HM-HPMC, decreased, reducing the viscosity of the emulsion. The LP ratio was 40%, and the emulsion presented a plastic flow, which is typical of concentrated emulsions. The size of the droplet in the emulsion was approximately 1 µm regardless of the LP ratio. When low-viscosity LPs or monoester-type oils such as isopropyl myristate were used, some of the emulsions presented creaming. An emulsion using HM-HPMC as an emulsifier and an appropriate oil homogenized with a microfluidizer is stable, has low viscosity, and can be easily spread on skin.


Assuntos
Emulsificantes/química , Derivados da Hipromelose/química , Interações Hidrofóbicas e Hidrofílicas , Óleo Mineral/química , Estrutura Molecular , Tamanho da Partícula , Pressão , Propriedades de Superfície , Viscosidade
13.
Drug Dev Ind Pharm ; 46(8): 1253-1264, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32597338

RESUMO

OBJECTIVE: The inkjet printing (IP) and fused deposition modeling (FDM) technologies have emerged in the pharmaceutical field as novel and personalized formulation approaches. Specific manufacturing factors must be considered in each adopted methodology, i.e. the development of suitable substrates for IP and the incorporation of highly thermostable active pharmaceutical compounds (APIs) for FDM. In this study, IP and FDM printing technologies were investigated for the fabrication of hydroxypropyl methylcellulose-based mucoadhesive films for the buccal delivery of a thermolabile model drug. Significance: This proof-of-concept approach was expected to provide an alternative formulation methodology for personalized mucoadhesive buccal films. METHODS: Mucoadhesive substrates were prepared by FDM and were subjected to sequential IP of an ibuprofen-loaded liquid ink. The interactions between these processes and the performance of the films were evaluated by various analytical and spectroscopic techniques, as well as by in vitro and ex vivo studies. RESULTS: The model drug was efficiently deposited by sequential IP passes onto the FDM-printed substrates. Significant variations were revealed on the morphological, physicochemical and mechanical properties of the prepared films, and linked to the number of IP passes. The mechanism of drug release, the mucoadhesion and the permeation of the drug through the buccal epithelium were evaluated, in view of the extent of ink deposition onto the buccal films, as well as the distribution of the API. CONCLUSIONS: The presented methodology provided a proof-of-concept formulation approach for the development of personalized mucoadhesive films.


Assuntos
Derivados da Hipromelose/química , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Impressão Tridimensional
14.
AAPS PharmSciTech ; 21(4): 128, 2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32399597

RESUMO

Capsule-based dry powder inhaler (DPI) products can be influenced by a multitude of interacting factors, including electrostatic charging. Tribo-charging is a process of charge transfer impacted by various factors, i.e., material surface characteristics, mechanical properties, processing parameters and environmental conditions. Consequently, this work aimed to assess how the charging behavior of capsules intended for inhalation might be influenced by environmental conditions. Capsules having different chemical compositions (gelatin and hydroxypropyl methylcellulose (HPMC)) and distinct inherent characteristics from manufacturing (thermally and cold-gelled) were exposed to various environmental conditions (11%, 22% and 51% RH). Their resulting properties were characterized and tribo-charging behavior was measured against stainless steel and PVC. It was observed that all capsule materials tended to charge to a higher extent when in contact with PVC. The tribo-charging of the thermally gelled HPMC capsules (Vcaps® Plus) was more similar to the gelatin capsules (Quali-G™-I) than to their HPMC cold-gelled counterparts (Quali-V®-I). The sorption of water by the capsules at different relative humidities notably impacted their properties and tribo-charging behavior. Different interactions between the tested materials and water molecules were identified and are proposed to be the driver of distinct charging behaviors. Finally, we showed that depending on the capsule types, distinct environmental conditions are necessary to mitigate charging and assure optimal behavior of the capsules.


Assuntos
Fenômenos Químicos , Inaladores de Pó Seco/métodos , Derivados da Hipromelose/química , Eletricidade Estática , Administração por Inalação , Cápsulas , Avaliação Pré-Clínica de Medicamentos/métodos , Excipientes/química , Excipientes/metabolismo , Gelatina/química , Gelatina/metabolismo , Derivados da Hipromelose/metabolismo , Pós
15.
AAPS PharmSciTech ; 20(3): 139, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30868302

RESUMO

Physiologically generated supersaturation and subsequent crystallization of a weakly basic drug in the small intestine leads to compromised bioavailability. In this study, the pH-induced crystallization of cinnarizine (CNZ) in the presence of different polymers was investigated. Inhibitory effect of Eudragit L100 (Eu) on crystallization of CNZ at varying supersaturation ratios was examined. The effect of Eu on the dissolution behavior of CNZ from CNZ/Eu physical mixtures (PMs) and solid dispersions (SDs) was assessed. Results showed that both Eu and hydroxypropyl methylcellulose (HPMC) have a considerable maintenance effect on supersaturation of CNZ but Eu was more effective than HPMC. When Eudragit was used the phenomenon of liquid-liquid phase separation (formation of colloidal phase) was observed at supersaturation ratio of 20 times above the solubility of the drug. PMs showed a higher area under the dissolution curve (AUDC) compared with plain CNZ. In contrast, SDs showed a lower AUDC than plain CNZ. For SDs, the AUDC was limited by the slow release of the drug from Eu in acidic pH which in turn hindered the creation of CNZ supersaturation following the transition of acidic to neutral pH. From these findings, it can be concluded that the ability of the formulation to generate supersaturation state and also maintain the supersaturation is vital for improving the dissolution of CNZ.


Assuntos
Cinarizina/química , Composição de Medicamentos , Disponibilidade Biológica , Cristalização , Concentração de Íons de Hidrogênio , Derivados da Hipromelose/química , Ácidos Polimetacrílicos/química , Solubilidade
16.
AAPS PharmSciTech ; 20(5): 187, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31093776

RESUMO

The aim of the study was to examine the influence of non-freezing water (NFW) contents bound to hydroxypropyl methylcellulose (HPMC) or hydroxypropyl cellulose (HPC) binary mixtures using acetylsalicylic acid (ASA) as a model moisture-sensitive ingredient. Polysaccharides with significantly different physicochemical properties were mixed with acetylsalicylic acid at a ratio 1:1 (w/w). The measurements of NFW contents of hydrated samples were carried out using differential scanning calorimetry (DSC). In the method used, the dry mass normalized dependency of melting enthalpy (ΔH) and respective contents of water was found to be linear. NFW values were calculated after extrapolation ΔH to 0. For stability studies, HPC/ASA and HPMC/ASA mixtures were stored at 40°C and 75% RH for 5 weeks in the climatic chamber. The ASA hydrolysis was investigated using UV-Vis spectrophotometry. The amounts of NFW calculated for raw HPMC 3 cP and 100,000 cP were 0.49 and 0.42 g g-1, while for polymer and ASA mixtures, prepared from HPC type LF (126 cP) and MF (6300 cP) as well as from HPMC 3 cP and 100,000 cP were 0.23, 0.28 g g-1, 0.21 g g-1, and 0.33 g g-1 respectively. The measured NFW values were connected with appropriate concentrations of unhydrolyzed ASA.


Assuntos
Aspirina/química , Celulose/análogos & derivados , Derivados da Hipromelose/química , Água/química , Celulose/química , Estabilidade de Medicamentos , Viscosidade
17.
Saudi Pharm J ; 27(6): 756-766, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31516318

RESUMO

In the current work, two groups of chlorhexidine mucoadhesive buccal tablets were prepared, using either rod or irregularly-shaped spherical particles of hydroxypropyl methylcellulose and different ratios of poloxamer 407 (P407). The tablets were designed to release the drug over two hours. Their physicochemical properties and drug release profiles were investigated. The impact on dry granulation, the ex-vivo mucoadhesion, the swelling index, the morphology of swollen tablets and the drug release kinetic were investigated. Drug-polymers chemical interaction was studied using Fourier Transforms Infrared Spectroscopy (FTIR) and differential scanning calorimetry (DSC). Due to different particle shapes, the preparation of dry granules required a 40 KN force for rod-shaped particles compared to 10 KN for the irregularly-shaped spherical particles. All formulations showed at least two-hours residence time using ex-vivo mucoadhesion. Statistically, there was no significant difference in the swelling index, drug release nor its kinetic for both groups. However, the microscopical morphology of the swollen tablet and the size of the pores were affected by particle shape. Increasing the ratio of P407 to 62.5% resulted in a pronounced increase in drug release from around 60% to >90% after two hours. Following the FTIR and DSC analyses, no chemical interaction was noted apart from the steric hindrance effect of P407, which was observed even with the physical mixtures.

18.
Lipids Health Dis ; 17(1): 136, 2018 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-29885655

RESUMO

BACKGROUND: The study was to develop an extended release (ER) encapsulated and compacted pellets of Atenolol using hydrophobic (wax based and polymeric based) and high viscosity grade hydrophilic matrix formers to control the release of this highly water soluble drug by extrusion/spheronization (ES). Atenolol is used for cardiovascular diseases and available as an immediate release (IR) tablet dosage form. The lipids, Carnauba wax (CW), Glyceryl monostearate (GMS) and cellulose based i.e. Hydroxypropyl methylcellulose (HPMC) and Ethyl cellulose (EC) were used in preparing Atenolol ER pellets. Thermal sintering and compaction techniques were also applied to control the burst release of Atenolol. METHOD: For this purpose, thirty-six trial formulations (F1-F36) were designed by Response Surface Methodology (RSM), using Design-Expert 10 software, keeping (HPMC K4M, K15 M & K100 M), (EC 7FP, 10FP & 100FP), waxes (GMS, & CW), their combinations, sintering temperature and duration, as input variables. Dissolution studies were performed in pH, 1.2, 4.5 and 6.8 dissolution media. Drug release kinetics using different models such as zero order, first order, Korsmeyer-Peppas, Hixon Crowell, Baker-Lonsdale and Higuchi kinetics were studied with the help of DDsolver, an excel based add-in program. RESULTS: The formulations F35 and F36 showed compliance with Korsmeyer-Peppas Super case II transport model (R2 = 0.975-0.971) in dissolution medium pH 4.5. No drug excipient interaction observed by FTIR. Stereomicroscopy showed that sintered combination pellets, (F35), were highly spherical (AR = 1.061, and sphericity = 0.943). The cross-sectional SEM magnification (at 7000X) of F34 and F35 showed dense cross-linking. The results revealed that the optimized formulations were F35 (sintered pellets) and F36 (compacted pellets) effectively controlling the drug release for 12 h. CONCLUSION: Extended-release encapsulated, and compacted pellets were successfully prepared after the combination of lipids CW (10%) and GMS (20%) with EC (10FP 20% & 100FP 20%). Sintering and compaction, in addition, stabilized the system and controlled the initial burst release of the drug. Extended release (ER) Atenolol is an effective alternative of IR tablets in controlling hypertension and treating other cardiovascular diseases.


Assuntos
Anti-Hipertensivos/química , Atenolol/química , Celulose/análogos & derivados , Preparações de Ação Retardada/química , Glicerídeos/química , Ceras/química , Celulose/química , Química Farmacêutica , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Análise Fatorial , Humanos , Concentração de Íons de Hidrogênio , Cinética , Solubilidade , Soluções , Temperatura , Água/química
19.
Molecules ; 23(7)2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29976876

RESUMO

This study aims to develop new antifungal dermal films based on their mechanical properties (elongation, adhesion, behaviour towards vapour moisture) and the in vitro availability of miconazole nitrate, used as a pharmaceutical active ingredient in various concentrations. The three polymeric films prepared were translucent or shiny, with the surface of 63.585 cm², 0.20⁻0.30 mm thickness, and content of miconazole nitrate of 3.931 or 15.726 mg·cm². The mechanical resistance and elongation tests demonstrated that the two films based on hydroxyethyl cellulose (HEC) polymer were more elastic than the one prepared with hydroxypropyl methylcellulose (HPMC). The vapour water absorption and vapour water loss capacity of the films revealed that the HPMC film did not dry very well in the process of preparation by the evaporation of the solvent technique, unlike the HEC films that jellified more evenly in water and had higher drying capacity at 40 °C. The in vitro availability of miconazole nitrate from dermal films was evaluated using the Franz diffusion cell method, through a synthetic membrane (Ø 25 mm × 0.45 µm) and acceptor media with pH 7.4 (phosphate buffer and sodium lauryl sulphate 0.045%), resulting a release rate of up to 70%.


Assuntos
Antifúngicos/farmacocinética , Celulose/análogos & derivados , Derivados da Hipromelose/química , Miconazol/farmacocinética , Administração Cutânea , Antifúngicos/química , Disponibilidade Biológica , Fenômenos Biomecânicos , Celulose/química , Química Farmacêutica , Elasticidade , Miconazol/química
20.
AAPS PharmSciTech ; 19(8): 3712-3722, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30238304

RESUMO

Oropharyngeal candidiasis is a recurrent oral infection caused by Candida species. Gel formulation containing miconazole nitrate is the most common approach for treating oral candidiasis. However, traditional oral topical antifungal therapies have many limitations, including short contact time with the oral mucosa and the necessity to administrate various doses per day. Thus, the aim of this work was to formulate composited microparticulated systems based on combinations of mucoadhesive cationic, anionic, and nonionic polymers that could protect and modify the drug release rate and therefore avoid a fast dilution of the drug by saliva. Microparticulated systems were prepared by the spray drying method employing chitosan, gelatin, and hydroxypropyl methylcellulose. The morphology of the systems was investigated by scanning electron microscopy; drug crystallinity was studied by X-ray, while interactions between polymers were analyzed by infrared spectroscopy. Drug release and halo zone test were employed to analyze the release and activity of the systems loaded with miconazole against Candida albicans cultures. The most appropriate microparticulated system was the one based on chitosan and gelatin which showed homogeneous morphology (mean size of 1.7 ± 0.5 µm), a protective effect of the drug, and better antifungal effect against Candida culture than miconazole nitrate and the other assayed systems. Taking into account these results, this approach should be seriously considered for further evaluation of its safety and in vivo efficacy to be considered as an alternative therapeutic system for the treatment of oral candidiasis.


Assuntos
Antifúngicos/química , Miconazol/química , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Quitosana/química , Composição de Medicamentos , Miconazol/farmacologia , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA