RESUMO
Background: Clinical and experimental data on the cardiac effects of acute hypernatremia are scarce and inconsistent. We aimed to determine and understand the effects of different levels of acute hypernatremia on the human ventricular action potential. Methods: We performed computer simulations using two different, very comprehensive models of the electrical activity of a single human ventricular cardiomyocyte, i.e., the Tomek-Rodriguez model following the O'Hara-Rudy dynamic (ORd) model and the Bartolucci-Passini-Severi model as published in 2020 (known as the ToR-ORd and BPS2020 models, respectively). Mild to extreme levels of hypernatremia were introduced into each model based on experimental data on the effects of hypernatremia on cell volume and individual ion currents. Results: In both models, we observed an increase in the intracellular sodium and potassium concentrations, an increase in the peak amplitude of the intracellular calcium concentration, a hyperpolarization of the resting membrane potential, a prolongation of the action potential, an increase in the maximum upstroke velocity, and an increase in the threshold stimulus current at all levels of hypernatremia and all stimulus rates tested. The magnitude of all of these effects was relatively small in the case of mild to severe hypernatremia but substantial in the case of extreme hypernatremia. The effects on the action potential were related to an increase in the sodium-potassium pump current, an increase in the sodium-calcium exchange current, a decrease in the rapid and slow delayed rectifier potassium currents, and an increase in the fast and late sodium currents. Conclusions: The effects of mild to severe hypernatremia on the electrical activity of human ventricular cardiomyocytes are relatively small. In the case of extreme hypernatremia, the effects are more pronounced, especially regarding the increase in threshold stimulus current.
RESUMO
INTRODUCTION: To establish an animal model of delayed intravenous resuscitation following seawater immersion after hemorrhagic shock (HS). METHODS: Adult male SD rats were randomly divided into three groups: group NI (HS with no immersion), group SI (HS with skin immersion), and group VI (HS with visceral immersion). Controlled HS in rats was induced by withdrawing 45% of the calculated total blood volume within 30 min. In SI group, immediately after blood loss, 0.5 cm below the xiphoid process was immersed in artificial seawater, at (23 ± 1) °C, for 30 min. In VI group, the rats were performed by laparotomy and the abdominal organs were immersed in (23 ± 1) °C seawater for 30 min. Two hours after seawater immersion, the extractive blood and lactated Ringer's solution were delivered intravenously. The mean arterial pressure (MAP), lactate, and other biological parameters were investigated in different time points. The survival rate of 24 h after HS was recorded. RESULTS: After seawater immersion following HS, MAP and abdominal viscera blood flow decreased significantly, and the plasma levels of lactate and the organ function parameters were increased than the baseline. The above changes in VI group were more serious than those in SI and NI group, especially in myocardial and small intestine damage. The hypothermia, hypercoagulation, and metabolic acidosis were also observed after seawater immersion; the injury was more severely in VI group than that of SI group. However, the plasma levels of sodium, potassium, chlorine, and calcium in VI group were significantly higher than those before injury and in the other two groups. In the VI group, the level of plasma osmolality in instant, 2 h, and 5 h after immersion was 111%, 109%, and 108% of the SI group, respectively, all P < 0.01. The 24-h survival rate of VI group was 25%, which was significantly lower than that of SI group (50%) and NI group (70%), P < 0.05. CONCLUSIONS: The model fully simulated the key damage factors and field treatment conditions, reflected the effects of low temperature and hypertonic damage caused by seawater immersion on the severity and prognosis of naval combat wounds, and provided a practical and reliable animal model for the study of field treatment technology of marine combat shock.
Assuntos
Choque Hemorrágico , Ratos , Masculino , Animais , Choque Hemorrágico/complicações , Choque Hemorrágico/terapia , Ratos Sprague-Dawley , Modelos Animais de Doenças , Hemorragia , Ressuscitação , Ácido LácticoRESUMO
During the winemaking process, glycerol synthesis represents the first adaption response of Saccharomyces cerevisiae to osmotic stress after inoculation in grape must. We have implemented an RT-qPCR (Reverse Transcription-quantitative PCR) methodology with a preventive evaluation of candidate reference genes, to study six target genes related to glycerol synthesis (GPD1, GPD2, GPP2 and GPP1) and flux (STL1 and FPS1), and three ALD genes coding for aldehyde dehydrogenase involved in redox equilibrium via acetate production. The mRNA level in three strains, characterized by different metabolite production, was monitored in the first 120 min from inoculation into natural grape must. Expression analysis shows a transient response of genes GPD1, GPD2, GPP2, GPP1 and STL1 with differences among strains in term of mRNA abundance, while FPS1 was expressed constitutively. The transient response and different expression intensity among strains, in relation to the intracellular glycerol accumulation pattern, prove the negative feedback control via the HOG (High Osmolarity Glycerol) signalling pathway in S. cerevisiae wine strains under winery conditions. Among the ALD genes, only ALD6 was moderately induced in the hyperosmotic environment but not in all strains tested, while ALD3 and ALD4 were drastically glucose repressed. The intensity of transcription of ALD6 and ALD3 seems to be related to different acetate production found among the strains.
Assuntos
Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fermentação , Regulação Fúngica da Expressão Gênica , Pressão Osmótica , Reação em Cadeia da Polimerase em Tempo Real/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Vitis/metabolismoRESUMO
BACKGROUND: Natural killer (NK) cells hold great promise in treating diverse hematopoietic and solid tumors. Despite their availability from peripheral blood and cord blood, stem cell-derived NK cells offer an 'off-the-shelf' solution. Hematopoietic stem and progenitor cells (HSPCs) derived from cord blood pose no risk to the newborn or mother and are virtually ideal sources for NK cell differentiation. METHODS: We developed a modified protocol to differentiate HSPCs to NK cells under serum-free conditions using defined factors. The HSPC-derived NK (HSC-NK) cells could be expanded in a K562 feeder cell-dependent manner. Furthermore, using lentivirus transduction, chimeric antigen receptor (CAR)-modified HSPCs could be differentiated into NK cells, leading to the establishment of CAR-NK cells. RESULTS: The efficiency of NK cell differentiation from HSPCs was increased through the simple modulation of osmotic pressure by the addition of sodium chloride or glucose. Furthermore, the hyperosmosis-primed HSC-NK cells exhibited enhanced proliferation capacity and maintained normal functional characteristics, including transcriptome and antitumor efficacy. The optimized protocol yielded approximately 1.8 million NK cells from a single CD34-positive cell within a 28-day cycle, which signifies more than a ten-fold increase in efficiency relative to the conventional methods. This optimized protocol was also suitable for generating CAR-NK cells with high yields compared to standard conditions. CONCLUSIONS: The results of this study establish high osmotic pressure as a simple yet powerful adjustment that significantly enhances the efficiency and functionality of HSC-NK cells, including CAR-NK cells. This optimized protocol could lead to cost-effective, high-yield NK cell therapies, potentially revolutionizing cancer immunotherapy strategies.
Assuntos
Sangue Fetal , Neoplasias , Recém-Nascido , Humanos , Células Matadoras Naturais , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular , Neoplasias/metabolismoRESUMO
BACKGROUND: Hyperosmosis stress (HS) was a key pathological factor in the development of dry eye disease (DED). Nicotinamide mononucleotide (NMN) demonstrated protective effects in the corneal damage, however, its role in the HS-induced DED remained unclear. METHODS: A NaCl based HS in-vitro model (500 mOsm) was generated and used in a co-culture system including corneal epithelial cells (CEC) and macrophage cell line RAW264.7. The effect of NMN on NAD+ metabolism and the expression of HS biomarker, tonicity-responsive element binding protein (TonEBP), was studied in the CEC. The cellular activity, including cell viability, apoptosis status and lactate dehydrogenase (LDH) release through trypan blue staining, flow cytometry and LDH assay, respectively. The mitochondrial membrane potential (MMP) assay would be conducted using the JC1 kit. The expression of IL-17a were detected using RT-PCR, ELISA and Western blot. After co-culture with the CEC in different group for 24 h, the phagocytosis ability and macrophage polarization were assessed in RAW264.7 cells co-cultured with CEC with or without HS or NMN treatment. Besides, the involvement of Notch pathway in the RAW264.7 would be analyzed. The potential involvement of Sirtuin 1 (SIRT1) and IL-17a in the crosstalk between CEC and macrophage was studied with SIRT1 inhibitor EX 527 and anti-IL-17a monoclonal antibody, respectively. RESULTS: NMN treatment increased NAD+ concentration and thus improved cell viability, reduced apoptotic rate and decreased the LDH release in HS-treated CEC. Besides, NMN alleviated HS-induced MMP, intracellular ROS and LDH release. Besides, it was confirmed NMN improve SIRT1 function and decreased the HS related IL-17a expression in CEC and then alleviated macrophage phagocytosis ability and M1 polarization based on a CEC-macrophage co-culture system. Moreover, NMN treatment of CEC in the CEC could moderate the subsequent macrophage activation through Notch pathway. SIRT1 activation and IL-17a inhibition was regarded as key progress in the function of NMN based on the application of EX 527 and anti-IL-17a antibody in the CEC-macrophage co-culture system. CONCLUSION: The findings demonstrated that NMN could alleviated HS-induced DED status through regulating the CEC/macrophage interaction. Our data pointed to the role of SIRT1, IL-17a and Notch pathway in the function of NMN and then provided updated knowledge of potential NMN application in the management of DED.
RESUMO
The purpose of this study was to determine whether pituitary adenylate cyclase activating polypeptide (PACAP) could influence the neovascularization processes in hyperosmotic and oxidative stress in retinal pigment epithelial cells. Hyperosmotic conditions and oxidative stress were induced by 200 mM sucrose and 250 µM hydrogen peroxide (H2 O2 ), respectively. Morphology and elasticity of adult retinal pigment epithelial (ARPE-19) cells were measured by atomic force microscopy, while the investigation of junctional molecules, such as occludin and ZO-1, was carried out using immunofluorescence. For cell viability measurement, the MTT test was used. The effect of PACAP on the key angiogenic factors, such as vascular endothelial growth factor, angiogenin, and endothelin-1, was measured by an angiogenesis array and flow cytometry. Hyperosmotic stress-induced reorganization of the cytoskeleton and impairment of the junctions decreased cell viability and upregulated several angiogenic factors. In oxidative stress, we found that opening of the junctions decreased viability and upregulated the expression of angiogenic factors. PACAP was shown to be protective in both conditions. Retinal pigment epithelium cells play an important role in several diseases, such as diabetic retinopathy and macular edema. Therefore, protecting retinal pigment epithelial (RPE) cells with PACAP could be a novel and potential treatment in these diseases.
Assuntos
Neovascularização Patológica/prevenção & controle , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Epitélio Pigmentado da Retina/efeitos dos fármacos , Linhagem Celular , Humanos , Estresse Oxidativo , Epitélio Pigmentado da Retina/citologiaRESUMO
Verticillium dahliae causes disease symptoms in its host plants; however, due to its rapid variability, V. dahliae is difficult to control. To analyze the reason for this pathogenic differentiation, 22 V. dahliae strains with different virulence were isolated from a cotton farm. The genetic diversity of cotton varieties make cotton cultivars have different Verticillium wilt resistance, so the Xinluzao 7 (susceptible to V. dahliae), Zhongmian 35 (tolerant), and Xinluzao 33 (resistant) were used to investigate the pathogenicity of the strains in a green house. Vegetative compatibility groups (VCGs) assays, Internal Transcribed Spacer (ITS) PCR, and pathogenicity analysis showed that SHZ-4, SHZ-5, and SHZ-9 had close kinship and significantly different pathogenicity. Transcriptome sequencing of the three strains identified 19 of 146 unigenes in SHZ-4_vs_ SHZ-5, SHZ-5_vs_ SHZ-9, and SHZ-4_vs_ SHZ-9. In these unigenes, three proteinase and four polysaccharide degrading hydrolases were found to be associated with the pathogenicity. However, due to a number of differentially expressed genes in the transport, these unigenes not only played a role in nutrition absorption but might also contribute to the resistance of sugar-induced hyperosmosis. Moreover, the tolerance ability was positively related to the pathogenicity of V. dahliae. This resistance to sugar-induced hyperosmosis might help V. dahliae to access the nutrition of the host. The pathogenicity of V. dahliae correlated with the resistance of sugar-induced-hyperosmosis, which provides clues for the cultivation of V. dahliae resistant varieties.
RESUMO
High blood glucose levels are the main feature of diabetes. However, the underlying mechanism linking high glucose concentration to diabetic complications is still not fully elucidated, particularly with regard to human physiology. Excess of glucose is likely to trigger a metabolic response depending on the cell features, activating deleterious pathways involved in the complications of diabetes. In this study, we aim to elucidate how acute and prolonged hyperglycaemia alters the biology and metabolism in human fibroblasts and endothelial cells. We found that hyperglycaemia triggers a metabolic switch from oxidative phosphorylation to glycolysis that is maintained over prolonged time. Moreover, osmotic pressure is a major factor in the early metabolic response, decreasing both mitochondrial transmembrane potential and cellular proliferation. After prolonged exposure to hyperglycaemia we observed decreased mitochondrial steady-state and uncoupled respiration, together with a reduced ATP/ADP ratio. At the same time, we could not detect major changes in mitochondrial transmembrane potential and reactive oxygen species. We suggest that the physiological and metabolic alterations observed in healthy human primary fibroblasts and endothelial cells are an adaptive response to hyperglycaemia. The severity of metabolic and bioenergetics impairment associated with diabetic complications may occur after longer glucose exposure or due to interactions with cell types more sensitive to hyperglycaemia.