Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Part Fibre Toxicol ; 15(1): 6, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29368623

RESUMO

BACKGROUND: The development of particokinetic models describing the delivery of insoluble or poorly soluble nanoparticles to cells in liquid cell culture systems has improved the basis for dose-response analysis, hazard ranking from high-throughput systems, and now allows for translation of exposures across in vitro and in vivo test systems. Complimentary particokinetic models that address processes controlling delivery of both particles and released ions to cells, and the influence of particle size changes from dissolution on particle delivery for cell-culture systems would help advance our understanding of the role of particles and ion dosimetry on cellular toxicology. We developed ISD3, an extension of our previously published model for insoluble particles, by deriving a specific formulation of the Population Balance Equation for soluble particles. RESULTS: ISD3 describes the time, concentration and particle size dependent dissolution of particles, their delivery to cells, and the delivery and uptake of ions to cells in in vitro liquid test systems. We applied the model to calculate the particle and ion dosimetry of nanosilver and silver ions in vitro after calibration of two empirical models, one for particle dissolution and one for ion uptake. Total media ion concentration, particle concentration and total cell-associated silver time-courses were well described by the model, across 2 concentrations of 20 and 110 nm particles. ISD3 was calibrated to dissolution data for 20 nm particles as a function of serum protein concentration, but successfully described the media and cell dosimetry time-course for both particles at all concentrations and time points. We also report the finding that protein content in media affects the initial rate of dissolution and the resulting near-steady state ion concentration in solution for the systems we have studied. CONCLUSIONS: By combining experiments and modeling, we were able to quantify the influence of proteins on silver particle solubility, determine the relative amounts of silver ions and particles in exposed cells, and demonstrate the influence of particle size changes resulting from dissolution on particle delivery to cells in culture. ISD3 is modular and can be adapted to new applications by replacing descriptions of dissolution, sedimentation and boundary conditions with those appropriate for particles other than silver.


Assuntos
Macrófagos Alveolares/metabolismo , Modelos Biológicos , Nanopartículas/química , Nanopartículas/metabolismo , Prata/química , Prata/metabolismo , Animais , Técnicas de Cultura de Células , Linhagem Celular , Precipitação Química , Meios de Cultura/química , Difusão , Nanopartículas Metálicas/análise , Nanopartículas Metálicas/química , Camundongos , Nanopartículas/análise , Tamanho da Partícula , Prata/análise , Solubilidade , Propriedades de Superfície
2.
Part Fibre Toxicol ; 13(1): 23, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27142434

RESUMO

BACKGROUND: Nano-scaled cerium oxide (nCeO2) is used in a variety of applications, including use as a fuel additive, catalyst, and polishing agent, yet potential adverse health effects associated with nCeO2 exposure remain incompletely understood. Given the increasing utility and demand for engineered nanomaterials (ENMs) such as nCeO2, "safety-by-design" approaches are currently being sought, meaning that the physicochemical properties (e.g., size and surface chemistry) of the ENMs are altered in an effort to maximize functionality while minimizing potential toxicity. In vivo studies have shown in a rat model that inhaled nCeO2 deposited deep in the lung and induced fibrosis. However, little is known about how the physicochemical properties of nCeO2, or the coating of the particles with a material such as amorphous silica (aSiO2), may affect the bio-activity of these particles. Thus, we hypothesized that the physicochemical properties of nCeO2 may explain its potential to induce fibrogenesis, and that a nano-thin aSiO2 coating on nCeO2 may counteract that effect. RESULTS: Primary normal human lung fibroblasts were treated at occupationally relevant doses with nCeO2 that was either left uncoated or was coated with aSiO2 (amsCeO2). Subsequently, fibroblasts were analyzed for known hallmarks of fibrogenesis, including cell proliferation and collagen production, as well as the formation of fibroblastic nodules. The results of this study are consistent with this hypothesis, as we found that nCeO2 directly induced significant production of collagen I and increased cell proliferation in vitro, while amsCeO2 did not. Furthermore, treatment of fibroblasts with nCeO2, but not amsCeO2, significantly induced the formation of fibroblastic nodules, a clear indicator of fibrogenicity. Such in vitro data is consistent with recent in vivo observations using the same nCeO2 nanoparticles and relevant doses. This effect appeared to be mediated through TGFß signaling since chemical inhibition of the TGFß receptor abolished these responses. CONCLUSIONS: These results indicate that differences in the physicochemical properties of nCeO2 may alter the fibrogenicity of this material, thus highlighting the potential benefits of "safety-by-design" strategies. In addition, this study provides an efficient in vitro method for testing the fibrogenicity of ENMs that strongly correlates with in vivo findings.


Assuntos
Poluentes Atmosféricos/toxicidade , Cério/toxicidade , Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Mucosa Respiratória/efeitos dos fármacos , Dióxido de Silício/toxicidade , Poluentes Atmosféricos/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cério/química , Fenômenos Químicos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Nanopartículas Metálicas/química , Tamanho da Partícula , Fenômenos Físicos , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/patologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Transdução de Sinais/efeitos dos fármacos , Dióxido de Silício/química , Propriedades de Superfície , Testes de Toxicidade Aguda , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
3.
Nanomaterials (Basel) ; 12(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36432221

RESUMO

A freely available "in vitro dosimetry" web application is presented enabling users to predict the concentration of nanomaterials reaching the cell surface, and therefore available for attachment and internalization, from initial dispersion concentrations. The web application is based on the distorted grid (DG) model for the dispersion of engineered nanoparticles (NPs) in culture medium used for in vitro cellular experiments, in accordance with previously published protocols for cellular dosimetry determination. A series of in vitro experiments for six different NPs, with Ag and Au cores, are performed to demonstrate the convenience of the web application for calculation of exposure concentrations of NPs. Our results show that the exposure concentrations at the cell surface can be more than 30 times higher compared to the nominal or dispersed concentrations, depending on the NPs' properties and their behavior in the cell culture medium. Therefore, the importance of calculating the exposure concentration at the bottom of the cell culture wells used for in vitro arrays, i.e., the particle concentration at the cell surface, is clearly presented, and the tool introduced here allows users easy access to such calculations. Widespread application of this web tool will increase the reliability of subsequent toxicity data, allowing improved correlation of the real exposure concentration with the observed toxicity, enabling the hazard potentials of different NPs to be compared on a more robust basis.

4.
Environ Toxicol Pharmacol ; 83: 103576, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33385576

RESUMO

Establishing accurate dosimetry is important for assessing the toxicity of xenobiotics as well as for comparing responses between different test systems. In this study, we used acrolein as a model toxicant and defined the concentration-response relationships of the key adverse responses in normal human bronchial epithelial (NHBE) cells and human mucoepidermoid pulmonary carcinoma (NCI-H292) cells. Direct trace analysis of intracellular free acrolein is extremely challenging, if not impossible. Therefore, we developed a new method for indirectly estimating the intracellular uptake of acrolein. A 10-min treatment was employed to capture the rapid occurrence of the key alkylation reactions of acrolein. Responses, including protein carbonylation, GSH depletion, and GSH-acrolein (GSH-ACR) adduct formation, were all linearly correlated with acrolein uptake in both cell types. Compared to the NCI-H292 mucoepidermoid carcinoma cells, NHBE cells were more sensitive to acrolein exposure. Furthermore, results from the time-course studies demonstrated that depletion and conjugation of GSH were the primary adverse events and directly associated with the cytotoxicity induced by acrolein. In summary, these data suggest that cell susceptibility to acrolein exposure is closely associated with acrolein uptake and formation of GSH-ACR adducts. The dosimetric analysis presented in this study may provide useful information for computational modeling and risk assessment of acrolein using different test systems.


Assuntos
Acroleína/toxicidade , Células Epiteliais/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/metabolismo , Glutationa/metabolismo , Humanos , Pulmão/citologia , Carbonilação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA