Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 49(4): 666-677.e6, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30291029

RESUMO

Regulatory T (Treg) cell responses and apoptotic cell clearance (efferocytosis) represent critical arms of the inflammation resolution response. We sought to determine whether these processes might be linked through Treg-cell-mediated enhancement of efferocytosis. In zymosan-induced peritonitis and lipopolysaccharide-induced lung injury, Treg cells increased early in resolution, and Treg cell depletion decreased efferocytosis. In advanced atherosclerosis, where defective efferocytosis drives disease progression, Treg cell expansion improved efferocytosis. Mechanistic studies revealed the following sequence: (1) Treg cells secreted interleukin-13 (IL-13), which stimulated IL-10 production in macrophages; (2) autocrine-paracrine signaling by IL-10 induced Vav1 in macrophages; and (3) Vav1 activated Rac1 to promote apoptotic cell engulfment. In summary, Treg cells promote macrophage efferocytosis during inflammation resolution via a transcellular signaling pathway that enhances apoptotic cell internalization. These findings suggest an expanded role of Treg cells in inflammation resolution and provide a mechanistic basis for Treg-cell-enhancement strategies for non-resolving inflammatory diseases.


Assuntos
Apoptose/imunologia , Inflamação/imunologia , Macrófagos/imunologia , Fagocitose/imunologia , Linfócitos T Reguladores/imunologia , Animais , Linhagem Celular , Células Cultivadas , Humanos , Inflamação/metabolismo , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-10/metabolismo , Interleucina-13/genética , Interleucina-13/imunologia , Interleucina-13/metabolismo , Células Jurkat , Lipopolissacarídeos , Pneumopatias/induzido quimicamente , Pneumopatias/imunologia , Pneumopatias/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peritonite/induzido quimicamente , Peritonite/imunologia , Peritonite/metabolismo , Linfócitos T Reguladores/metabolismo , Zimosan
2.
Proc Natl Acad Sci U S A ; 121(37): e2405821121, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39236243

RESUMO

While the acute inflammatory response to harmful stimuli is protective, unrestrained neutrophil swarming drives collateral tissue damage and inflammation. Biosynthesized from omega-3 essential polyunsaturated fatty acids, resolvins are a family of signaling molecules produced by immune cells within the resolution phase to orchestrate return to homeostasis. Understanding the mechanisms that govern biosynthesis of these potent molecules gives insight into stimulating endogenous resolution and offers fresh opportunities for preventing and treating excessive inflammation. In this report, using materials prepared by total synthesis and liquid chromatography and tandem mass spectrometry-based matching studies, we established the role of 7,8(S,S)-epoxytetraene intermediate in the biosynthesis of resolvin D1, resolvin D2, and the resolvin conjugate in tissue regeneration (RCTR1) by human phagocytes. We demonstrated that this 7,8(S,S)-epoxy-containing intermediate is directly converted to resolvin D2 by human M2-like macrophages and to resolvin D1 and RCTR1 by human macrophages, neutrophils, and peripheral blood mononuclear cells. In addition, both human recombinant soluble epoxide hydrolase (sEH) and the glutathione S-transferase leukotriene C4 synthase (LTC4S) each catalyze conversion of this epoxide to resolvin D1 and RCTR1, respectively. MS3 ion-trap scans and isotope incorporation of 18O from H218O with sEH indicated that the oxygen atom at C-8 in resolvin D1 is derived from water. Results from molecular docking simulations with biosynthetic precursor 17S-hydroperoxy-4,7,10,13,19-cis-15-trans-docosahexaenoic acid and the epoxy intermediate were consistent with 5-lipoxygenase production of resolvin D1. Together, these results give direct evidence for the role of resolvin 7,8(S,S)-epoxytetraene intermediate in the endogenous formation of resolution-phase mediators resolvin D1, resolvin D2, and RCTR1 by human phagocytes.


Assuntos
Ácidos Docosa-Hexaenoicos , Macrófagos , Neutrófilos , Humanos , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/biossíntese , Neutrófilos/metabolismo , Macrófagos/metabolismo , Receptores Acoplados a Proteínas G
3.
Proc Natl Acad Sci U S A ; 121(7): e2314085121, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38330013

RESUMO

Cancer therapy, including immunotherapy, is inherently limited by chronic inflammation-induced tumorigenesis and toxicity within the tumor microenvironment. Thus, stimulating the resolution of inflammation may enhance immunotherapy and improve the toxicity of immune checkpoint inhibition (ICI). As epoxy-fatty acids (EpFAs) are degraded by the enzyme soluble epoxide hydrolase (sEH), the inhibition of sEH increases endogenous EpFA levels to promote the resolution of cancer-associated inflammation. Here, we demonstrate that systemic treatment with ICI induces sEH expression in multiple murine cancer models. Dietary omega-3 polyunsaturated fatty acid supplementation and pharmacologic sEH inhibition, both alone and in combination, significantly enhance anti-tumor activity of ICI in these models. Notably, pharmacological abrogation of the sEH pathway alone or in combination with ICI counter-regulates an ICI-induced pro-inflammatory and pro-tumorigenic cytokine storm. Thus, modulating endogenous EpFA levels through dietary supplementation or sEH inhibition may represent a unique strategy to enhance the anti-tumor activity of paradigm cancer therapies.


Assuntos
Epóxido Hidrolases , Neoplasias , Camundongos , Humanos , Animais , Epóxido Hidrolases/metabolismo , Ácidos Graxos/metabolismo , Inflamação/metabolismo , Neoplasias/terapia , Imunoterapia , Microambiente Tumoral
4.
Immunol Rev ; 319(1): 65-80, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37158427

RESUMO

The phagocytosis of dying cells by macrophages, termed efferocytosis, is a tightly regulated process that involves the sensing, binding, engulfment, and digestion of apoptotic cells. Efferocytosis not only prevents tissue necrosis and inflammation caused by secondary necrosis of dying cells, but it also promotes pro-resolving signaling in macrophages, which is essential for tissue resolution and repair following injury or inflammation. An important factor that contributes to this pro-resolving reprogramming is the cargo that is released from apoptotic cells after their engulfment and phagolysosomal digestion by macrophages. The apoptotic cell cargo contains amino acids, nucleotides, fatty acids, and cholesterol that function as metabolites and signaling molecules to bring about this re-programming. Here, we review efferocytosis-induced changes in macrophage metabolism that mediate the pro-resolving functions of macrophages. We also discuss various strategies, challenges, and future perspectives related to drugging efferocytosis-fueled macrophage metabolism as strategy to dampen inflammation and promote resolution in chronic inflammatory diseases.


Assuntos
Apoptose , Fagocitose , Humanos , Macrófagos/metabolismo , Inflamação/metabolismo , Necrose/metabolismo
5.
Trends Immunol ; 44(10): 766-781, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37690962

RESUMO

Regulatory T (Treg) cells play vital roles in immune homeostasis and response, including discrimination between self- and non-self-antigens, containment of immunopathology, and inflammation resolution. These diverse functions are orchestrated by cellular circuits involving Tregs and other cell types across space and time. Despite dramatic progress in our understanding of Treg biology, a quantitative framework capturing how Treg-containing circuits give rise to these diverse functions is lacking. Here, we propose that different facets of Treg function can be interpreted as distinct operating regimes of the same underlying circuit. We discuss how a systems immunology approach, involving quantitative experiments, computational modeling, and machine learning, can advance our understanding of Treg function, and help identify general operating and design principles underlying immune regulation.


Assuntos
Antígenos , Linfócitos T Reguladores , Humanos , Antígenos/metabolismo
6.
Semin Immunol ; 61-64: 101664, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36306664

RESUMO

Inflammatory bowel diseases (IBD) such as Crohn's Disease (CD) and Ulcerative Colitis (UC) are chronic, progressive, and relapsing disorders of the gastrointestinal tract (GIT), characterised by intestinal epithelial injury and inflammation. Current research shows that in addition to traditional anti-inflammatory therapy, resolution of inflammation and repair of the epithelial barrier are key biological requirements in combating IBD. Resolution mediators include endogenous lipids that are generated during inflammation, e.g., lipoxins, resolvins, protectins, maresins; and proteins such as Annexin A1 (ANXA1). Nanoparticles can specifically deliver these potent inflammation resolving mediators in a spatiotemporal manner to IBD lesions, effectively resolve inflammation, and promote a return to homoeostasis with minimal collateral damage. We discuss these exciting and timely concepts in this review.


Assuntos
Anexina A1 , Doenças Inflamatórias Intestinais , Lipoxinas , Humanos , Anexina A1/metabolismo , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/tratamento farmacológico , Mediadores da Inflamação/metabolismo
7.
Mol Ther ; 32(5): 1561-1577, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38454607

RESUMO

Inflammation resolution is an essential process for preventing the development of chronic inflammatory diseases. However, the mechanisms that regulate inflammation resolution in psoriasis are not well understood. Here, we report that ANKRD22 is an endogenous negative orchestrator of psoriasiform inflammation because ANKRD22-deficient mice are more susceptible to IMQ-induced psoriasiform inflammation. Mechanistically, ANKRD22 deficiency leads to excessive activation of the TNFRII-NIK-mediated noncanonical NF-κB signaling pathway, resulting in the hyperproduction of IL-23 in DCs. This is due to ANKRD22 being a negative feedback regulator for NIK because it physically binds to and assists in the degradation of accumulated NIK. Clinically, ANKRD22 is negatively associated with IL-23A expression and psoriasis severity. Of greater significance, subcutaneous administration of an AAV carrying ANKRD22-overexpression vector effectively hastens the resolution of psoriasiform skin inflammation. Our findings suggest ANKRD22, an endogenous supervisor of NIK, is responsible for inflammation resolution in psoriasis, and may be explored in the context of psoriasis therapy.


Assuntos
Modelos Animais de Doenças , Interleucina-23 , Psoríase , Transdução de Sinais , Psoríase/metabolismo , Psoríase/patologia , Psoríase/terapia , Psoríase/etiologia , Psoríase/imunologia , Psoríase/genética , Psoríase/induzido quimicamente , Animais , Camundongos , Interleucina-23/metabolismo , Interleucina-23/genética , Humanos , Inflamação/metabolismo , Inflamação/patologia , Camundongos Knockout , Pele/patologia , Pele/metabolismo , Quinase Induzida por NF-kappaB , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , NF-kappa B/metabolismo
8.
J Mol Cell Cardiol ; 188: 79-89, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38364731

RESUMO

The study investigated the role of volunteer exercise and an obesogenic diet (OBD) in mice, focusing on the splenocardiac axis and inflammation-resolution signaling. Male C57BL/6J mice (2 months old) were assigned to control (CON) or OBD groups for ten months, then randomized into sedentary (Sed) or exercise (Exe) groups for two weeks. Leukocytes, heart function, structure, and spleen tissue examined for inflammation-resolution mediators and macrophage-centric gene transcripts. After two weeks of volunteer exercise, cardiac function shows limited changes, but structural changes were notable in the heart and spleen. Exercise induced cardiac nuclear hyperplasia observed in both CON and OBD groups. OBD-Sed mice showed splenic changes and increased neutrophils, whereas increased neutrophils were noted in the CON post exercise. OBD-Sed increased pro-inflammatory lipid mediators in the heart, reduced by exercise in OBD-Exe, while CON-Exe preserved resolution mediators. Chronic OBD-Sed depletes long chain fatty acids (DHA/EPA) in the heart and spleen, while exercise independently regulates lipid metabolism genes in both organs, affecting macrophage-centric lipid and lipoprotein pathways. Chronic obesity amplified cardiac inflammation, countered by exercise that lowered pro-inflammatory bioactive lipid mediators in the heart. OBD sustained inflammation in the heart and spleen, while exercise conserved resolution mediators in CON mice. In summary, these findings emphasize the interplay of diet with exercise and highlight the intricate connection of diet, exercise, inflammation-resolution signaling in splenocardiac axis and immune health.


Assuntos
Dieta , Baço , Humanos , Masculino , Animais , Camundongos , Lactente , Camundongos Endogâmicos C57BL , Envelhecimento , Ácidos Graxos , Inflamação , Mediadores da Inflamação
9.
Am J Physiol Cell Physiol ; 326(5): C1556-C1562, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38618702

RESUMO

Healthy livers contain 80% of body resident macrophages known as Kupffer cells. In diseased livers, the number of Kupffer cells usually drops but is compensated by infiltration of monocyte-derived macrophages, some of which can differentiate into Kupffer-like cells. Early studies suggest that Kupffer cells play important roles in both promoting liver injury and liver regeneration. Yet, the distinction between the functionalities of resident and infiltrating macrophages is not always made. By using more specific macrophage markers and targeted cell depletion and single-cell RNA sequencing, recent studies revealed several subsets of monocyte-derived macrophages that play important functions in inducing liver damage and inflammation as well as in liver repair and regeneration. In this review, we discuss the different roles that hepatic macrophages play in promoting necrotic liver lesion resolution and dead cell clearance, as well as the targeting of these cells as potential tools for the development of novel therapies for acute liver failure and acute-on-chronic liver failure.


Assuntos
Células de Kupffer , Regeneração Hepática , Fígado , Necrose , Humanos , Animais , Fígado/patologia , Fígado/metabolismo , Células de Kupffer/metabolismo , Células de Kupffer/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Macrófagos/imunologia
10.
J Neuroinflammation ; 21(1): 18, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212822

RESUMO

Lipoxins are small lipids that are potent endogenous mediators of systemic inflammation resolution in a variety of diseases. We previously reported that Lipoxins A4 and B4 (LXA4 and LXB4) have protective activities against neurodegenerative injury. Yet, lipoxin activities and downstream signaling in neuroinflammatory processes are not well understood. Here, we utilized a model of posterior uveitis induced by lipopolysaccharide endotoxin (LPS), which results in rapid retinal neuroinflammation primarily characterized by activation of resident macroglia (astrocytes and Müller glia), and microglia. Using this model, we observed that each lipoxin reduces acute inner retinal inflammation by affecting endogenous glial responses in a cascading sequence beginning with astrocytes and then microglia, depending on the timing of exposure; prophylactic or therapeutic. Subsequent analyses of retinal cytokines and chemokines revealed inhibition of both CXCL9 (MIG) and CXCL10 (IP10) by each lipoxin, compared to controls, following LPS injection. CXCL9 and CXCL10 are common ligands for the CXCR3 chemokine receptor, which is prominently expressed in inner retinal astrocytes and ganglion cells. We found that CXCR3 inhibition reduces LPS-induced neuroinflammation, while CXCR3 agonism alone induces astrocyte reactivity. Together, these data uncover a novel lipoxin-CXCR3 pathway to promote distinct anti-inflammatory and proresolution cascades in endogenous retinal glia.


Assuntos
Lipoxinas , Neuroglia , Doenças Neuroinflamatórias , Receptores CXCR3 , Inflamação/induzido quimicamente , Lipopolissacarídeos/toxicidade , Lipoxinas/farmacologia , Lipoxinas/metabolismo , Neuroglia/metabolismo , Animais
11.
FASEB J ; 37(5): e22899, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37002889

RESUMO

Sleep is a fundamental medicine for cardiac homeostasis, and sleep-deprived individuals are prone to higher incidences of heart attack. The lipid-dense diet (obesogenic diet-OBD) is a cumulative risk factor for chronic inflammation in cardiovascular disease; thus, understanding how sleep fragmentation (SF) in an obesity setting impacts immune and cardiac health is an unmet medical need. We hypothesized whether the co-existence of SF with OBD dysregulates gut homeostasis and leukocyte-derived reparative/resolution mediators, thereby impairing cardiac repair. Two-month-old male C57BL/6J mice were randomized first into two groups, then four groups; Control, control + SF, OBD, and OBD + SF mice subjected to myocardial infarction (MI). OBD mice had higher levels of plasma linolenic acid with a decrease in eicosapentaenoic and docosahexaenoic acid. The OBD mice had lower Lactobacillus johnsonii indicating a loss of probiotic microbiota. SF in OBD mice increased Firmicutes/Bacteroidetes ratio indicative of a detrimental change in SF-directed microbiome. OBD + SF group increased in the neutrophil: lymphocyte ratio suggestive of suboptimal inflammation. As a result of SF, resolution mediators (RvD2, RvD3, RvD5, LXA4 , PD1, and MaR1) decreased and inflammatory mediators (PGD2 , PGE2 , PGF2a , 6k-PGF1a ) were increased in OBD mice post-MI. At the site of infarction, the proinflammatory cytokines Ccl2, IL1ß, and IL-6 were amplified in OBD + SF indicating a robust proinflammatory milieu post-MI. Also, brain circadian genes (Bmal1, Clock) were downregulated in SF-subjected control mice, but remained elevated in OBD mice post-MI. SF superimposed on obesity dysregulated physiological inflammation and disrupted resolving response thereby impaired cardiac repair and signs of pathological inflammation.


Assuntos
Insuficiência Cardíaca , Microbiota , Infarto do Miocárdio , Masculino , Camundongos , Animais , Privação do Sono/complicações , Lipidômica , Camundongos Endogâmicos C57BL , Inflamação/complicações , Insuficiência Cardíaca/etiologia , Infarto do Miocárdio/patologia , Citocinas/genética , Obesidade/complicações
12.
Cell Mol Life Sci ; 80(11): 324, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37824022

RESUMO

Immune response plays a crucial role in post-myocardial infarction (MI) myocardial remodeling. Neogenin (Neo1), a multifunctional transmembrane receptor, plays a critical role in the immune response; however, whether Neo1 participates in pathological myocardial remodeling after MI is unclear. Our study found that Neo1 expression changed significantly after MI in vivo and after LPS + IFN-γ stimulation in bone marrow-derived macrophages (BMDMs) in vitro. Neo1 functional deficiency (using a neutralizing antibody) and macrophage-specific Neo1 deficiency (induced by Neo1flox/flox;Cx3cr1cre mice) increased infarction size, enhanced cardiac fibrosis and cardiomyocyte apoptosis, and exacerbated left ventricular dysfunction post-MI in mice. Mechanistically, Neo1 deficiency promoted macrophage infiltration into the ischemic myocardium and transformation to a proinflammatory phenotype, subsequently exacerbating the inflammatory response and impairing inflammation resolution post-MI. Neo1 deficiency regulated macrophage phenotype and function, possibly through the JAK1-STAT1 pathway, as confirmed in BMDMs in vitro. Blocking the JAK1-STAT1 pathway with fludarabine phosphate abolished the impact of Neo1 on macrophage phenotype and function, inflammatory response, inflammation resolution, cardiomyocyte apoptosis, cardiac fibrosis, infarction size and cardiac function. In conclusion, Neo1 deficiency aggravates inflammation and left ventricular remodeling post-MI by modulating macrophage phenotypes and functions via the JAK1-STAT1 signaling pathway. These findings highlight the anti-inflammatory potential of Neo1, offering new perspectives for therapeutic targets in MI treatment. Neo1 deficiency aggravated inflammation and left ventricular remodeling after MI by modulating macrophage phenotypes and functions via the JAK1-STAT1 signaling pathway.


Assuntos
Infarto do Miocárdio , Remodelação Ventricular , Animais , Camundongos , Modelos Animais de Doenças , Fibrose , Inflamação/patologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Janus Quinase 1/metabolismo , Fator de Transcrição STAT1/metabolismo
13.
Arch Toxicol ; 2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39395921

RESUMO

Drug-induced liver injury (DILI) is an acute liver injury that poses a significant threat to human health. In severe cases, it can progress into chronic DILI or even lead to liver failure. DILI is typically caused by either intrinsic hepatotoxicity or idiosyncratic metabolic or immune responses. In addition to the direct damage drugs inflict on hepatocytes, the immune responses and liver inflammation triggered by hepatocyte death can further exacerbate DILI. Initially, we briefly discussed the differences in immune cell activation based on the type of liver cell death (hepatocytes, cholangiocytes, and LSECs). We then focused on the role of various immune cells (including macrophages, monocytes, neutrophils, dendritic cells, liver sinusoidal endothelial cells, eosinophils, natural killer cells, and natural killer T cells) in both the liver injury and liver regeneration stages of DILI. This article primarily reviews the role of innate immune regulation mediated by these immune cells in resolving inflammation and promoting liver regeneration during DILI, as well as therapeutic approaches targeting these immune cells for the treatment of DILI. Finally, we discussed the activation and function of liver progenitor cells (LPCs) during APAP-induced massive hepatic necrosis and the involvement of chronic inflammation in DILI.

14.
Am J Respir Crit Care Med ; 207(11): 1451-1463, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36790376

RESUMO

Rationale: The resolution of inflammation is an active process coordinated by mediators and immune cells to restore tissue homeostasis. However, the mechanisms for resolving eosinophilic allergic lung inflammation triggered by inhaled allergens have not been fully elucidated. Objectives: Our objectives were to investigate the cellular mechanism of tissue-resident macrophages involved in the resolution process of eosinophilic lung inflammation. Methods: For the study, we used the institutional review board-approved protocol for human subsegmental bronchoprovocation with allergen, mouse models for allergic lung inflammation, and novel transgenic mice, including a conditional CCL26 knockout. The samples were analyzed using mass cytometry, single-cell RNA sequencing, and biophysical and immunological analyses. Measurements and Main Results: We compared alveolar macrophage (AM) subsets in the BAL before and after allergen provocation. In response to provocation with inhaled allergens, the subsets of AMs are dynamically changed in humans and mice. In the steady state, the AM subset expressing CX3CR1 is a relatively small fraction in bronchoalveolar space and lung tissue but drastically increases after allergen challenges. This subset presents unique patterns of gene expression compared with classical AMs, expressing high C1q family genes. CX3CR1+ macrophages are activated by airway epithelial cell-derived CCL26 via a receptor-ligand interaction. The binding of CCL26 to the CX3CR1+ receptor induces CX3CR1+ macrophages to secrete C1q, subsequently facilitating the clearance of eosinophils. Furthermore, the depletion of CX3CR1 macrophages or CCL26 in airway epithelial cells delays the resolution of allergic lung inflammation displaying prolonged tissue eosinophilia. Conclusions: These findings indicate that the CCL26-CX3CR1 pathway is pivotal in resolving eosinophilic allergic lung inflammation.


Assuntos
Alveolite Alérgica Extrínseca , Hipersensibilidade , Pneumonia , Eosinofilia Pulmonar , Humanos , Camundongos , Animais , Complemento C1q/metabolismo , Pulmão/metabolismo , Macrófagos , Alérgenos , Inflamação/metabolismo , Pneumonia/metabolismo , Quimiocina CCL26/metabolismo
15.
Inhal Toxicol ; 36(2): 57-74, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38422051

RESUMO

Many inhalation exposures induce pulmonary inflammation contributing to disease progression. Inflammatory processes are actively regulated via mediators including bioactive lipids. Bioactive lipids are potent signaling molecules involved in both pro-inflammatory and resolution processes through receptor interactions. The formation and clearance of lipid signaling mediators are controlled by multiple metabolic enzymes. An imbalance of these lipids can result in exacerbated and sustained inflammatory processes which may result in pulmonary damage and disease. Dysregulation of pulmonary bioactive lipids contribute to inflammation and pulmonary toxicity following exposures. For example, inhalation of cigarette smoke induces activation of pro-inflammatory bioactive lipids such as sphingolipids, and ceramides contributing to chronic obstructive pulmonary disease. Additionally, exposure to silver nanoparticles causes dysregulation of inflammatory resolution lipids. As inflammation is a common consequence resulting from inhaled exposures and a component of numerous diseases it represents a broadly applicable target for therapeutic intervention. With new appreciation for bioactive lipids, technological advances to reliably identify and quantify lipids have occurred. In this review, we will summarize, integrate, and discuss findings from recent studies investigating the impact of inhaled exposures on pro-inflammatory and resolution lipids within the lung and their contribution to disease. Throughout the review current knowledge gaps in our understanding of bioactive lipids and their contribution to pulmonary effects of inhaled exposures will be presented. New methods being employed to detect and quantify disruption of pulmonary lipid levels following inhalation exposures will be highlighted. Lastly, we will describe how lipid dysregulation could potentially be addressed by therapeutic strategies to address inflammation.


Assuntos
Pneumopatias , Nanopartículas Metálicas , Humanos , Exposição por Inalação/efeitos adversos , Prata , Inflamação/induzido quimicamente , Pneumopatias/induzido quimicamente , Ceramidas , Mediadores da Inflamação/metabolismo
16.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34607951

RESUMO

Cancer therapy reduces tumor burden via tumor cell death ("debris"), which can accelerate tumor progression via the failure of inflammation resolution. Thus, there is an urgent need to develop treatment modalities that stimulate the clearance or resolution of inflammation-associated debris. Here, we demonstrate that chemotherapy-generated debris stimulates metastasis by up-regulating soluble epoxide hydrolase (sEH) and the prostaglandin E2 receptor 4 (EP4). Therapy-induced tumor cell debris triggers a storm of proinflammatory and proangiogenic eicosanoid-driven cytokines. Thus, targeting a single eicosanoid or cytokine is unlikely to prevent chemotherapy-induced metastasis. Pharmacological abrogation of both sEH and EP4 eicosanoid pathways prevents hepato-pancreatic tumor growth and liver metastasis by promoting macrophage phagocytosis of debris and counterregulating a protumorigenic eicosanoid and cytokine storm. Therefore, stimulating the clearance of tumor cell debris via combined sEH and EP4 inhibition is an approach to prevent debris-stimulated metastasis and tumor growth.


Assuntos
Eicosanoides/metabolismo , Epóxido Hidrolases/biossíntese , Macrófagos/imunologia , Metástase Neoplásica/patologia , Receptores de Prostaglandina E Subtipo EP4/biossíntese , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/prevenção & controle , Citocinas/metabolismo , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica/prevenção & controle , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Fagocitose/imunologia , Células RAW 264.7
17.
Am J Physiol Heart Circ Physiol ; 325(3): H433-H448, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37417877

RESUMO

Chronic and uncleared inflammation is the root cause of various cardiovascular diseases. Fundamentally, acute inflammation is supportive when overlapping with safe clearance of inflammation termed resolution; however, if the lifestyle-directed extrinsic factors such as diet, sleep, exercise, or physical activity are misaligned, that results in unresolved inflammation. Although genetics play a critical role in cardiovascular health, four extrinsic risk factors-unhealthy processed diet, sleep disruption or fragmentation, sedentary lifestyle, thereby, subsequent stress-have been identified as heterogeneous and polygenic triggers of heart failure (HF), which can result in several complications with indications of chronic inflammation. Extrinsic risk factors directly impact endogenous intrinsic factors, such as using fatty acids by immune-responsive enzymes [lipoxygenases (LOXs)/cyclooxygenases (COXs)/cytochromes-P450 (CYP450)] to form resolution mediators that activate specific resolution receptors. Thus, the balance of extrinsic factors such as diet, sleep, and physical activity feed-forward the coordination of intrinsic factors such as fatty acids-enzymes-bioactive lipid receptors that modulates the immune defense, metabolic health, inflammation-resolution signaling, and cardiac health. Future research on lifestyle- and aging-associated molecular patterns is warranted in the context of intrinsic and extrinsic factors, immune fitness, inflammation-resolution signaling, and cardiac health.


Assuntos
Insuficiência Cardíaca , Humanos , Coração , Inflamação/metabolismo , Fatores de Risco , Ácidos Graxos
18.
Am J Physiol Regul Integr Comp Physiol ; 325(1): R55-R68, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37212552

RESUMO

This study explored the role of apoE receptor-2 (apoER2), a unique member of the LDL receptor family proteins with a restricted tissue expression profile, in modulating diet-induced obesity and diabetes. Unlike wild-type mice and humans in which chronic feeding of a high-fat Western-type diet leads to obesity and the prediabetic state of hyperinsulinemia before hyperglycemia onset, the Lrp8-/- mice with global apoER2 deficiency displayed lower body weight and adiposity, slower development of hyperinsulinemia, but the accelerated onset of hyperglycemia. Despite their lower adiposity, adipose tissues in Western diet-fed Lrp8-/- mice were more inflamed compared with wild-type mice. Additional experiments revealed that the hyperglycemia observed in Western diet-fed Lrp8-/- mice was due to impaired glucose-induced insulin secretion, ultimately leading to hyperglycemia, adipocyte dysfunction, and inflammation upon chronic feeding of the Western diet. Interestingly, bone marrow-specific apoER2-deficient mice were not defective in insulin secretion, exhibiting increased adiposity and hyperinsulinemia compared with wild-type mice. Analysis of bone marrow-derived macrophages revealed that apoER2 deficiency impeded inflammation resolution with lower secretion of IFN-ß and IL-10 in response to LPS stimulation of IL-4 primed cells. The apoER2-deficient macrophages also showed an increased level of disabled-2 (Dab2) as well as increased cell surface TLR4, suggesting that apoER2 participates in Dab2 regulation of TLR4 signaling. Taken together, these results showed that apoER2 deficiency in macrophages sustains diet-induced tissue inflammation and accelerates obesity and diabetes onset while apoER2 deficiency in other cell types contributes to hyperglycemia and inflammation via defective insulin secretion.


Assuntos
Hiperglicemia , Hiperinsulinismo , Resistência à Insulina , Animais , Humanos , Camundongos , Tecido Adiposo/metabolismo , Medula Óssea/metabolismo , Dieta , Dieta Hiperlipídica , Hiperglicemia/metabolismo , Hiperinsulinismo/genética , Inflamação/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/etiologia , Obesidade/metabolismo , Receptores de LDL , Receptor 4 Toll-Like/metabolismo
19.
Pharmacol Res ; 188: 106640, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36627004

RESUMO

Inflammation resolution is an active process that involves cellular events such as apoptosis and efferocytosis, which are key steps in the restoration of tissue homeostasis. Hepatocyte growth factor (HGF) is a growth factor mostly produced by mesenchymal-origin cells and has been described to act via MET receptor tyrosine kinase. The HGF/MET axis is essential for determining the progression and severity of inflammatory and immune-mediated disorders. Here, we investigated the effect of blocking the HGF/MET signalling pathway by PF-04217903 on the resolution of established models of neutrophilic inflammation. In a self-resolving model of gout induced by MSU crystals, HGF expression on periarticular tissue peaked at 12 h, the same time point that neutrophils reach their maximal accumulation in the joints. The HGF/MET axis was activated in this model, as demonstrated by increased levels of MET phosphorylation in neutrophils (Ly6G+ cells). In addition, the number of neutrophils was reduced in the knee exudate after PF-04217903 treatment, an effect accompanied by increased neutrophil apoptosis and efferocytosis and enhanced expression of Annexin A1, a key molecule for inflammation resolution. Reduced MPO activity, IL-1ß and CXCL1 levels were also observed in periarticular tissue. Importantly, PF-04217903 reduced the histopathological score and hypernociceptive response. Similar findings were obtained in LPS-induced neutrophilic pleurisy. In human neutrophils, the combined use of LPS and HGF increased MET phosphorylation and provided a prosurvival signal, whereas blocking MET with PF-04217903 induced caspase-dependent neutrophil apoptosis. Taken together, these data demonstrate that blocking HGF/MET signalling may be a potential therapeutic strategy for inducing the resolution of neutrophilic inflammatory responses.


Assuntos
Fator de Crescimento de Hepatócito , Neutrófilos , Humanos , Fator de Crescimento de Hepatócito/metabolismo , Fator de Crescimento de Hepatócito/farmacologia , Fator de Crescimento de Hepatócito/uso terapêutico , Lipopolissacarídeos/farmacologia , Inflamação/metabolismo , Apoptose , Proteínas Proto-Oncogênicas c-met/metabolismo , Homeostase
20.
Pharmacol Res ; 195: 106832, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37364787

RESUMO

Accumulating evidence suggests that inflammation plays an important role in the pathophysiology of the initiation and progression of cardiovascular and metabolic diseases (CVMDs). Anti-inflammation strategies and those that promote inflammation resolution have gradually become potential therapeutic approaches for CVMDs. Resolvin D2 (RvD2), a specialized pro-resolving mediator, exerts anti-inflammatory and pro-resolution effects through its receptor GPR18, a G protein-coupled receptor. Recently, the RvD2/GPR18 axis has received more attention due to its protective role in CVMDs, including atherosclerosis, hypertension, ischaemiareperfusion, and diabetes. Here, we introduce basic information about RvD2 and GPR18, summarize their roles in different immune cells, and review the therapeutic potential of the RvD2/GPR18 axis in CVMDs. In summary, RvD2 and its receptor GPR18 play an important role in the occurrence and development of CVMDs and are potential biomarkers and therapeutic targets.


Assuntos
Doenças Cardiovasculares , Doenças Metabólicas , Humanos , Ácidos Docosa-Hexaenoicos/uso terapêutico , Inflamação/tratamento farmacológico , Anti-Inflamatórios , Doenças Cardiovasculares/tratamento farmacológico , Doenças Metabólicas/tratamento farmacológico , Biomarcadores , Receptores Acoplados a Proteínas G
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA