Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Environ Manage ; 326(Pt A): 116705, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36379079

RESUMO

Filamentous algae nutrient scrubber (FANS) operating parameters can strongly influence algal biomass productivity and nutrient removal. However, few studies to date have investigated the effects of FANS operating parameters such as initial standing crop, harvesting frequency and influent flow rate on biomass productivity and nutrient removal performance, especially for FANS that cultivate a single species of algae. Therefore, the overall aim of this study was to investigate how operating parameters affect the biomass productivity and nutrient removal performance of Oedogonium sp. - a promising species for unialgal FANS. The initial standing crop had a significant effect on biomass productivity, with productivities being highest (8.6 ± 0.5 g DW biomass m-2day-1) when the initial standing crop was 60-70 g DW m-2. However, the daily nutrient removal rate was highest (0.47 ± 0.06 g N m-2 day-1and 1.24 ± 0.13 g P m-2 day-1) at the highest initial standing crop (100-110 DW m-2). Biomass productivity was highest with a three-day growth period, regardless of size of the initial standing crop. Therefore, a four-day harvesting interval was selected as the optimal harvesting regime to promote exponential growth and high biomass production. Influent flow rate had a significant effect on biomass productivity, which was highest (9.3 ± 1.7 g DW m-2 day-1) for the 1 L min-1 flow rate. This flow rate also gave the highest instantaneous nutrient removal rate (0.05 ± 0.02 g N m-3 and 0.14 ± 0.05 g P m-3). Current results suggest that an optimum initial standing crop of 70-80 g DW m-2, harvesting frequency of four days and influent flow rate of 1 L min-1 (16.7 L min-1 m-1 width) were optimal for Oedogonium sp. cultivated on FANS to maximize their biomass production and nutrient removal under controlled laboratory conditions. These results contribute to understanding the impacts of operating parameters on optimizing unialgal Oedogonium sp. FANS biomass production and nutrient removal performance.


Assuntos
Microalgas , Nitrogênio , Biomassa , Nutrientes
2.
Environ Sci Pollut Res Int ; 26(12): 11542-11557, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29667049

RESUMO

Cu(II) adsorption in continuous column using green adsorbents like peanut and almond shell was investigated. Fourier transform infrared (FTIR) spectroscopy, Brunaer-Emmett-Teller (BET) analysis, scanning electron microscopy (SEM), and Point of Zero charge (pHpzc) determination have been used for characterization of the adsorbents. Experiments were conducted at various operating conditions to calculate the adsorption capacity of the adsorbents. Adsorption studies signify that both the adsorbents have good adsorptive capacity for Cu(II) ion. Equilibrium of adsorption was described using Langmuir isotherm and the highest qmax value for both the adsorbent were obtained at an operating condition of 20 ml/min flow rate, 15 mg/L influent Cu(II) concentration, and 7 cm bed depth. Regeneration of both the adsorbents suggests that these adsorbents can be used several times for Cu(II) removal. Seven different kinetic models were tested among which the modified dose response model was fitted well for peanut shell and the Thomas model was fitted well for almond shell. These fitted models were further used for scale-up design. Regeneration studies show that peanut shell and almond shell are useful up to the fifth adsorption cycle. Application of these adsorbents with industrial effluent was also reported. This study reveals that peanut and almond shells can be used for Cu(II) removal for industrial wastewater.


Assuntos
Cobre/química , Modelos Químicos , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Adsorção , Cobre/análise , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Varredura , Prunus dulcis , Espectroscopia de Infravermelho com Transformada de Fourier , Águas Residuárias/química , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA