Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biol Cell ; 113(7): 311-328, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33666950

RESUMO

BACKGROUND INFORMATION: Comprehensive libraries of plasmids for SARS-CoV-2 proteins with various tags (e.g., Strep, HA, Turbo) are now available. They enable the identification of numerous potential protein-protein interactions between the SARS-CoV-2 virus and host proteins. RESULTS: We present here a large library of SARS CoV-2 protein constructs fused with green and red fluorescent proteins and their initial characterisation in various human cell lines including lung epithelial cell models (A549, BEAS-2B), as well as in budding yeast. The localisation of a few SARS-CoV-2 proteins matches their proposed interactions with host proteins. These include the localisation of Nsp13 to the centrosome, Orf3a to late endosomes and Orf9b to mitochondria. CONCLUSIONS AND SIGNIFICANCE: This library should facilitate further cellular investigations, notably by imaging techniques.


Assuntos
COVID-19/virologia , Biblioteca de Peptídeos , SARS-CoV-2/metabolismo , Proteínas Virais/metabolismo , Células A549 , Linhagem Celular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , SARS-CoV-2/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Imagem com Lapso de Tempo , Proteínas Virais/genética , Proteína Vermelha Fluorescente
2.
Biol Cell ; 113(9): 375-400, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33870508

RESUMO

Mitochondria are organelles involved in various functions related to cellular metabolism and homoeostasis. Though mitochondria contain own genome, their nuclear counterparts encode most of the different mitochondrial proteins. These are synthesised as precursors in the cytosol and have to be delivered into the mitochondria. These organelles hence have elaborate machineries for the import of precursor proteins from cytosol. The protein import machineries present in both mitochondrial membrane and aqueous compartments show great variability in pre-protein recognition, translocation and sorting across or into it. Mitochondrial protein import machineries also interact transiently with other protein complexes of the respiratory chain or those involved in the maintenance of membrane architecture. Hence mitochondrial protein translocation is an indispensable part of the regulatory network that maintains protein biogenesis, bioenergetics, membrane dynamics and quality control of the organelle. Various stress conditions and diseases that are associated with mitochondrial import defects lead to changes in cellular transcriptomic and proteomic profiles. Dysfunction in mitochondrial protein import also causes over-accumulation of precursor proteins and their aggregation in the cytosol. Multiple pathways may be activated for buffering these harmful consequences. Here, we present a comprehensive picture of import machinery and its role in cellular quality control in response to defective mitochondrial import. We also discuss the pathological consequences of dysfunctional mitochondrial protein import in neurodegeneration and cancer.


Assuntos
Mitocôndrias , Proteínas Mitocondriais/metabolismo , Transporte Proteico , Compartimento Celular/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Membranas Mitocondriais/metabolismo , Peptídeo Hidrolases/metabolismo , Transporte Proteico/fisiologia , Proteólise , Controle de Qualidade
3.
Biol Cell ; 112(7): 187-195, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32180234

RESUMO

Many intracellular microbial pathogens subvert, disrupt or otherwise modulate host membrane trafficking pathways to establish a successful infection. Among them, bacteria that are trapped in a phagosome during mammalian cell invasion, disengage the programmed degradation process by altering the identity of their replicative niche through the exclusion or recruitment of specific Rab GTPases to their vacuole. Many viruses co-opt essential cellular trafficking pathways to perform key steps in their lifecycles. Among protozoan parasites, Apicomplexa are obligate intracellular microbes that invade mammalian cells by creating a unique, nonfusogenic membrane-bound compartment that protects the parasites straightaway from lysosomal degradation. Recent compelling evidence demonstrates that apicomplexan parasites are master manipulators of mammalian Rab GTPase proteins, and benefit or antagonise Rab functions for development within host cells. This review covers the exploitation of mammalian Rab proteins and vesicles by Apicomplexa, focusing on Toxoplasma, Neospora, Plasmodium and Theileria parasites.


Assuntos
Apicomplexa/enzimologia , Proteínas rab de Ligação ao GTP/metabolismo , Humanos
4.
Biol Cell ; 110(6): 137-146, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29603287

RESUMO

BACKGROUND INFORMATION: Repair of damaged DNA is essential for maintaining genomic stability. TP53-binding protein 1 (53BP1) plays an important role in repair of the DNA double-strand breaks. Nuclear localisation of 53BP1 depends on importin ß and nucleoporin 153, but the type and location of 53BP1 nuclear localisation signal (NLS) have yet to be determined. RESULTS: Here, we show that nuclear import of 53BP1 depends on two basic regions, namely 1667-KRK-1669 and 1681-KRGRK-1685, which are both needed for importin binding. Lysine 1667 is essential for interaction with importin and its substitution to arginine reduced nuclear localisation of 53BP1. Furthermore, we have found that CDK1-dependent phosphorylation of 53BP1 at S1678 impairs importin binding during mitosis. Phosphorylation-mimicking mutant S1678D showed reduced nuclear localisation, suggesting that phosphorylation of the NLS interferes with nuclear import of the 53BP1 CONCLUSIONS: We show that 53BP1 contains a classical bipartite NLS 1666-GKRKLITSEEERSPAKRGRKS-1686, which enables the importin-mediated nuclear transport of 53BP1. Additionally, we found that posttranslational modification within the NLS region can regulate 53BP1 nuclear import. SIGNIFICANCE: Our results indicate that integrity of the NLS is important for 53BP1 nuclear localisation. Precise mapping of the NLS will facilitate further studies on the effect of posttranslational modifications and somatic mutations on the nuclear localisation 53BP1 and DNA repair.


Assuntos
Arginina/metabolismo , Núcleo Celular/metabolismo , Carioferinas/metabolismo , Lisina/metabolismo , Sinais de Localização Nuclear , Osteossarcoma/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Transporte Ativo do Núcleo Celular , Arginina/química , Arginina/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Núcleo Celular/genética , Células HEK293 , Humanos , Carioferinas/genética , Lisina/química , Lisina/genética , Osteossarcoma/genética , Osteossarcoma/patologia , Fosforilação , Ligação Proteica , Células Tumorais Cultivadas , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética
5.
Biol Cell ; 109(12): 400-408, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28960356

RESUMO

Membrane contact sites (MCS) are platforms of physical contact between different organelles. They are formed through interactions involving lipids and proteins, and function in processes such as calcium and lipid exchange, metabolism and organelle biogenesis. In this article, we discuss emerging questions regarding the architecture, organisation and assembly of MCS, such as: What is the contribution of different components to the interaction between organelles? How is the specific composition of different types of membrane contacts sites established and maintained? How are proteins and lipids spatially organised at MCS and how does that influence their function? How dynamic are MCS on the molecular and ultrastructural level? We highlight current state of research and point out experimental approaches that promise to contribute to a spatiomechanistic understanding of MCS functions.


Assuntos
Membrana Celular/química , Membrana Celular/fisiologia , Organelas/fisiologia , Animais , Humanos , Transporte de Íons , Proteínas de Membrana Transportadoras/metabolismo , Transdução de Sinais
6.
Biol Cell ; 109(9): 339-353, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28758675

RESUMO

Twenty years ago, a group of French cell biologists merged two scientific clubs with the aim of bringing together researchers in the fields of Endocytosis and Exocytosis. Founded in 1997, the first annual meeting of the Exocytosis Club was held in 1998. The Endocytosis Club held quarterly meetings from its founding in 1999. The first joint annual meeting of the Exocytosis-Endocytosis Club took place in Paris in April, 2001. What started as a modest gathering of enthusiastic scientists working in the field of cell trafficking has gone from strength to strength, rapidly becoming an unmissable yearly meeting, vividly demonstrating the high quality of science performed in our community and beyond. On the occasion of the 20th meeting of our club, we want to provide historic insight into the fields of exocytosis and endocytosis, and by extension, to subcellular trafficking, highlighting how French scientists have contributed to major advances in these fields. Today, the Exocytosis-Endocytosis Club represents a vibrant and friendly community that will hold its 20th meeting at the Presqu'Ile de Giens, near Toulon in the South of France, on May 11-13, 2017.


Assuntos
Endocitose , Exocitose , Animais , Membrana Celular/metabolismo , Clatrina/metabolismo , Humanos , Lisossomos/metabolismo , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA