RESUMO
The production of biologics that treat complex diseases, such as cancer, autoimmune, and infectious disease, requires careful monitoring and control of cell cultures. While bioprocess optimizations have dramatically improved production yields, a lack of analytical tools has made it challenging to identify accompanying intracellular improvements. Intracellular redox can diminish the growth and productivity of biologics-producing cells and adversely impact product quality profiles yet characterizing redox is challenging due to its complex and highly transient nature. In this study, we integrated a fluorescent thiol-based redox biosensor to monitor intracellular redox in one bisAb- and two monoclonal antibody-producing clonal cell lines in a 14-day fed-batch bioreactor. We characterized biosensor functionality using three fluorescence measurement techniques and determined sensor oxidation correlates with the intracellular ratio of reduced (GSH) and oxidized glutathione (GSSG), an important cellular antioxidant. Our fed-batch bioreactor studies showed that sensor expression minimally affected bioprocess outcomes, including growth, productivity, product quality attributes, or intracellular redox attributes, including mitochondrial reactive oxygen species and total cellular GSH levels in all cell lines tested. Biosensor measurements taken throughout the culture revealed that the intracellular environment in these cell lines became more reduced throughout the culture, with the exception of a high pH condition which became more oxidized. Our results demonstrate the potential of using biosensors to monitor intracellular changes in near-real-time with minimal process effects, thus potentially improving future bioprocess optimizations.
Assuntos
Produtos Biológicos , Glutationa , Animais , Células CHO , Cricetinae , Cricetulus , Glutationa/metabolismo , OxirreduçãoRESUMO
The strategy of temperature downshift has been widely used in the biopharmaceutical industry to improve antibody production and cell-specific production rate (qp ) with Chinese hamster ovary cells (CHO). However, the mechanism of temperature-induced metabolic rearrangement, especially important intracellular metabolic events, remains poorly understood. In this work, in order to explore the mechanisms of temperature-induced cell metabolism, we systematically assessed the differences in cell growth, antibody expression, and antibody quality between high-producing (HP) and low-producing (LP) CHO cell lines under both constant temperature (37°C) and temperature downshift (37°Câ33°C) settings during fed-batch culture. Although the results showed that low-temperature culture during the late phase of exponential cell growth significantly reduced the maximum viable cell density (p < 0.05) and induced cell cycle arrest in the G0/G1 phase, this temperature downshift led to a higher cellular viability and increased antibody titer by 48% and 28% in HP and LP CHO cell cultures, respectively (p < 0.001), and favored antibody quality reflected in reduced charge heterogeneity and molecular size heterogeneity. Combined extra- and intra-cellular metabolomics analyses revealed that temperature downshift significantly downregulated intracellular glycolytic and lipid metabolic pathways while upregulated tricarboxylic acid (TCA) cycle, and particularly featured upregulated glutathione metabolic pathways. Interestingly, all these metabolic pathways were closely associated with the maintenance of intracellular redox state and oxidative stress-alleviating strategies. To experimentally address this, we developed two high-performance fluorescent biosensors, denoted SoNar and iNap1, for real-time monitoring of intracellular nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide + hydrogen (NAD+ /NADH) ratio and nicotinamide adenine dinucleotide phosphate (NADPH) amount, respectively. Consistent with such metabolic rearrangements, the results showed that temperature downshift decreased the intracellular NAD+ /NADH ratio, which might be ascribed to the re-consumption of lactate, and increased the intracellular NADPH amount (p < 0.01) to scavenge intracellular reactive oxygen species (ROS) induced by the increased metabolic requirements for high-level expression of antibody. Collectively, this study provides a metabolic map of cellular metabolic rearrangement induced by temperature downshift and demonstrates the feasibility of real-time fluorescent biosensors for biological processes, thus potentially providing a new strategy for dynamic optimization of antibody production processes.
Assuntos
Técnicas de Cultura Celular por Lotes , NAD , Cricetinae , Animais , Cricetulus , NAD/metabolismo , Células CHO , Temperatura , NADP , Ácido Láctico/metabolismo , Anticorpos/metabolismo , OxirreduçãoRESUMO
Purpose: Coronavirus disease 2019 (COVID-19) poses a global health challenge with widespread transmission. Growing concerns about vaccine side effects, diminishing efficacy, and religious-based hesitancy highlight the need for alternative pharmacological approaches. Our study investigates the impact of the ethanol extract of Antrodia cinnamomea (AC), a native medicinal fungus from Taiwan, on COVID-19 in both in vitro and in vivo contexts. Methods: We measured the mRNA and protein levels of angiotensin-converting enzyme-2 (ACE2) in human lung cells using real-time reverse transcriptase-polymerase chain reaction and Western blotting, respectively. Additionally, we determined the enzymatic activity of ACE2 using the fluorogenic peptide substrate Mca-YVADAPK(Dnp)-OH. To assess the impact of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, we used SARS-CoV-2 pseudovirus infections in human embryonic kidney 293T cells expressing ACE2 to measure infection rates. Furthermore, we evaluated the in vivo efficacy of AC in mitigating COVID-19 by conducting experiments on hamsters infected with the Delta variant of SARS-CoV-2. Results: AC effectively decreased ACE2 mRNA and protein levels, a critical host receptor for the SARS-CoV-2 spike protein, in human lung cells. It also prevented the spike protein from binding to human lung cells. Dehydrosulphurenic acid, an isolate from AC, directly inhibited ACE2 protease activity with an inhibitory constant of 1.53 µM. In vitro experiments showed that both AC and dehydrosulphurenic acid significantly reduced the infection rate of SARS-CoV-2 pseudovirus. In hamsters infected with the Delta variant of SARS-CoV-2, oral administration of AC reduced body weight loss and improved lung injury. Notably, AC also inhibited IL-1ß expression in both macrophages and the lung tissues of SARS-CoV-2-infected hamsters. Conclusion: AC shows potential as a nutraceutical for reducing the risk of SARS-CoV-2 infection by disrupting the interaction between ACE2 and the SARS-CoV-2 spike protein, and for preventing COVID-19-associated lung inflammation.
RESUMO
Sensing intracellular compounds such as ATP in living microalgal cells is of great importance in diverse fields. To achieve this, nanosensing platform composed of graphene oxide (GO) and ATP aptamer (APT) was applied to diverse microalgal cells (Chlamydomonas reinhardtii, Chlorella vulgaris, Anabaena flos-aquae, and Ochromonas danica). The nanosized GO was characterized with atomic force microscopy (AFM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The nanosensing platform (GO-APT) was prepared by attaching fluorophore-labeled APT to GO. GO-APT was applicable to only cell wall-deficient species (O. danica and mutant strains of C. reinhardtii) and the existence of flagella did not affect the uptake of the GO-APT by the cells. These results indicate that the cell wall is the primary barrier of GO-APT internalization for sensing application. To reduce the background fluorescence signal elicited by nonspecific displacement of the fluorophore-labeled probe, APT was modified as molecular beacon (MB) type (APTMB). Owing to the double quenching effect (by GO and quencher-labeled complementary sequence), the background signal significantly reduced. Cytotoxicity of GO-APTMB on the microalgal species was also tested. The application of GO-APTMB had no effect on the growth of microalgae. Given that diverse aptamer sequences had been screened, the sensing platform is not limited for detecting ATP only, but also can be applied to other metabolite imaging by simply changing the aptamer sequences. Our research will contribute to broadening the application of GO and aptamer beacon complex for intracellular metabolite imaging and detecting.
Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Chlorella vulgaris , Grafite , Microalgas , Corantes FluorescentesRESUMO
Singlet oxygen (1O2) plays a vital role in pathophysiological processes and is the dominant executor of photodynamic therapy (PDT). Several small molecular probes have been designed to detect singlet oxygen for the evaluation of PDT efficacy. However, little attention was paid to the precise visualization of the 1O2 signal at the subcellular organelle level in living biological systems. Herein, a super-pH-resolved (SPR) nanosensor was developed to specifically illuminate 1O2 in endocytic organelles through encoding the cell-impermeant singlet oxygen sensor green (SOSG) into pH-sensitive micelles. The acid-activatable SPR-SOSG achieved more than 10-fold amplification of the 1O2 signal, leading to extremely higher sensitivity of singlet oxygen detection in specific endocytic organelles of living cells and animals, as compared with the nonactivatable nanoprobe and the commercially available 2',7'-dichlorofluorescein diacetate (DCFH-DA) probe. Hence, the SPR-SOSG nanoplatform provides a promising tool to evaluate the efficacy and mechanism of nanocarrier-based photodynamic therapy.
Assuntos
Endocitose , Nanotecnologia/instrumentação , Organelas/metabolismo , Oxigênio Singlete/metabolismo , Fluoresceínas/metabolismo , Concentração de Íons de Hidrogênio , MicelasRESUMO
Over the past decades many researchers have made major contributions towards the development of genetically encoded (GE) fluorescent sensors derived from fluorescent proteins. GE sensors are now used to study biological phenomena by facilitating the measurement of biochemical behaviors at various scales, ranging from single molecules to single cells or even whole animals. Here, we review the historical development of GE fluorescent sensors and report on their current status. We specifically focus on the development strategies of the GE sensors used for measuring pH, ion concentrations (e.g., chloride and calcium), redox indicators, membrane potential, temperature, pressure, and molecular crowding. We demonstrate that these fluroescent protein-based sensors have a shared history of concepts and development strategies, and we highlight the most original concepts used to date. We believe that the understanding and application of these various concepts will pave the road for the development of future GE sensors and lead to new breakthroughs in bioimaging.
RESUMO
In this paper, 3-aminobenzeneboronic acid functionalized Mn(2+)-doped ZnTe/ZnSe quantum dots (APBA-dQDs) were prepared. The APBA functional groups had strong binding ability with F(-), resulting in the quenchment of dQDs photoluminescence (PL). Under the optimal condition, the fluorescence intensity of APBA-dQDs was related linearly to the concentration of F(-) in the range of 0.25-1.5µmol/L with a detection limit of 0.1µmol/L. The selectivity of fluorescence quenching of APBA-dQDs for F(-) was enhanced. Moreover, the proposed methodology for the sensing of F(-) at EM 560nm in MC3T3-E1 osteoblastic cells was demonstrated and got a satisfactory results. The results indicate that the APBA-dQDs are promising candidates for intracellular in MC3T3-E1 osteoblastic cells. To the best of our knowledge, it was the first report of F(-) sensing by using the quenched fluorescence of APBA-dQDs in non-cancerous cells.
Assuntos
Ácidos Borônicos/química , Fluoretos/análise , Manganês/química , Pontos Quânticos/química , Compostos de Selênio/química , Telúrio/química , Compostos de Zinco/química , Animais , Linhagem Celular , Fluoretos/química , Camundongos , OsteoblastosRESUMO
Herein, we report a highly sensitive electrocatalytic sensor-cell construct that can electrochemically communicate with the internal environment of immune cells (e.g., macrophages) via the selective monitoring of a particular reactive oxygen species (ROS), hydrogen peroxide. The sensor, which is based on vertically aligned single-walled carbon nanotubes functionalized with an osmium electrocatalyst, enabled the unprecedented detection of a local intracellular "pulse" of ROS on a short second time scale in response to bacterial endotoxin (lipopolysaccharide-LPS) stimulation. Our studies have shown that this initial pulse of ROS is dependent on NADPH oxidase (NOX) and toll like receptor 4 (TLR4). The results suggest that bacteria can induce a rapid intracellular pulse of ROS in macrophages that initiates the classical innate immune response of these cells to infection.
Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono/química , Espécies Reativas de Oxigênio/isolamento & purificação , Animais , Lipopolissacarídeos/química , Macrófagos/efeitos dos fármacos , Camundongos , NADPH Oxidases/química , Espécies Reativas de Oxigênio/química , Receptor 4 Toll-Like/químicaRESUMO
This paper presents the growth and structure of ZnO nanorods on a sub-micrometer glass pipette and their application as an intracellular selective ion sensor. Highly oriented, vertical and aligned ZnO nanorods were grown on the tip of a borosilicate glass capillary (0.7 µm in diameter) by the low temperature aqueous chemical growth (ACG) technique. The relatively large surface-to-volume ratio of ZnO nanorods makes them attractive for electrochemical sensing. Transmission electron microscopy studies show that ZnO nanorods are single crystals and grow along the crystal's c-axis. The ZnO nanorods were functionalized with a polymeric membrane for selective intracellular measurements of Naâº. The membrane-coated ZnO nanorods exhibited a Naâº-dependent electrochemical potential difference versus an Ag/AgCl reference micro-electrode within a wide concentration range from 0.5 mM to 100 mM. The fabrication of functionalized ZnO nanorods paves the way to sense a wide range of biochemical species at the intracellular level.