Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 435
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 46(6): 983-991.e4, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28623086

RESUMO

Host defense requires the specification of CD4+ helper T (Th) cells into distinct fates, including Th1 cells that preferentially produce interferon-γ (IFN-γ). IFN-γ, a member of a large family of anti-pathogenic and anti-tumor IFNs, induces T-bet, a lineage-defining transcription factor for Th1 cells, which in turn supports IFN-γ production in a feed-forward manner. Herein, we show that a cell-intrinsic role of T-bet influences how T cells perceive their secreted product in the environment. In the absence of T-bet, IFN-γ aberrantly induced a type I IFN transcriptomic program. T-bet preferentially repressed genes and pathways ordinarily activated by type I IFNs to ensure that its transcriptional response did not evoke an aberrant amplification of type I IFN signaling circuitry, otherwise triggered by its own product. Thus, in addition to promoting Th1 effector commitment, T-bet acts as a repressor in differentiated Th1 cells to prevent abberant autocrine type I IFN and downstream signaling.


Assuntos
Comunicação Autócrina , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Proteínas com Domínio T/metabolismo , Células Th1/imunologia , Toxoplasma/imunologia , Toxoplasmose/imunologia , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Interferon Tipo I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Proteínas com Domínio T/genética , Células Th1/microbiologia , Células Th1/virologia , Transcriptoma
2.
Dev Biol ; 512: 13-25, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38703942

RESUMO

Drosophila melanogaster is an ideal model organism for investigating spermatogenesis due to its powerful genetics, conserved genes and visible morphology of germ cells during sperm production. Our previous work revealed that ocnus (ocn) knockdown resulted in male sterility, and CG9920 was identified as a significantly downregulated protein in fly abdomen after ocn knockdown, suggesting a role of CG9920 in male reproduction. In this study, we found that CG9920 was highly expressed in fly testes. CG9920 knockdown in fly testes caused male infertility with no mature sperms in seminal vesicles. Immunofluorescence staining showed that depletion of CG9920 resulted in scattered spermatid nuclear bundles, fewer elongation cones that did not migrate to the anterior region of the testis, and almost no individualization complexes. Transmission electron microscopy revealed that CG9920 knockdown severely disrupted mitochondrial morphogenesis during spermatogenesis. Notably, we found that CG9920 might not directly interact with Ocn, but rather was inhibited by STAT92E, which itself was indirectly affected by Ocn. We propose a possible novel pathway essential for spermatogenesis in D. melanogaster, whereby Ocn indirectly induces CG9920 expression, potentially counteracting its inhibition by the JAK-STAT signaling pathway.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Mitocôndrias , Espermatogênese , Testículo , Animais , Espermatogênese/genética , Espermatogênese/fisiologia , Masculino , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Mitocôndrias/metabolismo , Testículo/metabolismo , Morfogênese/genética , Transdução de Sinais , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Técnicas de Silenciamento de Genes , Fatores de Transcrição STAT/metabolismo , Espermátides/metabolismo
3.
Gastroenterology ; 167(1): 132-147, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38556189

RESUMO

Nonresponsive celiac disease (CeD) is relatively common. It is generally attributed to persistent gluten exposure and resolves after correction of diet errors. However, other complications of CeD and disorders clinically mimicking CeD need to be excluded. Novel therapies are being evaluated to facilitate mucosal recovery, which might benefit patients with nonresponsive CeD. Refractory CeD (RCeD) is rare and is divided into 2 types. The etiology of type I RCeD is unclear. A switch to gluten-independent autoimmunity is suspected in some patients. In contrast, type II RCeD represents a low-grade intraepithelial lymphoma. Type I RCeD remains a diagnosis of exclusion, requiring ruling out gluten intake and other nonmalignant causes of villous atrophy. Diagnosis of type II RCeD relies on the demonstration of a clonal population of neoplastic intraepithelial lymphocytes with an atypical immunophenotype. Type I RCeD and type II RCeD generally respond to open-capsule budesonide, but the latter has a dismal prognosis due to severe malnutrition and frequent progression to enteropathy-associated T-cell lymphoma; more efficient therapy is needed.


Assuntos
Doença Celíaca , Doença Celíaca/diagnóstico , Doença Celíaca/terapia , Doença Celíaca/imunologia , Doença Celíaca/dietoterapia , Humanos , Dieta Livre de Glúten , Mucosa Intestinal/patologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/efeitos dos fármacos , Glutens/imunologia , Glutens/efeitos adversos , Resultado do Tratamento , Budesonida/uso terapêutico
4.
Curr Issues Mol Biol ; 46(6): 5668-5681, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38921010

RESUMO

Based on the analgesic and anti-inflammatory effects of clonidine in previous studies, we hypothesized that clonidine could accelerate wound healing in rats by regulating the expression of related cytokines. In this study, the wound healing effect of clonidine was evaluated using an excision wound model in diabetic rats and a HaCaT cell model. The wounds were treated daily with topical clonidine. The results analyzed by ImageJ2 software show that the wounds of the rats that were treated with 15 ng/mL clonidine recovered faster, and the wound size was also significantly reduced compared to the control group. Western blot assays determined that clonidine induced an increase in the expression of vascular growth factors, namely, Ang-1, Ang-2, and VEGF. Moreover, clonidine demonstrated a rescuing effect on JAK2 within the JAK/STAT pathway by inhibiting SOCS3 expression, leading to decreased SOCS3 levels and increased expression of JAK2 and phospho-STAT3. Histopathological analysis revealed that clonidine promoted complete epithelial repair and minimized inflammation in skin tissue. Additionally, clonidine stimulated HaCaT cell proliferation in vitro and enhanced cellular energy levels in the presence of AGEs. In conclusion, clonidine promoted vascular growth and wound healing by stimulating the expression of cytokines that are beneficial for wound healing.

5.
J Autoimmun ; 146: 103215, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653164

RESUMO

INTRODUCTION: The IL-12-IFNγ-Th1 and the IL-6-IL-23-Th17 axes are considered the dominant pathogenic pathways in Giant Cell Arteritis (GCA). Both pathways signal via activation of the downstream JAK/STAT proteins. We hypothesized that phosphorylated STAT (pSTAT) signatures in circulating immune cells may aid to stratify GCA-patients for personalized treatment. METHODS: To investigate pSTAT expression, PBMCs from treatment-naive GCA-patients (n = 18), infection controls (INF, n = 11) and age-matched healthy controls (HC, n = 15) were stimulated in vitro with IL-6, IL-2, IL-10, IFN-γ, M-CSF or GM-CSF, and stained with CD3, CD4, CD19, CD45RO, pSTAT1, pSTAT3, pSTAT5 antibodies, and analyzed by flow cytometry. Serum IL-6, sIL-6-receptor and gp130 were measured by Luminex. The change in percentages of pSTAT3+CD4+T-cells was evaluated at diagnosis and at 3 months and 1-year of follow-up. Kaplan-Meier analyses was used to asses prognostic accuracy. RESULTS: Analysis of IL-6 stimulated immune cell subsets revealed a significant decrease in percentages of pSTAT3+CD4+T-cells of GCA-patients and INF-controls compared to HCs. Following patient stratification according to high (median>1.5 pg/mL) and low (median<1.5 pg/mL) IL-6 levels, we observed a reduction in the pSTAT3 response in GCA-patients with high serum IL-6. Percentages of pSTAT3+CD4+T-cells in patients with high serum IL-6 levels at diagnosis normalized after glucocorticoid (GC) treatment. Importantly, we found that patients with low percentages of pSTAT3+CD4+T-cells at baseline require longer GC-treatment. CONCLUSION: Overall, in GCA, the percentages of in vitro IL-6-induced pSTAT3+CD4+T-cells likely reflect prior in vivo exposure to high IL-6 and may serve as a prognostic marker for GC-treatment duration and may assist improving personalized treatment options in the future.


Assuntos
Linfócitos T CD4-Positivos , Arterite de Células Gigantes , Interleucina-6 , Transdução de Sinais , Humanos , Arterite de Células Gigantes/imunologia , Arterite de Células Gigantes/diagnóstico , Arterite de Células Gigantes/tratamento farmacológico , Arterite de Células Gigantes/metabolismo , Interleucina-6/metabolismo , Interleucina-6/sangue , Feminino , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Masculino , Idoso , Janus Quinases/metabolismo , Pessoa de Meia-Idade , Fosforilação , Fator de Transcrição STAT3/metabolismo , Idoso de 80 Anos ou mais , Fatores de Transcrição STAT/metabolismo , Receptores de Interleucina-6/metabolismo , Biomarcadores , Receptor gp130 de Citocina/metabolismo
6.
Cytokine ; 176: 156507, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38244240

RESUMO

Endothelial cell injury and mitochondrial dysfunction are crucial events during coronary artery disease (CAD). Suppressor of cytokine signaling-1 (SOCS1) is a negative mediator for inflammation, but there are few reports regarding histone acetylation of SOCS1 in CAD. The aim of the current study is to examine the impact of SOCS1 in CAD patients and human umbilical vein endothelial cells (HUVECs). We enrolled patients with CAD and healthy volunteers. HUVECs treated with ox-LDL were used as in vitro model. This study showed that SOCS1 expression was decreased in patients with CAD and ox-LDL-stimulated HUVECs. Overexpressing SOCS1 ameliorated endothelial cell injury and mitochondrial dysfunction induced by ox-LDL in vitro. Moreover, EP300 promoted SOCS1 transcription through increasing the acetylation of SOCS1 and recruiting H3K27ac to the SOCS1 gene promoter in HUVECs induced by ox-LDL. Additionally, SOCS1 repressed JAK/STAT cascade in ox-LDL-stimulated HUVECs. Silencing of EP300 reversed endothelial cell injury and mitochondrial dysfunction ameliorated by overexpression of SOCS1 in ox-LDL-induced HUVECs. In summary, SOCS1 alleviated endothelial injury and mitochondrial dysfunction via enhancing H3K27ac acetylation by recruiting EP300 to promoter region and inhibiting JAK/STAT pathway. These results contribute to discover underlying diagnostic biomarkers and therapeutic targets for CAD.


Assuntos
Doença da Artéria Coronariana , Doenças Mitocondriais , Humanos , Histonas , Janus Quinases , Doença da Artéria Coronariana/genética , Acetilação , Transdução de Sinais , Fatores de Transcrição STAT , Proteínas Supressoras da Sinalização de Citocina , Células Endoteliais da Veia Umbilical Humana , Regiões Promotoras Genéticas/genética , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína p300 Associada a E1A
7.
Mol Cell Biochem ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519710

RESUMO

Liver cancer (LC) poses a significant global health challenge due to its high incidence and poor prognosis. Current systemic treatment options, such as surgery, chemotherapy, radiofrequency ablation, and immunotherapy, have shown limited effectiveness for advanced LC patients. Moreover, owing to the heterogeneous nature of LC, it is crucial to uncover more in-depth pathogenic mechanisms and develop effective treatments to address the limitations of the existing therapeutic modalities. Increasing evidence has revealed the crucial role of the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway in the pathogenesis of LC. The specific mechanisms driving the JAK-STAT pathway activation in LC, participate in a variety of malignant biological processes, including cell differentiation, evasion, anti-apoptosis, immune escape, and treatment resistance. Both preclinical and clinical investigations on the JAK-STAT pathway inhibitors have exhibited potential in LC treatment, thereby opening up avenues for the development of more targeted therapeutic strategies for LC. In this study, we provide an overview of the JAK-STAT pathway, delving into the composition, activation, and dynamic interplay within the pathway. Additionally, we focus on the molecular mechanisms driving the aberrant activation of the JAK-STAT pathway in LC. Furthermore, we summarize the latest advancements in targeting the JAK-STAT pathway for LC treatment. The insights presented in this review aim to underscore the necessity of research into the JAK-STAT signaling pathway as a promising avenue for LC therapy.

8.
Pharmacol Res ; 204: 107217, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38777110

RESUMO

The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway functions as a central hub for transmitting signals from more than 50 cytokines, playing a pivotal role in maintaining hematopoiesis, immune balance, and tissue homeostasis. Dysregulation of this pathway has been implicated in various diseases, including immunodeficiency, autoimmune conditions, hematological disorders, and certain cancers. Proteins within this pathway have emerged as effective therapeutic targets for managing these conditions, with various approaches developed to modulate key nodes in the signaling process, spanning from receptor engagement to transcription factor activation. Following the success of JAK inhibitors such as tofacitinib for RA treatment and ruxolitinib for managing primary myelofibrosis, the pharmaceutical industry has obtained approvals for over 10 small molecule drugs targeting the JAK-STAT pathway and many more are at various stages of clinical trials. In this review, we consolidate key strategies employed in drug discovery efforts targeting this pathway, with the aim of contributing to the collective understanding of small molecule interventions in the context of JAK-STAT signaling. We aspire that our endeavors will contribute to advancing the development of innovative and efficacious treatments for a range of diseases linked to this pathway dysregulation.


Assuntos
Descoberta de Drogas , Janus Quinases , Fatores de Transcrição STAT , Transdução de Sinais , Humanos , Janus Quinases/metabolismo , Janus Quinases/antagonistas & inibidores , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/antagonistas & inibidores , Descoberta de Drogas/métodos , Animais , Transdução de Sinais/efeitos dos fármacos , Inibidores de Janus Quinases/uso terapêutico , Inibidores de Janus Quinases/farmacologia , Terapia de Alvo Molecular
9.
Bioorg Med Chem Lett ; 109: 129838, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38838918

RESUMO

Aberrant activation of the JAK-STAT pathway is evident in various human diseases including cancers. Proteolysis targeting chimeras (PROTACs) provide an attractive strategy for developing novel JAK-targeting drugs. Herein, a series of CRBN-directed JAK-targeting PROTACs were designed and synthesized utilizing a JAK1/JAK2 dual inhibitor-momelotinib as the warhead. The most promising compound 10c exhibited both good enzymatic potency and cellular antiproliferative effects. Western blot analysis revealed that compound 10c effectively and selectively degraded JAK1 in a proteasome-dependent manner (DC50 = 214 nM). Moreover, PROTAC 10c significantly suppressed JAK1 and its key downstream signaling. Together, compound 10c may serve as a novel lead compound for antitumor drug discovery.


Assuntos
Antineoplásicos , Proliferação de Células , Janus Quinase 1 , Proteólise , Humanos , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proteólise/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Descoberta de Drogas , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Dose-Resposta a Droga , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo
10.
Cell Biochem Funct ; 42(2): e3959, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38390770

RESUMO

Natural compounds are known to regulate stemness/self-renewal properties in colon cancer cells at molecular level. In the present study, we first time studied the colon cancer stem-like cells targeting potential of Kurarinone (KU) and explored the underlying mechanism. Cytotoxic potential of KU was checked in colon cancer cells. Colonosphere formation assay was performed to check the spheroid formation reduction potential of KU in HCT-116 cells by using phase-contrast microscopy. Stemness/self-renewal marker expression was studied at mRNA and protein levels in colonosphere. The qRT-PCR, western blot analysis, and flow cytometer techniques were used to assess the effect of KU treatment on cell cycle progression and apoptosis induction in colon cancer cells and colonosphere. Further, effect of KU treatment on pSTAT3 status and its nuclear translocation was also studied. KU treatment significantly decreased HCT-116 cell proliferation and reduced sphere formation potential at IC30 (8.71 µM) and IC50 (20.34 µM) concentrations compared to respective vehicle-treated groups, respectively. KU exposure significantly reduced the expression of CD44, c-Myc, Bmi-1, and Sox2 stemness/self-renewal markers in colonosphere in a dose-dependent manner. KU treatment inhibits JAK2-STAT3 signaling pathway by reducing pSTAT3 levels and its nuclear translocation in HCT-116 cells and colonosphere at IC50 concentration. KU treatment significantly decreased the expression of CCND1 and CDK4 cell cycle-specific markers and arrested the HCT-116 cells and colonosphere in G1-phase. Further, KU treatment increased Bax/Bcl-2 ratio, apoptotic cell population, cleaved caspase 3, and PARP-1 in HCT-116 cells and colonosphere. In conclusion, KU treatment decreases stemness/self-renewal, induces cell cycle arrest and apoptosis in HCT-116 colonosphere by down-regulating CD44-JAK2-STAT3 axis. Thus, targeting stemness/self-renewal and other cancer hallmark(s) by KU through CD44/JAK2/STAT3 signaling pathway might be a novel strategy to target colon cancer stem-like cells.


Assuntos
Antineoplásicos , Neoplasias do Colo , Flavonoides , Humanos , Apoptose , Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Transdução de Sinais , Proliferação de Células , Fator de Transcrição STAT3/metabolismo , Linhagem Celular Tumoral , Janus Quinase 2/metabolismo
11.
Environ Toxicol ; 39(3): 1175-1186, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37860912

RESUMO

Magnetite nanoparticles (MNPs) have been extensively detected in the atmospheric environment and implicated as a prominent threat to atherosclerosis, a chronic vascular inflammatory disease. Due to globalization and economic development, the dramatic shift in diet from traditional to high-fat dietary patterns aggravated atherosclerosis progression induced by environmental factors. However, limited knowledge is available regarding vascular risks and underlying mechanisms of airborne MNPs in high-risk populations with high-fat dietary habits. Herein, we demonstrated that MNPs exerted a proatherogenic effect under high-fat dietary patterns, leading to aortic wall thickening, elastic fiber disorganization, macrophage infiltration, and local inflammation. Based on the correlation analysis between MNPs and PM group, we identified that MNPs might be a key PM component in atherogenic toxicity. MNPs exposure disturbed the dynamic process of lipid metabolism, manifested as aortic lipid accumulation, dyslipidemia, and hepatic lipid metabolism disorder, which was modulated by the JAK-STAT pathway. Overall, these findings provide new insight into understanding the cardiovascular risks and mechanisms of MNPs among high-risk populations.


Assuntos
Aterosclerose , Nanopartículas de Magnetita , Humanos , Metabolismo dos Lipídeos , Nanopartículas de Magnetita/toxicidade , Padrões Dietéticos , Janus Quinases , Transdução de Sinais , Fatores de Transcrição STAT
12.
Int J Mol Sci ; 25(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38396958

RESUMO

Renal tumors comprise ~7% of all malignant pediatric tumors. Approximately 90% of pediatric kidney tumors comprise Wilms tumors, and the remaining 10% include clear cell sarcoma of the kidney, malignant rhabdoid tumor of the kidney, renal cell carcinoma and other rare renal tumors. Over the last 30 years, the role of cytokines and their receptors has been considerably investigated in both cancer progression and anti-cancer therapy. However, more effective immunotherapies require the cytokine profiling of each tumor type and comprehensive understanding of tumor biology. In this study, we aimed to investigate the activation of signaling pathways in response to cytokines in three pediatric kidney tumor cell lines, in WT-CLS1 and WT-3ab cells (both are Wilms tumors), and in G-401 cells (a rhabdoid kidney tumor, formerly classified as Wilms tumor). We observed that interferon-alpha (IFN-α) and interferon-gamma (IFN-γ) very strongly induced the activation of the STAT1 protein, whereas IL-6 and IFN-α activated STAT3 and IL-4 activated STAT6 in all examined tumor cell lines. STAT protein activation was examined by flow cytometry and Western blot using phospho-specific anti-STAT antibodies which recognize only activated (phosphorylated) STAT proteins. Nuclear translocation of phospho-STAT proteins upon activation with specific cytokines was furthermore confirmed by immunofluorescence. Our results also showed that both IFN-α and IFN-γ caused upregulation of major histocompatibility complex (MHC) class I proteins, however, these cytokines did not have any effect on the expression of MHC class II proteins. We also observed that pediatric kidney tumor cell lines exhibit the functional expression of an additional cytokine signaling pathway, the tumor necrosis factor (TNF)-α-mediated activation of nuclear factor kappa B (NF-κB). In summary, our data show that human pediatric renal tumor cell lines are responsive to stimulation with various human cytokines and could be used as in vitro models for profiling cytokine signaling pathways.


Assuntos
Neoplasias Renais , Fator de Necrose Tumoral alfa , Criança , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Citocinas/metabolismo , Neoplasias Renais/patologia , Interferon-alfa/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos HLA , Linhagem Celular Tumoral , Fator de Transcrição STAT1/metabolismo , Rim/metabolismo
13.
Yale J Biol Med ; 97(2): 165-177, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38947108

RESUMO

Background: Chronic rhinosinusitis (CRS) is an inflammatory condition classified into chronic rhinosinusitis with nasal polyps (CRSwNP) and chronic rhinosinusitis without nasal polyps (CRSsNP). Th cells manage inflammatory cells in CRS. Suppressor of Cytokine Signaling (SOCS) proteins regulate Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway in Th cells by polarizing toward Th1, Th2, and Th17 cells. This study evaluated the levels of SOCS1,3,5 in CRS patients to find associations with Th cells. Methods: In this cross-sectional study, 20 CRSwNP patients, 12 CRSsNP patients, and 12 controls participated. The infiltration of CD4+ T cells was determined using immunohistochemistry. The expression of specific transcription factors and SOCS proteins was assessed using real-time PCR. Cytokine levels were evaluated using ELISA. SOCS protein levels were investigated using western blot analysis. Results: The expression of SOCS3 increased in the CRSwNP group compared to CRSsNP and control groups (p <0.001). SOCS3 protein levels increased in the CRSwNP group compared to CRSsNP (p <0.05) and control (p <0.001) groups. Although there was a significant difference in SOCS5 expression between CRSsNP and control groups, SOCS5 protein levels were significantly different between CRSsNP and control (p <0.001) and CRSwNP (p <0.05) groups. Conclusions: Targeted therapies may be suggested for CRS by modulating SOCS3 and SOCS5 proteins that are responsible for polarization of Th cells toward Th2 or Th1 cells, respectively. JAK-STAT pathway targeting, which encompasses numerous cells, can be limited to SOCS proteins to more effectively orchestrate Th cell differentiation.


Assuntos
Rinite , Sinusite , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina , Humanos , Sinusite/metabolismo , Sinusite/imunologia , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Doença Crônica , Masculino , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Rinite/metabolismo , Rinite/imunologia , Feminino , Adulto , Pessoa de Meia-Idade , Linfócitos T Auxiliares-Indutores/metabolismo , Linfócitos T Auxiliares-Indutores/imunologia , Estudos Transversais , Pólipos Nasais/metabolismo , Citocinas/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/genética , Transdução de Sinais , Rinossinusite
14.
J Neurochem ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932959

RESUMO

Alzheimer's disease (AD) affects various brain cell types, including astrocytes, which are the most abundant cell types in the central nervous system (CNS). Astrocytes not only provide homeostatic support to neurons but also actively regulate synaptic signaling and functions and become reactive in response to CNS insults through diverse signaling pathways including the JAK/STAT, NF-κB, and GPCR-elicited pathways. The advent of new technology for transcriptomic profiling at the single-cell level has led to increasing recognition of the highly versatile nature of reactive astrocytes and the context-dependent specificity of astrocyte reactivity. In AD, reactive astrocytes have long been observed in senile plaques and have recently been suggested to play a role in AD pathogenesis and progression. However, the precise contributions of reactive astrocytes to AD remain elusive, and targeting this complex cell population for AD treatment poses significant challenges. In this review, we summarize the current understanding of astrocyte reactivity and its role in AD, with a particular focus on the signaling pathways that promote astrocyte reactivity and the heterogeneity of reactive astrocytes. Furthermore, we explore potential implications for the development of therapeutics for AD. Our objective is to shed light on the complex involvement of astrocytes in AD and offer insights into potential therapeutic targets and strategies for treating and managing this devastating neurodegenerative disorder.

15.
Br J Haematol ; 201(4): 718-724, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36786170

RESUMO

Despite the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway being frequently altered in T-ALL/LBL, no specific therapy has been approved for T-ALL/LBL patients with constitutive signalling by JAK/STAT, so there is an urgent need to identify pathway members that may be potential therapeutic targets. In the present study, we searched for JAK/STAT pathway members potentially modulated through aberrant methylation and identified SOCS3 hypermethylation as a recurrent event in T-ALL/LBL. Additionally, we explored the implications of SOCS3 deregulation in T-ALL/LBL and demonstrated that SOCS3 counteracts the constitutive activation of the JAK/STAT pathway through different molecular mechanisms. Therefore, SOCS3 emerges as a potential therapeutic target in T-ALL/LBL.


Assuntos
Leucemia-Linfoma de Células T do Adulto , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Janus Quinases/metabolismo , Transdução de Sinais , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo , Fatores de Transcrição STAT/metabolismo , Fator de Transcrição STAT3/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Linfócitos T/metabolismo
16.
J Transl Med ; 21(1): 115, 2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774517

RESUMO

BACKGROUND: Spermatogenesis associated serine rich 2 like (SPATS2L) was highly expressed in homoharringtonine (HHT) resistant acute myeloid leukemia (AML) cell lines. However, its role is little known in AML. The present study aimed to investigate the function of SPATS2L in AML pathogenesis and elucidate the underlying molecular mechanisms. METHODS: Overall survival (OS), event-free survival (EFS), relapse-free survival (RFS) were used to evaluate the prognostic impact of SPATS2L for AML from TCGA database and ourcohort. ShRNA was used to knockdown the expression of SPATS2L. Apoptosis was assessed by flow cytometry. The changes of proteins were assessed by Western blot(WB). A xenotransplantation mice model was used to evaluate in vivo growth and survival. RNA sequencing was performed to elucidate the molecular mechanisms underlying the role of SPATS2L in AML. RESULTS: SPATS2L expression increased with increasing resistance indexes(RI) in HHT-resistant cell lines we had constructed. Higher SPATS2L expression was observed in intermediate/high-risk patients than in favorable patients. Meanwhile, decreased SPATS2L expression was observed in AML patients achieving complete remission (CR). Multivariate analysis showed high SPATS2L expression was an independent poor predictor of OS, EFS, RFS in AML. SPATS2L knock down (KD) suppressed cell growth, induced apoptosis, and suppressed key proteins of JAK/STAT pathway, such as JAK2, STAT3, STAT5 in AML cells. Inhibiting SPATS2L expression markedly enhanced the pro-apoptotic effects of traditional chemotherapeutics (Ara-c, IDA, and HHT). CONCLUSIONS: High expression of SPATS2L is a poor prognostic factor in AML, and targeting SPATS2L may be a promising therapeutic strategy for AML patients.


Assuntos
Leucemia Mieloide Aguda , Fator de Transcrição STAT5 , Animais , Camundongos , Mepesuccinato de Omacetaxina/farmacologia , Janus Quinases/metabolismo , Janus Quinases/farmacologia , Janus Quinases/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Prognóstico , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/farmacologia , Fatores de Transcrição STAT/uso terapêutico , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Fator de Transcrição STAT5/farmacologia , Humanos
17.
J Med Virol ; 95(7): e28965, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37488710

RESUMO

The distinct disease progression patterns of severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2) indicate diverse host immune responses. SARS-CoV-2 severely impairs type I interferon (IFN) cell signaling, resulting in uncontrolled late-phase lung damage in patients. For better pharmacological properties, cytokine modifications may sometimes result in a loss of biological activity against the virus. Here, we employed the genetic code expansion and engineered IFN-ß, a phase II clinical cytokine with 3-amino tyrosine (IFN-ß-A) that reactivates STAT2 expression in virus-infected human cells through JAK/STAT cell signaling without affecting signal activation and serum half-life. This study identified that genetically encoded IFN-ß-A might stabilize the protein-receptor complex and trigger JAK-STAT cell signaling, which is a promising modality for controlling SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Membrana Celular , Citocinas , Progressão da Doença
18.
Ann Hematol ; 102(9): 2445-2457, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37209119

RESUMO

The objective of this study is to explore the clinical features and outcomes of pediatric patients with acute lymphoblastic leukemia (ALL) harboring JAK-STAT signaling pathway genetic abnormalities. This retrospective case series examined the clinical data of pediatric patients diagnosed with ALL harboring JAK-STAT pathway genetic abnormality at the Children's Hospital of the Capital Institute of Pediatrics between January 2016 and January 2022. Bone marrow next-generation sequencing was used to reveal the JAK pathway abnormalities. Descriptive statistics were used. From 432 children with ALL during the study period, eight had JAK-STAT pathway genetic abnormalities. Regarding immunotyping, there were four patients with common-B cell types and one with pre-B cell type. The three patients with T-ALL had early T-cell precursor(ETP) type, pre-T cell type, and T cell type. Gene mutations were more common than fusion genes. There was no central nervous system involvement in eight patients. All patients were considered at least at intermediate risk before treatments. Four patients underwent hematopoietic stem cell transplantation (HSCT). One child had a comprehensive relapse and died. The child had a severe infection and could not tolerate high-intensity chemotherapy. Another child relapsed 2 years after HSCT and died. Disease-free survival was achieved in six children. JAK-STAT pathway genetic abnormalities in pediatric Ph-like ALL are rare. Special attention should be paid to treatment-related complications, such as infection and combination therapy (chemotherapy, small molecule targeted drugs, immunotherapy, etc.) to reduce treatment-related death and improve long-term quality of life.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Criança , Janus Quinases/genética , Janus Quinases/metabolismo , Estudos Retrospectivos , Qualidade de Vida , Transdução de Sinais , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Prognóstico
19.
Inflamm Res ; 72(2): 251-262, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36527461

RESUMO

OBJECTIVE AND DESIGN: Staphylococcus aureus (S. aureus) is one of the leading causes of human respiratory tract infections. The function of Staphylococcal protein A (SpA), expressed on the S. aureus bacterial membrane and released in the environment, on human nasal epithelial cells (HNECs) have not been fully elucidated. In this study, we tested the SpA expression in S. aureus from chronic rhinosinusitis patients and investigated the effects of SpA on HNECs inflammation through Interferon Gamma Receptor 1(IFNGR1)/phosphorylated Janus Kinase 2 (p-JAK2) pathway. METHODS: RNA profiling was performed to investigate inflammatory activation in a S. aureus chronic rhinosinusitis (CRS) mouse model. SpA release by S. aureus clinical isolates was determined using ELISA. The effect of purified SpA and SpA enriched conditioned media from S. aureus clinical isolates on HNECs cytotoxicity, apoptosis and release of inflammatory cytokines was evaluated using lactate dehydrogenase assays, and flow cytometry. SpA dependent IFNGR1 and p-JAK2 expression were assessed by qPCR, immunofluorescence and western blot in HNECs. RESULTS: 49 genes were significantly induced in S. aureus CRS mice indicative of activation of interferon signaling. SpA release was significantly higher in S. aureus clinical isolates from chronic rhinosinusitis with nasal polyps (CRSwNP) patients. Purified SpA significantly increased IFNGR1 mRNA and protein expression in HNECs. SpA induced cytotoxic effects and induced the release of Interleukin-6 (IL-6) and IL-8 in an IFNGR1 dependent way. CONCLUSION: SpA induces interferon signaling through activation of the IFNGR1-JAK-2 pathway, which provides an understanding of how S. aureus SpA affects the inflammatory process in the upper airways.


Assuntos
Pólipos Nasais , Rinite , Sinusite , Infecções Estafilocócicas , Humanos , Animais , Camundongos , Proteína Estafilocócica A , Staphylococcus aureus/fisiologia , Inflamação , Interferons , Células Epiteliais , Doença Crônica
20.
Mol Biol Rep ; 50(4): 3909-3917, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36662450

RESUMO

BACKGROUND: IRF9 is a transcription factor that mediates the expression of interferon-stimulated genes (ISGs) through the Janus kinase-Signal transducer and activator of transcription (JAK-STAT) pathway. The JAK-STAT pathway is regulated through phosphorylation reactions, in which all components of the pathway are known to be phosphorylated except IRF9. The enigma surrounding IRF9 regulation by a phosphorylation event is intriguing. As IRF9 plays a major role in establishing an antiviral state in host cells, the topic of IRF9 regulation warrants deeper investigation. METHODS: Initially, total lysates of 2fTGH and U2A cells (transfected with recombinant IRF9) were filter-selected and concentrated using phosphoprotein enrichment assay. The phosphoprotein state of IRF9 was further confirmed using Phos-tag™ assay. All protein expression was determined using Western blotting. Tandem mass spectrometry was conducted on immunoprecipitated IRF9 to identify the phosphorylated amino acids. Finally, site-directed mutagenesis was performed and the effects of mutated IRF9 on relevant ISGs (i.e., USP18 and Mx1) was evaluated using qPCR. RESULTS: IRF9 is phosphorylated at S252 and S253 under IFNß-induced condition and R242 under non-induced condition. Site-directed mutagenesis of S252 and S253 to either alanine or aspartic acid has a modest effect on the upregulation of USP18 gene-a negative regulator of type I interferon (IFN) response-but not Mx1 gene. CONCLUSION: Our preliminary study shows that IRF9 is phosphorylated and possibly regulates USP18 gene expression. However, further in vivo studies are needed to determine the significance of IRF9 phosphorylation.


Assuntos
Interferon Tipo I , Janus Quinases , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Fosforilação , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Interferon Tipo I/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA