Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(5): e2318718121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38252820

RESUMO

Several compounds have been used for atherosclerosis treatment, including clinical trials; however, no anti-atherosclerotic drugs based on hemodynamic force-mediated atherogenesis have been discovered. Our previous studies demonstrated that "small mothers against decapentaplegic homolog 1/5" (Smad1/5) is a convergent signaling molecule for chemical [e.g., bone morphogenetic proteins (BMPs)] and mechanical (e.g., disturbed flow) stimulations and hence may serve as a promising hemodynamic-based target for anti-atherosclerosis drug development. The goal of this study was to develop a high-throughput screening (HTS) platform to identify potential compounds that can inhibit disturbed flow- and BMP-induced Smad1/5 activation and atherosclerosis. Through HTS using a Smad1/5 downstream target inhibitor of DNA binding 1 (Id-1) as a luciferase reporter, we demonstrated that KU-55933 and Apicidin suppressed Id-1 expression in AD-293 cells. KU-55933 (10 µM), Apicidin (10 µM), and the combination of half doses of each [1/2(K + A)] inhibited disturbed flow- and BMP4-induced Smad1/5 activation in human vascular endothelial cells (ECs). KU-55933, Apicidin, and 1/2(K + A) treatments caused 50.6%, 47.4%, and 73.3% inhibitions of EC proliferation induced by disturbed flow, respectively, whereas EC inflammation was only suppressed by KU-55933 and 1/2(K + A), but not Apicidin alone. Administrations of KU-55933 and 1/2(K + A) to apolipoprotein E-deficient mice inhibited Smad1/5 activation in ECs in athero-susceptible regions, thereby suppressing endothelial proliferation and inflammation, with the attenuation of atherosclerotic lesions in these mice. A unique drug screening platform has been developed to demonstrate that KU-55933 and its combination with Apicidin are promising therapeutic compounds for atherosclerosis based on hemodynamic considerations.


Assuntos
Aterosclerose , Células Endoteliais , Morfolinas , Pironas , Humanos , Animais , Camundongos , Avaliação Pré-Clínica de Medicamentos , Ensaios de Triagem em Larga Escala , Aterosclerose/tratamento farmacológico , Hemodinâmica , Inflamação
2.
FASEB J ; 35(4): e21264, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33715230

RESUMO

Enhanced glucose uptake is coupled with elevated aerobic glycolysis (the Warburg effect) in cancer cells and is closely correlated with increased tumor aggressiveness and poor prognosis. We previously discovered that ATM, a protein kinase deficient in Ataxia-telangiectasia (A-T) disease, is an insulin-responsive protein that participates in insulin-mediated glucose uptake in muscle cells by stimulating glucose transporter 4 (GLUT4) translocation. However, the role of ATM in glucose uptake and tumorigenesis of cancer cells is unclear. In the present study, we found that aggressive breast and prostate cancer cell lines with overactivated Akt activity exhibit enhanced glucose uptake and GLUT1 translocation upon insulin treatment, and KU-55933, a specific inhibitor of ATM, inhibits insulin-mediated glucose uptake by blocking translocation of GLUT1 to the cell surface. KU-55933 also inhibits aerobic glycolysis and ATP production in these cells. Moreover, KU-55933 induces apoptosis and inhibits motility of cancer cells by inhibiting glucose uptake. Our results showed that while high concentration of glucose and insulin promote the expression of a mesenchymal biomarker (vimentin) in these cancer cells, KU-55933 strongly inhibits its expression as well as epithelial to mesenchymal transition. The roles of ATM in stimulating glucose uptake, glycolysis, motility, and proliferation of cancer cells were demonstrated by knocking-down ATM in these cells. KU-55933 treatment also inhibits tumor growth and metastasis in vivo in mouse mammary tumors through inhibition of GLUT1 translocation and vimentin expression. These results suggest that ATM acts as a promoter of tumorigenesis in cancer cells with overactivated Akt, and KU-55933 induces apoptosis and inhibits motility by blocking GLUT1-mediated glucose uptake and glycolysis in these cancer cells, which may lead to the use of KU-55933 and its analogs as new preventive or therapeutic agents against cancer.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Glucose/metabolismo , Morfolinas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pironas/farmacologia , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Transportador de Glucose Tipo 1/genética , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Camundongos , Neoplasias Experimentais/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/genética
3.
Int J Mol Sci ; 21(21)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167404

RESUMO

Poly(ADP-ribosyl)polymerase (PARP) synthesizes poly(ADP-ribose) (PAR), which is anchored to proteins. PAR facilitates multiprotein complexes' assembly. Nuclear PAR affects chromatin's structure and functions, including transcriptional regulation. In response to stress, particularly genotoxic stress, PARP activation facilitates DNA damage repair. The PARP inhibitor Olaparib (OLA) displays synthetic lethality with mutated homologous recombination proteins (BRCA-1/2), base excision repair proteins (XRCC1, Polß), and canonical nonhomologous end joining (LigIV). However, the limits of synthetic lethality are not clear. On one hand, it is unknown whether any limiting factor of homologous recombination can be a synthetic PARP lethality partner. On the other hand, some BRCA-mutated patients are not responsive to OLA for still unknown reasons. In an effort to help delineate the boundaries of synthetic lethality, we have induced DNA damage in VERO cells with the radiomimetic chemotherapeutic agent bleomycin (BLEO). A VERO subpopulation was resistant to BLEO, BLEO + OLA, and BLEO + OLA + ATM inhibitor KU55933 + DNA-PK inhibitor KU-0060648 + LigIV inhibitor SCR7 pyrazine. Regarding the mechanism(s) behind the resistance and lack of synthetic lethality, some hypotheses have been discarded and alternative hypotheses are suggested.


Assuntos
Bleomicina/farmacologia , Cromonas/farmacologia , Morfolinas/farmacologia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Pirimidinas/farmacologia , Pironas/farmacologia , Bases de Schiff/farmacologia , Tiofenos/farmacologia , Animais , Antineoplásicos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Chlorocebus aethiops , DNA Ligase Dependente de ATP/antagonistas & inibidores , Reparo do DNA/efeitos dos fármacos , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Combinação de Medicamentos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Células Vero
4.
Acta Pharmacol Sin ; 39(12): 1874-1884, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29921885

RESUMO

Aescin, a natural mixture of triterpene saponins, has been reported to exert anticancer effect. Recent studies show that aescin increases intracellular reactive oxygen species (ROS) levels. However, whether the increased ROS play a role in the anticancer action of aescin remains to be explored. In this study, we demonstrated that aescin (20-80 µg/mL) dose-dependently induced apoptosis and activated mammalian target of rapamycin (mTOR)-independent autophagy in human hepatocellular carcinoma HepG2 cells and colon carcinoma HCT 116 cells. The activation of autophagy favored cancer cell survival in response to aescin, as suppression of autophagy with ATG5 siRNAs or 3-methyladenine (3-MA), a selective inhibitor of autophagy, promoted aescin-induced apoptosis in vitro, and significantly enhanced the anticancer effect of aescin in vivo. Meanwhile, aescin dose-dependently elevated intracellular ROS levels and activated Ataxia-telangiectasia mutated kinase/AMP-activated protein kinase/UNC-51-like kinase-1 (ATM/AMPK/ULK1) pathway. The ROS and ATM/AMPK/ULK1 pathway were upstream modulators of the aescin-induced autophagy, as N-acetyl-L-cysteine (NAC) or ATM kinase inhibitor (KU-55933) remarkably suppressed aescin-induced autophagy and consequently promoted aescin-induced apoptosis, whereas overexpression of ATG5 partly attenuated NAC-induced enhancement in aescin-induced apoptosis. In conclusion, this study provides new insights into the roles of aescin-mediated oxidative stress and autophagy in cancer cell survival. Our results suggest that combined administration of the antioxidants or autophagic inhibitors with aescin might be a potential strategy to enhance the anticancer effect of aescin.


Assuntos
Antineoplásicos/uso terapêutico , Autofagia/efeitos dos fármacos , Escina/uso terapêutico , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Linhagem Celular Tumoral , Escina/farmacologia , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos Nus
5.
Int J Med Sci ; 14(6): 523-529, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28638267

RESUMO

Background: Currently, sorafenib is the only systemic chemotherapy drug for advanced stage Hepatocellular carcinoma (HCC). However, emerging data from some clinical HCC patients indicate that sorafenib alone has only moderate antitumor efficacy, and could not inhibit disease metastasis and progression. KU-55933 is a specific ATM inhibitor, which has pro-apoptotic effect on tumor cells. In this study, we analyzed the synergistic effect of sorafenib and KU-55933 on the proliferation of HCC cell lines. Methods: Three HCC cell lines were treated with sorafenib and KU-55933 alone or combination in vitro to investigate inhibitory effect by MTT and wound healing assay. Epithelial to mesenchymal transition (EMT) phenotype change was investigated after sorafenib and KU-55933 treatment by microscopy. Akt signaling pathway proteins including p-Akt, p-mTOR and p-p70S6K were examined by western blot. In addition, cleaved PARP and autophage-related proteins LC3A/B were detected by western blot. Results: KU-55933 can enhance the effect of sorafenib in inhibiting cell proliferation and migration, overcoming EMT, inducing cell apoptosis via inactivating Akt signaling pathway and inducing autophage. The combination treatment with sorafenib and KU-55933 resulted in a strong synergistic effect in vitro. Conclusion: Our results demonstrate that sorafenib combined with KU-55933 treatment does effectively inhibit proliferation of HCC cell lines synergistically. These data suggests that KU-55933 may be a promising chemosensitizer to sorafenib in the treatment of HCC.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Morfolinas/administração & dosagem , Niacinamida/análogos & derivados , Compostos de Fenilureia/administração & dosagem , Pironas/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Apoptose/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Estadiamento de Neoplasias , Niacinamida/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Sorafenibe
6.
Pharmacol Res ; 82: 1-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24657238

RESUMO

The strategy for interpreting the role of autophagy on the basis of evidence obtained through autophagic inhibition sounds logical, but is beset with practical constraints. The knock down of autophagy-related (ATG) gene(s) or blockage of class III PI3-Kinase are the most common approaches for inhibiting autophagy. However, during stressful conditions, autophagy may operate in synchrony with other processes such as apoptosis; autophagy-related genes, unlike what their name implies, exert their regulation on apoptosis as well. Knocking down such genes not only blocks autophagy but also renders apoptosis defective, making the interpretation of autophagic roles unreliable. Similarly, class III PI3-Kinase aids in initiating autophagy but it is not a quintessential autophagic regulator. Class III PI3-Kinase also has a role in regulating almost all membrane transport in cells. Blocking it not only inhibits autophagy, but also hampers all the membrane trades, including endosomal transport. The pharmacological inhibitors used to block autophagy by blocking class III PI3-Kinase further compound these limitations with their off-target effects. Knowing the limitations involved in blocking a target or using an autophagy-blocking tool is a prerequisite for designing the experiments meant for analyzing autophagic functions. This review attempts to provide a detailed overview about the practical constraints involved in using autophagic inhibition as a strategy to understand autophagy.


Assuntos
Autofagia , Inibidores de Fosfoinositídeo-3 Quinase , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Lisossomos/metabolismo
7.
Oncol Rep ; 47(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34958116

RESUMO

Mutations of p53 tumor suppressors occur more frequently in cancers at advanced stages or in more malignant cancer subtypes such as triple­negative breast cancer. Thus, restoration of p53 tumor suppressor function constitutes a valuable cancer therapeutic strategy. In the present study, it was revealed that a specific inhibitor of histone deacetylase 6, ACY­1215, caused increased acetylation of p53 in breast cancer cells with mutated p53, which was accompanied by increased expression of p21. These results suggested that ACY­1215 may lead to enhanced transcriptional activity of p53. It was also determined that ACY­1215 treatment resulted in G1 cell cycle arrest and apoptosis in these cancer cells. Furthermore, ACY­1215 displayed a synergistic effect with specific inhibitors of ATM, an activator of Akt, in inducing cancer cell apoptosis and inhibiting their motility. More importantly, it was observed that combination of ACY­1215 and ATM inhibitors exhibited markedly more potent antitumor activity than the individual compound in xenograft mouse models of breast cancer with mutant p53. Collectively, our results demonstrated that ACY­1215 is a novel chemotherapeutic agent that could restore mutant p53 function in cancer cells with strong antitumor activity, either alone or in combination with inhibitors of the ATM protein kinase.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Proteína Supressora de Tumor p53/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Quimioterapia Combinada , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , Camundongos
8.
Recent Pat Anticancer Drug Discov ; 17(4): 387-395, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35023460

RESUMO

BACKGROUND: Therapeutic resistance is a frequent problem of cancer treatment and a leading cause of mortality in patients with metastatic colorectal cancer (CRC). Recent insight into the mechanisms that confer multidrug resistance has elucidated that the ATP-binding cassette (ABC) superfamily G member 2 (ABCG2) assists cancer cells in escaping therapeutic stress caused by toxic chemotherapy. Therefore, it is necessary to develop ABCG2 inhibitors. OBJECTIVES: In the present study, we investigated the inhibitory effect of KU55933 on ABCG2 in CRC. METHODS: The cytotoxicity assay and drug accumulation assay were used to examine the inhibitory effect of KU55933 on ABCG2. The protein expressions were detected by Western blot assay. The docking assay was performed to predict the binding site and intermolecular interactions between KU55933 and ABCG2. RESULTS: KU55933 was more potent than the known ABCG2 inhibitor fumitremorgin C to enhance the sensitivity of mitoxantrone and doxorubicin and the intracellular accumulation of mitoxantrone, doxorubicin and rhodamine 123 inside CRC cells with ABCG2 overexpression. Moreover, KU55933 did not affect the protein level of ABCG2. Furthermore, the docking data showed that KU55933 was tightly located in the drug-binding pocket of ABCG2. CONCLUSION: In summary, our data presented that KU55933 could effectively inhibit the drug pump activity of ABCG2 in colorectal cancer, which is further supported by the predicted model that showed the hydrophobic interactions of KU55933 within the drug-binding pocket of ABCG2. KU55933 can potently inhibit the activity of ABCG2 in CRC.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Antineoplásicos , Neoplasias Colorretais , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Humanos , Mitoxantrona/farmacologia , Morfolinas/farmacocinética , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Pironas/farmacologia
9.
FEBS Open Bio ; 11(5): 1440-1451, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33742560

RESUMO

Inhibitors of ataxia-telangiectasia mutated (ATM), such as KU-55933 (Ku), represent a promising class of novel anticancer drugs. In addition, the biguanide derivative phenformin exhibits antitumor activity superior to that of the AMPK activator metformin. Herein, we assessed the potential combinatorial therapeutic efficacy of phenformin and Ku when used to inhibit the growth of liver cancer cells, and we assessed the mechanisms underlying such efficacy. The Hep-G2 and SMMC-7721 liver cancer cell lines were treated with phenformin and Ku either alone or in combination, after which the impact of these drugs on cellular proliferation was assessed via 3-(4,5-dimethylthiazol) 2, 5-diphenyltetrazolium and colony formation assays, whereas Transwell assays were used to gauge cell migratory activity. The potential synergy between these two drugs was assessed using the CompuSyn software, while flow cytometry was employed to evaluate cellular apoptosis. In addition, western blotting was utilized to measure p-ATM, p-AMPK, p-mTOR, and p-p70s6k expression, while mitochondrial functionality was monitored via morphological analyses, JC-1 staining, and measurements of ATP levels. Phenformin and Ku synergistically impacted the proliferation, migration, and apoptotic death of liver cancer cells. Together, these compounds were able to enhance AMPK phosphorylation while inhibiting the phosphorylation of mTOR and p70s6k. These data also revealed that phenformin and Ku induced mitochondrial dysfunction as evidenced by impaired ATP synthesis, mitochondrial membrane potential, and abnormal mitochondrial morphology. These findings suggest that combination treatment with phenformin and Ku may be an effective approach to treating liver cancer via damaging mitochondria within these tumor cells.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Morfolinas/farmacologia , Fenformin/farmacologia , Pironas/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Apoptose/efeitos dos fármacos , Ataxia Telangiectasia/tratamento farmacológico , Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , China , Sinergismo Farmacológico , Quimioterapia Combinada/métodos , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Mitocôndrias/metabolismo , Fenformin/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo
10.
J Pers Med ; 11(5)2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34068585

RESUMO

ATM and BRCA1 are DNA repair genes that play a central role in homologous recombination repair. Alterations of ATM and BRCA1 gene expression are found in cancers, some of which are correlated with treatment response and patient outcome. However, the role of ATM and BRCA1 gene expression in head and neck cancer (HNC) is not well characterized. Here, we examined the prognostic role of ATM and BRCA1 expression in two HNC cohorts with and without betel quid (BQ) exposure. The results showed that the expression of ATM and BRCA1 was downregulated in BQ-associated HNC, as the BQ ingredient arecoline could suppress the expression of both genes. Low expression of either ATM or BRCA1 was correlated with poor overall survival (OS) and was an independent prognostic factor in multivariate analysis (ATM HR: 1.895, p = 0.041; BRCA1 HR: 2.163, p = 0.040). The combination of ATM and BRCA1 expression states further improved on the prediction of OS (HR: 4.195, p = 0.001, both low vs. both high expression). Transcriptomic analysis showed that inhibition of ATM kinase by KU55933 induced apoptosis signaling and potentiated cisplatin-induced cytotoxicity. These data unveil poor prognosis in the HNC patient subgroup with low expression of ATM and BRCA1 and support the notion of ATM-targeted therapy.

11.
Cancers (Basel) ; 11(12)2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31766690

RESUMO

Retinoic acid (RA) has been widely used to protect skin from photo damage and skin carcinomas caused by solar ultraviolet (UV) irradiation, yet the mechanism remains elusive. Here, we report that all-trans retinoic acid (tRA) can directly induce the expression of a newly identified potent anti-angiogenic factor, seryl tRNA synthetase (SerRS), whose angiostatic role can, however, be inhibited by UV-activated ataxia telangiectasia mutated (ATM) kinase. In both a human epidermal cell line, HaCaT, and a mouse melanoma B16F10 cell line, we found that tRA could activate SerRS transcription through binding with the SerRS promoter. However, UV irradiation induced activation of ATM-phosphorylated SerRS, leading to the inactivation of SerRS as a transcriptional repressor of vascular endothelial growth factor A (VEGFA), which dampened the effect of tRA. When combined with ATM inhibitor KU-55933, tRA showed a greatly enhanced efficiency in inhibiting VEGFA expression and a much better protection of mouse skin from photo damage. Also, we found the combination greatly inhibited tumor angiogenesis and growth in mouse melanoma xenograft in vivo. Taken together, tRA combined with an ATM inhibitor can greatly enhance the anti-angiogenic activity of SerRS under UV irradiation and could be a better strategy in protecting skin from angiogenesis-associated skin damage and melanoma caused by UV radiation.

12.
Mol Oncol ; 12(8): 1324-1341, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29845714

RESUMO

Recurrence of high-grade prostate cancer after radiotherapy is a significant clinical problem, resulting in increased morbidity and reduced patient survival. The molecular mechanisms of radiation resistance are being elucidated through the study of microRNA (miR) that negatively regulate gene expression. We performed bioinformatics analyses of The Cancer Genome Atlas (TCGA) dataset to evaluate the association between miR-106a and its putative target lipopolysaccharide-induced TNF-α factor (LITAF) in prostate cancer. We characterized the function of miR-106a through in vitro and in vivo experiments and employed transcriptomic analysis, western blotting, and 3'UTR luciferase assays to establish LITAF as a bona fide target of miR-106a. Using our well-characterized radiation-resistant cell lines, we identified that miR-106a was overexpressed in radiation-resistant cells compared to parental cells. In the TCGA, miR-106a was significantly elevated in high-grade human prostate tumors relative to intermediate- and low-grade specimens. An inverse correlation was seen with its target, LITAF. Furthermore, high miR-106a and low LITAF expression predict for biochemical recurrence at 5 years after radical prostatectomy. miR-106a overexpression conferred radioresistance by increasing proliferation and reducing senescence, and this was phenocopied by knockdown of LITAF. For the first time, we describe a role for miRNA in upregulating ATM expression. LITAF, not previously attributed to radiation response, mediates this interaction. This route of cancer radioresistance can be overcome using the specific ATM kinase inhibitor, KU-55933. Our research provides the first report of miR-106a and LITAF in prostate cancer radiation resistance and high-grade disease, and presents a viable therapeutic strategy that may ultimately improve patient outcomes.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Recidiva Local de Neoplasia/genética , Proteínas Nucleares/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/radioterapia , Fatores de Transcrição/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Masculino , Regulação para Cima/efeitos da radiação
13.
Neurotoxicology ; 64: 185-194, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28780388

RESUMO

In a recent study, we found that blocking the protein kinase ataxia telangiectasia mutated (ATM) with the small molecule inhibitor (SMI) KU-55933 can completely abrogate Mn-induced phosphorylation of p53 at serine 15 (p-p53) in human induced pluripotent stem cell (hiPSC)-differentiated striatal neuroprogenitors. However, in the immortalized mouse striatal progenitor cell line STHdhQ7/Q7, a concentration of KU55933 far exceeding its IC50 for ATM was required to inhibit Mn-induced p-p53. This suggested an alternative signaling system redundant with ATM kinase for activating p53 in this cell line- one that was altered by KU55933 at these higher concentrations (i.e. mTORC1, DNApk, PI3K). To test the hypothesis that one or more of these signaling pathways contributed to Mn-induced p-p53, we utilized a set of SMIs (e.g. NU7441 and LY294002) known to block DNApk, PI3K, and mTORC1 at distinct concentrations. We found that the SMIs inhibit Mn-induced p-p53 expression near the expected IC50s for PI3K, versus other known targets. We hypothesized that inhibiting PI3K reduces intracellular Mn and thereby decreases activation of p53 by Mn. Using the cellular fura-2 manganese extraction assay (CFMEA), we determined that KU55933/60019, NU7441, and LY294002 (at concentrations near their IC50s for PI3K) all decrease intracellular Mn (∼50%) after a dual, 24-h Mn and SMI exposure. Many pathways are activated by Mn aside from p-p53, including AKT and mTOR pathways. Thus, we explored the activation of these pathways by Mn in STHdh cells as well as the effects of other pathway inhibitors. p-AKT and p-S6 activation by Mn is almost completely blocked upon addition of NU7441(5µM) or LY294002(7µM), supporting PI3K's upstream role in the AKT/mTOR pathway. We also investigated whether PI3K inhibition blocks Mn uptake in other cell lines. LY294002 exposure did not reduce Mn uptake in ST14A, Neuro2A, HEK293, MEF, or hiPSC-derived neuroprogenitors. Next, we sought to determine whether inhibition of PI3K blocked p53 phosphorylation by directly blocking an unknown PI3K/p53 interaction or indirectly reducing intracellular Mn, decreasing p-p53 expression. In-Cell Western and CFMEA experiments using multiple concentrations of Mn exposures demonstrated that intracellular Mn levels directly correlated with p-p53 expression with or without addition of LY294002. Finally, we examined whether PI3K inhibition was able to block Mn-induced p-p53 activity in hiPSC-derived striatal neuroprogenitors. As expected, LY294002 does not block Mn-induced p-p53 as PI3K inhibition is unable to reduce Mn net uptake in this cell line, suggesting the effect of LY294002 on Mn uptake is relatively specific to the STHdh mouse striatal cell line.


Assuntos
Corpo Estriado/metabolismo , Manganês/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Animais , Linhagem Celular , Cromonas/farmacologia , Corpo Estriado/efeitos dos fármacos , Células HEK293 , Homeostase , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Concentração Inibidora 50 , Camundongos , Morfolinas/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
14.
Biochem Pharmacol ; 137: 113-124, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28461126

RESUMO

Polycyclic aromatic hydrocarbons (PAHs), such as benzo[a]pyrene (B[a]P), are widely distributed environmental contaminants exerting toxic effects such as genotoxicity and carcinogenicity, mainly associated with aryl hydrocarbon receptor (AhR) activation and the subsequent induction of cytochromes P-450 (CYP) 1-metabolizing enzymes. We previously reported an up-regulation of AhR expression and activity in primary cultures of human T lymphocyte by a physiological activation. Despite the suggested link between exposure to PAHs and the risk of lymphoma, the potential of activated human T lymphocytes to metabolize AhR exogenous ligands such as B[a]P and produce DNA damage has not been investigated. In the present study, we characterized the genotoxic response of primary activated T lymphocytes to B[a]P. We demonstrated that, following T lymphocyte activation, B[a]P treatment triggers a marked increase in CYP1 expression and activity generating, upon metabolic activation, DNA adducts and double-strand breaks (DSBs) after a 48-h treatment. At this time point, B[a]P also induces a DNA damage response with ataxia telangiectasia mutated kinase activation, thus producing a p53-dependent response and T lymphocyte survival. B[a]P activates DSB repair by mobilizing homologous recombination machinery but also induces gene mutations in activated human T lymphocytes which could consequently drive a cancer process. In conclusion, primary cultures of activated human T lymphocytes represent a good model for studying genotoxic effects of environmental contaminants such as PAHs, and predicting human health issues.


Assuntos
Benzo(a)pireno/toxicidade , Dano ao DNA/efeitos dos fármacos , Mutagênese/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Células Cultivadas , Dano ao DNA/fisiologia , Relação Dose-Resposta a Droga , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Mutagênese/fisiologia , Testes de Mutagenicidade/métodos , Linfócitos T/metabolismo
15.
Int J Radiat Biol ; 91(4): 368-78, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25585815

RESUMO

PURPOSE: Our preliminary results showed that differentially expressed in ovarian cancer-2/disabled homolog 2 (DOC-2/DAB2) interactive protein (DAB2IP), a putative tumor suppressor gene, is down-regulated in bladder cancer (BCa) with aggressive phenotypes. In this study, we investigated how DAB2IP knockdown influenced BCa cell response to ionizing radiation (IR) and discussed possible ways to enhance cell radiosensitivity. METHODS AND MATERIALS: The small interfering RNA (siRNA) system was implemented to inhibit endogenous DAB2IP expression in two human BCa cell lines, T24 and 5637. Cell sensitivity to IR alone or combined treatment was measured by a colony formation assay (CFA). Western blot was used to determine the phosphorylation levels of ataxia-telangiectasia mutated (ATM), catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) and related DNA damage repair (DDR) proteins. Immunofluorescence as well as a flow cytometry assay were employed to detect DNA double-strand break (DSB) repair and cell cycle distribution, respectively. RESULTS: DAB2IP-knockdown of BCa cells (i.e., siDAB2IP) exhibit increased clonogenic survival in response to IR compared with control cells (i.e., siCON) expressing an endogenous level of DAB2IP. The mechanism in siDAB2IP cells could be explained by elevated ATM expression and activation, increased S phase cell distribution as well as faster DSB repair kinetics. 2-morpholin-4-yl-6-thianthren-1-yl-pyran-4-one (KU55933) significantly sensitized siDAB2IP cells to IR due to inhibition of the phosphorylation of ATM and its downstream targets following IR and slower DSB repair kinetics. CONCLUSIONS: Loss of DAB2IP expression in BCa cells signifies their radioresistance. KU55933, which suppresses ATM phosphorylation upon irradiation, could be applied in the radiotherapy of BCa patients with a DAB2IP gene defect.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Morfolinas/farmacologia , Pironas/farmacologia , Radiossensibilizantes/farmacologia , Neoplasias da Bexiga Urinária/radioterapia , Proteínas Ativadoras de ras GTPase/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Humanos , Fosforilação , Rad51 Recombinase/fisiologia , Tolerância a Radiação , Fase S , Neoplasias da Bexiga Urinária/patologia
16.
Biochem Pharmacol ; 89(3): 361-9, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24680865

RESUMO

5-Azacytidine (AZA) exerts its anti-tumor effects by exerting cytotoxicity via its incorporation into RNA and DNA, which causes the reactivation of aberrantly silenced growth-regulatory genes by promoter demethylation, as well as DNA damage. AZA is used for patients with myelodysplastic syndrome and acute myeloid leukemia. However, some patients demonstrate resistance to AZA, the mechanisms of which are not fully elucidated. We therefore sought to better characterize the molecular mechanism of AZA resistance using an in vitro model of AZA resistance. We established AZA-resistant cell lines by exposing the human leukemia cell lines U937 and HL-60 to clinical concentrations of AZA, and characterized these cells. AZA-resistant cells showed a down-regulation of the DNMT3A protein, in correlation with their marked genome-wide DNA hypomethylation. Furthermore, genes involved in pyrimidine metabolism were down-regulated in both AZA-resistant cell lines; AZA sensitivity was restored by inhibition of CTP synthase. Of note is that the DNA damage response pathway is constitutively activated in the AZA-resistant cell lines, but not in the parental cell lines. Inhibition of the DNA damage response pathway canceled the AZA resistance, in association with an increase in apoptotic cells. We found that the molecular mechanism underlying AZA resistance involves pyrimidine metabolism and the DNA damage response through ATM kinase. This study therefore sheds light on the mechanisms underlying AZA resistance, and will enable better understanding of AZA resistance in patients undergoing AZA treatment.


Assuntos
Apoptose/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Azacitidina/farmacologia , Proteína BRCA1/metabolismo , Dano ao DNA/fisiologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteína BRCA1/genética , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Pirimidinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA