Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 453
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39326418

RESUMO

Despite the long history of consumption of fermented dairy, little is known about how the fermented microbes were utilized and evolved over human history. Here, by retrieving ancient DNA of Bronze Age kefir cheese (∼3,500 years ago) from the Xiaohe cemetery, we explored past human-microbial interactions. Although it was previously suggested that kefir was spread from the Northern Caucasus to Europe and other regions, we found an additional spreading route of kefir from Xinjiang to inland East Asia. Over evolutionary history, the East Asian strains gained multiple gene clusters with defensive roles against environmental stressors, which can be a result of the adaptation of Lactobacillus strains to various environmental niches and human selection. Overall, our results highlight the role of past human activities in shaping the evolution of human-related microbes, and such insights can, in turn, provide a better understanding of past human behaviors.

2.
BMC Genomics ; 25(1): 884, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39304820

RESUMO

BACKGROUND: Kefir is a complex microbial community that plays a critical role in the fermentation and production of bioactive peptides, and has health-improving properties. The composition of kefir can vary by geographic localization and weather, and this paper focuses on a Brazilian sample and continues previous work that has successful anti-Alzheimer properties. In this study, we employed shotgun metagenomics and peptidomics approaches to characterize Brazilian kefir further. RESULTS: We successfully assembled the novel genome of Lactobacillus kefiranofaciens (LkefirU) and conducted a comprehensive pangenome analysis to compare it with other strains. Furthermore, we performed a peptidome analysis, revealing the presence of bioactive peptides encrypted by L. kefiranofaciens in the Brazilian kefir sample, and utilized in silico prospecting and molecular docking techniques to identify potential anti-Alzheimer peptides, targeting ß-amyloid (fibril and plaque), BACE, and acetylcholinesterase. Through this analysis, we identified two peptides that show promise as compounds with anti-Alzheimer properties. CONCLUSIONS: These findings not only provide insights into the genome of L. kefiranofaciens but also serve as a promising prototype for the development of novel anti-Alzheimer compounds derived from Brazilian kefir.


Assuntos
Doença de Alzheimer , Genoma Bacteriano , Kefir , Lactobacillus , Microbiota , Peptídeos , Kefir/microbiologia , Lactobacillus/genética , Brasil , Peptídeos/química , Peptídeos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/genética , Ácido Aspártico Endopeptidases/metabolismo , Metagenômica/métodos
3.
BMC Med ; 22(1): 80, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378568

RESUMO

BACKGROUND: Dysbiosis of the gut microbiome is frequent in the intensive care unit (ICU), potentially leading to a heightened risk of nosocomial infections. Enhancing the gut microbiome has been proposed as a strategic approach to mitigate potential adverse outcomes. While prior research on select probiotic supplements has not successfully shown to improve gut microbial diversity, fermented foods offer a promising alternative. In this open-label phase I safety and feasibility study, we examined the safety and feasibility of kefir as an initial step towards utilizing fermented foods to mitigate gut dysbiosis in critically ill patients. METHODS: We administered kefir in escalating doses (60 mL, followed by 120 mL after 12 h, then 240 mL daily) to 54 critically ill patients with an intact gastrointestinal tract. To evaluate kefir's safety, we monitored for gastrointestinal symptoms. Feasibility was determined by whether patients received a minimum of 75% of their assigned kefir doses. To assess changes in the gut microbiome composition following kefir administration, we collected two stool samples from 13 patients: one within 72 h of admission to the ICU and another at least 72 h after the first stool sample. RESULTS: After administering kefir, none of the 54 critically ill patients exhibited signs of kefir-related bacteremia. No side effects like bloating, vomiting, or aspiration were noted, except for diarrhea in two patients concurrently on laxatives. Out of the 393 kefir doses prescribed for all participants, 359 (91%) were successfully administered. We were able to collect an initial stool sample from 29 (54%) patients and a follow-up sample from 13 (24%) patients. Analysis of the 26 paired samples revealed no increase in gut microbial α-diversity between the two timepoints. However, there was a significant improvement in the Gut Microbiome Wellness Index (GMWI) by the second timepoint (P = 0.034, one-sided Wilcoxon signed-rank test); this finding supports our hypothesis that kefir administration can improve gut health in critically ill patients. Additionally, the known microbial species in kefir were found to exhibit varying levels of engraftment in patients' guts. CONCLUSIONS: Providing kefir to critically ill individuals is safe and feasible. Our findings warrant a larger evaluation of kefir's safety, tolerability, and impact on gut microbiome dysbiosis in patients admitted to the ICU. TRIAL REGISTRATION: NCT05416814; trial registered on June 13, 2022.


Assuntos
Microbioma Gastrointestinal , Kefir , Adulto , Humanos , Estado Terminal/terapia , Disbiose , Estudos de Viabilidade , Kefir/análise
4.
Microb Pathog ; 190: 106641, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588925

RESUMO

This study aimed to investigate the impact of incorporating kefir into the diet on biometric parameters, as well as the immune and antioxidant responses of the carpet shell clam (Ruditapes decussatus) after an experimental infection by Vibrio alginolyticus. Clams were divided into a control group and a treated group. The control group was fed on spirulina (Arthrospira platensis) alone. While, the treated group was fed on spirulina supplemented with 10% dried kefir. After 21 days, clams were immersed in a suspension of V. alginolyticus 5 × 105 CFU mL -1 for 30 min. Seven days after experimental infection, survival was 100% in both groups. The obtained results showed a slight increase in weight and condition index in clams fed with kefir-supplemented diet for 21 days compared to control clams. Regarding antioxidant responses, the treated group showed higher superoxide dismutase activity compared to the control group. However, the malondialdehyde level was lower in the treated clams than in the control. In terms of immune parameters, the treated group showed slightly elevated activities of phenoloxidase, lysozyme and alkaline phosphatase, whereas a decreased lectin activity was observed compared to the control group. The obtained results suggest that kefir enhanced both the antioxidant and immune response of infected clams.


Assuntos
Adjuvantes Imunológicos , Antioxidantes , Bivalves , Kefir , Probióticos , Superóxido Dismutase , Vibrio alginolyticus , Animais , Probióticos/farmacologia , Bivalves/química , Bivalves/microbiologia , Antioxidantes/metabolismo , Kefir/microbiologia , Superóxido Dismutase/metabolismo , Spirulina/química , Malondialdeído/metabolismo , Malondialdeído/análise , Ração Animal , Monofenol Mono-Oxigenase/metabolismo , Suplementos Nutricionais , Fosfatase Alcalina/metabolismo , Muramidase/metabolismo , Vibrioses/prevenção & controle
5.
Food Microbiol ; 119: 104454, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38225054

RESUMO

Tibetan kefir grains (TKGs) are a complex protein-lipid-polysaccharide matrix composed of various microorganisms. Microorganisms have the benefit of being effective, secure, and controllable when used for selenium enrichment. In this study, selenium-enriched Tibetan kefir grains (Se-TKGs) were made, and the microbiology composition was analyzed through a metagenomic analysis, to explore the influence of selenium enrichment. The microbial composition of TKGs and Se-TKGs, as well as the probiotic species, quorum sensing system (QS) and functional genes were compared and evaluated. Lactobacillus kefiranofaciens was the most abundant microbial species in both communities. Compared with TKGs, Se-TKGs had a much higher relative abundance of acetic acid bacteria. Lactobacillus helveticus was the most common probiotic species both in TKGs and Se-TKGs. Probiotics with antibacterial and anti-inflammatory properties were more abundant in Se-TKGs. QS analysis revealed that Se-TKGs contained more QS system-associated genes than TKGs. Moreover, Kyoto Encyclopedia of Genes and Genomes analysis revealed that the pathway for human disease ko01501 had the greatest relative abundance in both TKGs and Se-TKGs. Compared with TKGs, Se-TKGs demonstrated a greater relative abundance of different drug resistance-related metabolic pathways. Additionally, linear discriminant analysis effect size was used to examine the biomarkers responsible for the difference between the two groups. In this study, we focused on the microbiological structure of TKGs and Se-TKGs, with the aim of establishing a foundation for a more thorough investigation of Se-TKGs and providing a basis for exploring potential future use.


Assuntos
Produtos Fermentados do Leite , Kefir , Selênio , Humanos , Produtos Fermentados do Leite/microbiologia , Tibet , Bactérias/genética
6.
J Dairy Sci ; 107(7): 4259-4276, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38369119

RESUMO

Four dairy foods processing by-products (acid whey permeate [AWP], buttermilk [BM], sweet whey permeate [SWP], and sweet whey permeate with added milk fat globule ingredient [SWP+MFGM]) were fermented for 4 wk and compared with traditional kefir milks for production of novel kefir-like dairy products. Sweet whey permeates and SWP supplemented with 1.5% milk fat globule membrane (MFGM) proved to be the most viable by-products for kefir grain fermentation, exhibiting diverse abundance of traditional kefir microorganisms and positive indicators of bioactive properties. Grain viability was assessed with shotgun metagenomics, texture profile analysis, live cell counts, and scanning electron microscopy. Assessed bioactivities of the kefir-like products included antibacterial, antioxidant, potential anticancerogenic properties, and membrane barrier effects on human colorectal adenocarcinoma Caco-2 cells. All kefir grains were most abundant in Lactobacillus kefiranofaciens when analyzed with shotgun metagenomics. When analyzed with live cell counts on selective media, AWP kefir-like product had no countable Lactococcus spp., indicating suboptimal conditions for kefir grain microbiota survival and application for fermented dairy starter culture bacterium. Live cell counts were affirmed with kefir grain surface scanning electron microscopy images. The SWP treatment had the most adhesive kefir grain surface, and SWP+MFGM had the largest exopolysaccharide yield from grain extraction. All kefir and kefir-like products were able to achieve a 6-log reduction against Listeria innocua and Escherichia coli. Traditional milk kefirs had the highest antioxidant capacity for 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid; ABTS) assay. The AWP formulation had a significantly higher DPPH antioxidant activity compared with the other kefir and kefir-like products, and SWP had the lowest Trolox equivalence concentration in the ABTS assay. Sweet whey and supplemented milk fat sweet whey had upregulation of Cldn-1 and Ocln-1 gene expression, which correspond with a significant increase in transepithelial electrical resistance.


Assuntos
Fermentação , Kefir , Kefir/microbiologia , Animais , Soro do Leite/química , Microbiota , Humanos , Células CACO-2 , Antioxidantes/farmacologia
7.
J Dairy Sci ; 107(10): 7718-7733, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38851574

RESUMO

The bacterium Lactobacillus kefiranofaciens OSU-BDGOA1 and yeast Kluyveromyces marxianus bdgo-ym6 were previously isolated from kefir grains and have shown probiotic traits in mono- and coculture. This research evaluates the effect of introducing probiotic kefir microorganisms in monoculture and in coculture alongside yogurt starter cultures on the physicochemical and rheological properties, volatile flavor compounds, survival of the microorganisms during simulated digestion, and sensory attributes of the final fermented products. The incorporation of L. kefiranofaciens OSU-BDGOA1 in monoculture showed promising outcomes, resulting in a final product showing more solid-like characteristics and potentially improving the texture of the product. There was also a significant increase in the concentration of desirable volatile flavor compounds in the yogurt with the monoculture, particularly 2,3-butanedione, displaying a positive correlation with buttery flavor in the sensory analysis. The inclusion of L. kefiranofaciens in monoculture also promoted better sensory attributes and was significantly better than the yogurt with the coculture with the yeast, showing promising results for the incorporation of this probiotic bacterium into functional fermented dairy products.


Assuntos
Fermentação , Kluyveromyces , Lactobacillus , Probióticos , Iogurte , Iogurte/microbiologia , Kefir/microbiologia , Técnicas de Cocultura
8.
J Sci Food Agric ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39320162

RESUMO

BACKGROUND: While yogurt is the leading fermented milk product, kefir is at the top of the beverage scale. Milk proteins, on the other hand, show specific functions that positively affect healthy nutrition due to the bioactive components, that they provide the necessary amino acids for growth and development. RESULTS: In our study, kefir, a functional product enriched with whey proteins, casein and skimmed milk powder, which are the natural components of milk, was produced. Added-protein kefir samples were applied the in vitro digestion protocol, static method. In order to observe different protein behaviors, samples were taken pre-digestion, at 120th minute and at 240th minute of digestion protocol. ACE and Antioxidant capacity determination analyzes were carried out. While ACE inhibition values were in the range of 78.63-90.30% pre-digestion, they changed in the range of 86.97-96.38% after gastrointestinal digestion. It was determined that the ACE inhibition values of the control sample remained at the lowest level at all stages of digestion and that the difference between all of samples was significant (P < 0.05). Antioxidant activity value ranging from 0.3615-0.5512 meq Ascorbic acid/µg before digestion was determined as 1.3796-1.9313 meq Ascorbic acid/µg after gastrointestinal digestion (P < 0.05). CONCLUSION: Kefir samples containing whey protein stand out with their high potential in terms of both antioxidant activity capacity and ACE inhibition activity at all stages of digestion. Considering their therapeutic effects in fermented products, it is thought that whey proteins among milk proteins will be important alternative sources to enrich the protein content in kefir production. © 2024 Society of Chemical Industry.

9.
J Sci Food Agric ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177281

RESUMO

BACKGROUND: Depression is a common psychological disorder, and traditional therapeutic drugs often result in side effects such as emesis, dry mouth, headache, dysentery and constipation. Probiotics and goat milk have garnered widespread attention for their ability to modulate immune function and regulate the endocrine system, and for their anti-inflammatory effects. In this work, the effects of Tibetan goat kefir on the behavior, immune status, neuroendocrine response and gut microbiological composition of chronic unpredictable mild stress (CUMS) mouse models were evaluated. RESULTS: The results indicated that Tibetan kefir goat milk significantly alleviated behavioral despair in mice. Furthermore, the results demonstrated that Tibetan kefir goat milk mitigated the inflammatory response in the mice and moderated the hyperactivity of the hypothalamic-pituitary-adrenal axis and the expression of brain-derived neurotrophic factor. Meanwhile, chronic stress-induced gut microbial abnormalities were restored. In addition, the correlation between gut microbiota and nervous system was evaluated. CONCLUSION: These results explained the potential mechanism of Tibetan kefir in the antidepressant effect on the CUMS model and enriched diets for depressed patients. © 2024 Society of Chemical Industry.

10.
Compr Rev Food Sci Food Saf ; 23(4): e13364, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38847746

RESUMO

Kefir milk, known for its high nutritional value and health benefits, is traditionally produced by fermenting milk with kefir grains. These grains are a complex symbiotic community of lactic acid bacteria, acetic acid bacteria, yeasts, and other microorganisms. However, the intricate coexistence mechanisms within these microbial colonies remain a mystery, posing challenges in predicting their biological and functional traits. This uncertainty often leads to variability in kefir milk's quality and safety. This review delves into the unique structural characteristics of kefir grains, particularly their distinctive hollow structure. We propose hypotheses on their formation, which appears to be influenced by the aggregation behaviors of the community members and their alliances. In kefir milk, a systematic colonization process is driven by metabolite release, orchestrating the spatiotemporal rearrangement of ecological niches. We place special emphasis on the dynamic spatiotemporal changes within the kefir microbial community. Spatially, we observe variations in species morphology and distribution across different locations within the grain structure. Temporally, the review highlights the succession patterns of the microbial community, shedding light on their evolving interactions.Furthermore, we explore the ecological mechanisms underpinning the formation of a stable community composition. The interplay of cooperative and competitive species within these microorganisms ensures a dynamic balance, contributing to the community's richness and stability. In kefir community, competitive species foster diversity and stability, whereas cooperative species bolster mutualistic symbiosis. By deepening our understanding of the behaviors of these complex microbial communities, we can pave the way for future advancements in the development and diversification of starter cultures for food fermentation processes.


Assuntos
Kefir , Simbiose , Kefir/microbiologia , Simbiose/fisiologia , Microbiota/fisiologia , Fermentação , Microbiologia de Alimentos
11.
Rev Argent Microbiol ; 56(2): 191-197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38272730

RESUMO

Water kefir is a sparkling, slightly acidic fermented beverage made from sugar, water, and water kefir grains, which are a mixture of yeast and bacteria. These grains produce a variety of fermentation compounds such as lactic acid, acetaldehyde, acetoin, ethanol and carbon dioxide. In this study, a high-throughput sequencing technique was used to characterize the bacterial composition of the original water kefir from which potential probiotics were obtained. We studied the bacterial diversity of both water kefir grains and beverages. DNA was extracted from three replicate samples of both grains and beverages using the Powerlyzer Microbial Kit. The hypervariable V1-V2 region of the bacterial 16S ribosomal RNA gene was amplified to prepare six DNA libraries. Between 1.4M and 2.4M base-pairs were sequenced for the library. In total, 28721971 raw reads were obtained from all the samples. Estimated species richness was higher in kefir beverage samples compared to grain samples. Moreover, a higher level of microbial alpha diversity was observed in the beverage samples. Particularly, the predominant bacteria in beverages were Anaerocolumna and Ralstonia, while in grains Liquorilactobacillus dominated, with lower levels of Leuconostoc and Oenococcus. Although the bacterial diversity in kefir grains was low because only three genera were the most represented, all of them are LAB bacteria with the potential to serve as probiotics in the artificial feeding of bees.


Assuntos
Bactérias , Kefir , Metagenômica , Probióticos , RNA Ribossômico 16S , Animais , Abelhas/microbiologia , Kefir/microbiologia , RNA Ribossômico 16S/genética , Metagenômica/métodos , Bactérias/isolamento & purificação , Bactérias/genética , Bactérias/classificação , DNA Bacteriano/análise , Biodiversidade , DNA Ribossômico/genética , Ração Animal/microbiologia
12.
Turk J Med Sci ; 54(1): 357-365, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38812644

RESUMO

Background/aim: Scaling and root planing remain inadequate in periodontitis treatment caused by dysbiotic microbial dental plaque. The aim of this clinical trial is to evaluate the effects of probiotics and kefir consumption in initial periodontal therapy (IPT) on oral microbiota composition and treatment outcomes in patients with periodontitis. Materials and methods: The study was carried out in the Gazi University Department of Periodontology, including a sample size of 36 individuals and utilizing a randomized controlled design. Thirty-six patients with periodontitis were randomly allocated to three groups: one receiving probiotic treatment, another receiving kefir, and a third serving as the control group. Obtaining subgingival microbial samples, we recorded plaque, gingival index, bleeding on probing, periodontal pocket depth, and clinical attachment level (periodontal clinical indices) and then performed IPT. For 14 days, patients took either probiotics, kefir, or no supplements. Data for the first and third months were collected using periodontal clinical indices. DNA sequencing was performed to detect Tannerella forsythia, Porphyromonas gingivalis, and Treponema denticola in subgingival plaque samples collected at baseline and three months. Results: Significant differences were observed regarding periodontal clinical indices among groups in the intragroup comparisons. Moreover, levels of Tannerella forsythia were significantly decreased in all groups. Conclusion: Kefir can be administered in addition to IPT, providing results similar to those observed with probiotics.


Assuntos
Disbiose , Probióticos , Humanos , Probióticos/uso terapêutico , Masculino , Disbiose/terapia , Feminino , Adulto , Pessoa de Meia-Idade , Porphyromonas gingivalis/isolamento & purificação , Kefir/microbiologia , Tannerella forsythia/isolamento & purificação , Periodontite/microbiologia , Periodontite/terapia , Periodontite/prevenção & controle , Treponema denticola/isolamento & purificação , Índice Periodontal , Resultado do Tratamento , Doenças Periodontais/microbiologia , Doenças Periodontais/prevenção & controle , Doenças Periodontais/terapia
13.
Crit Rev Food Sci Nutr ; : 1-28, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37357963

RESUMO

Fermented beverages (FBs) are facing challenges in functional performance and flavor complexity, necessitating the development of new multi-functional options. Traditional fermented beverages (TFBs), both alcoholic and nonalcoholic, have gained increased attention for their health-promoting effects during the COVID-19 pandemic. This review summarized the primary commercially available probiotics of FBs, along with the limitations of single and mixed probiotic FBs. It also examined the recent research progress on TFBs, emphasizing the typical microbial communities (MC) of TFBs, and TFBs made from crops (grains, vegetables, fruits, etc.) worldwide and their associated functions and health benefits. Furthermore, the construction, technical bottlenecks of the synthetic MC involved in developing innovative FBs were presented, and the promising perspective of FBs was described. Drawing inspiration from the MC of TFBs, developing of stable and multifunctional FBs using synthetic MC holds great promise for beverage industry. However, synthetic MC suffers from structural instability and poorly acknowledged interaction mechanisms, resulting in disappointing results in FBs. Future researches should prioritize creating synthetic MC fermentation that closely resemble natural fermentation, tailored to meet the needs of different consumers. Creating personalized FBs with high-tech intelligence is vital in attracting potential consumers and developing novel beverages for the future.

14.
Int Microbiol ; 2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37759067

RESUMO

The present study compared bacterial and fungal diversity of kefir beverages produced using milk (MK) or sugared water (WK) as propagation matrices and grains from the cities of Curitiba (CU) or Salvador (SA), Brazil, by sequencing the complete set of RNA transcripts produced in four products. In Brazil, milk and sugared water are used as matrices to propagate kefir grains. In all beverages, the bacterial community was composed of Lactobacillaceae and Acetobacteraceae. Saccharomycetaceae was the yeast family more abundant in WK, and Dipodascaceae and Pichiaceae in MK. Regarding KEGG mapping of functional orthologs, the four kefir samples shared 70% of KO entries of yeast genes but only 36% of bacterial genes. Concerning main metabolic processes, the relative abundance of transcripts associated with metabolism (energy metabolism) and environmental information processing (membrane transport) had the highest water/milk kefir ratio observed in Firmicutes. In contrast, transcripts associated with genetic information processing (protein translation, folding, sorting, and degradation) oppositely had the lowest water/milk ratios. Concluding, milk and water kefir have quite different communities of microorganisms. Still, the main mapped functional processes are similar, with only quantitative variation in membrane transport and energy acquisition in the water kefir and protein synthesis and turnover in the milk kefir.

15.
Int Microbiol ; 26(2): 361-370, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36370206

RESUMO

Kefir is a fermented probiotic drink obtained by placing kefir granules in a suitable substrate. The kefir granules are a consortium of bacteria and yeasts embedded in a exopolysaccharide matrix. The aim of this research was the isolation and identification of yeasts from kefir of different origin, the evaluation of their antifungal capacity against Aspergillus spp., and the characterization of virulence related traits. Using RFLP of ITS1/ITS4 region, D1/D2 region sequencing, and RAPD techniques, 20 kefir isolates were identified as Geotrichum candidum, Pichia kudriavzevii, Pichia membranifaciens, Saccharomyces cerevisiae, and Candida ethanolica. Their antifungal capacity was evaluated by their conidia germination reduction, which allowed the selection of eight isolates with high to moderate conidia germination reduction against Aspergillus flavus and Aspergillus parasiticus. Furthermore, these selected isolates showed growth inhibition on contact in the dual culture assay for both Aspergillus species and 3 of them-belonging to S. cerevisiae and P. kudriavzevii species-generated volatile organic compounds which significantly affected the growth of both fungi. For the evaluation of virulence-related traits, growth at high temperatures, enzymatic activities, and the adhesion to Caco-2 cells were analyzed. The isolates did not present more than one positive virulence-related trait simultaneously. In particular, it is important to highlight that the adhesion capacity to the model of intestinal barrier was extremely low for all of them. According to the results obtained, further studies would be of interest for the possible use of these promising yeasts as biocontrol agents against fungi in food.


Assuntos
Antifúngicos , Kefir , Humanos , Antifúngicos/farmacologia , Saccharomyces cerevisiae/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico , Células CACO-2 , Leveduras/genética , Aspergillus
16.
J Appl Microbiol ; 134(1)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36724246

RESUMO

COVID-19, which is caused by the novel coronavirus SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), is the deadliest outbreak of this millennium. Despite adopting several precautionary strategies and guidelines, COVID-19 has spread rapidly, and the number of cases is still in escalation across the world. The various immune-boosting drugs with severe side effects and the vaccines approved after negotiated clinical trials have been struggling to cope with the emergence of new variants of the virus. Nevertheless, given a large number of asymptomatic cases, a high magnitude of recovery rate, and a relatively higher prevalence of morbidity and mortality among immunologically compromised individuals, those affected by an illness, and the elderly, it appears that a healthy microbiome and the associated immune responses are the key factors for survival. Incidentally, the consumption of traditionally popular and nutritious fermented foods, which are composed of biologically functional ingredients and several health-promoting probiotics, offers promising health benefits through the improvement of the immune system in general. Given the progress in functional food research, it has become crucial to understand the impact of a healthy microbiome and the immunomodulatory roles of fermented foods on the battles to combat infectious diseases. Based on the evidence of the impact of probiotics-based fermented foods, the beneficial roles of a few frequently consumed fermented foods in the management of various infections have been resolutely discussed in the present study, with a focus on their antagonistic and immune-modulating effects in the context of the current COVID-19 pandemic.


Assuntos
Anti-Infecciosos , COVID-19 , Alimentos Fermentados , Humanos , Idoso , SARS-CoV-2 , Pandemias/prevenção & controle
17.
Appl Microbiol Biotechnol ; 107(16): 5161-5178, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37389589

RESUMO

Kefir is a fermented beverage made of a symbiotic microbial community that stands out for health benefits. Although its microbial profile is still little explored, its effects on modulation of gut microbiota and production of short-chain fatty acids (SCFAs) seems to act by improving brain health. This work aimed to analyze the microbiota profile of milk kefir and its effect on metabolism, oxidative stress, and in the microbiota-gut-brain axis in a murine model. The experimental design was carried out using C57BL-6 mice (n = 20) subdivided into groups that received 0.1 mL water or 0.1 mL (10% w/v) kefir. The kefir proceeded to maturation for 48 h, and then it was orally administered, via gavage, to the animals for 4 weeks. Physicochemical, microbiological, antioxidant analyzes, and microbial profiling of milk kefir beverage were performed as well as growth parameters, food intake, serum markers, oxidative stress, antioxidant enzymes, SCFAs, and metabarcoding were analyzed in the mice. Milk kefir had 76.64 ± 0.42% of free radical scavenging and the microbiota composed primarily by the genus Comamonas. Moreover, kefir increased catalase and superoxide dismutase (colon), and SCFAs in feces (butyrate), and in the brain (butyrate and propionate). Kefir reduced triglycerides, uric acid, and affected the microbiome of animals increasing fecal butyrate-producing bacteria (Lachnospiraceae and Lachnoclostridium). Our results on the brain and fecal SCFAs and the antioxidant effect found were associated with the change in the gut microbiota caused by kefir, which indicates that kefir positively influences the gut-microbiota-brain axis and contributes to the preservation of gut and brain health. KEY POINTS: • Milk kefir modulates fecal microbiota and SCFA production in brain and colon. • Kefir treatment increases the abundance of SCFA-producing bacteria. • Milk kefir increases antioxidant enzymes and influences the metabolism of mice.


Assuntos
Kefir , Microbiota , Camundongos , Animais , Kefir/microbiologia , Leite/metabolismo , Antioxidantes , Camundongos Endogâmicos C57BL , Fezes/microbiologia , Ácidos Graxos Voláteis/metabolismo , Butiratos , Encéfalo/metabolismo
18.
Nutr Res Rev ; : 1-17, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36994828

RESUMO

Increasing research has been conducted on the role of probiotics in disease treatment. Kefir, a safe, low-cost probiotic fermented milk drink, has been investigated in many in vitro and animal studies, although parameters for human therapeutic dose or treatment time have not yet been determined. Here we perform a scoping review of clinical studies that have used kefir as a therapeutic agent, compiling the results for perspectives to support and direct further research. This review was based on Joanna Briggs Institute guidelines, including studies on the effects of kefir-fermented milk in humans. Using the term KEFIR, the main international databases were searched for studies published in English, Spanish or Portuguese until 9 March 2022. A total of 5835 articles were identified in the four databases, with forty-four eligible for analysis. The research areas were classified as metabolic syndrome and type 2 diabetes, gastrointestinal health/disorders, maternal/child health and paediatrics, dentistry, oncology, women's and geriatric health, and dermatology. The many study limitations hampered generalisation of the results. The small sample sizes, methodological variation and differences in kefir types, dosage and treatment duration prevented clear conclusions about its benefits for specific diseases. We suggest using a standard therapeutic dose of traditionally prepared kefir in millilitres according to body weight, making routine consumption more feasible. The studies showed that kefir is safe for people without serious illnesses.

19.
Int J Vitam Nutr Res ; 93(3): 200-209, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34162225

RESUMO

Nutritional interventions can be valuable for the prevention of postmenopausal osteoporosis. This study aimed to investigate the effects of kefir fortified with omega-3 and vitamin C on the bone and uterus parameters of ovariectomized rats. Seventy-seven female Sprague-Dawley rats were ovariectomized or sham-operated. The ovariectomized rats were assigned to six groups and received 1 ml/day of distilled water (OVX group), milk, kefir, kefir fortified with omega-3 fatty acids (kefir+ω3), kefir fortified with vitamin C (kefir+vit-C) or kefir fortified with omega-3 and vitamin C (kefir+ω3+vit-C) for 12 weeks. The sham group also received 1ml/day of distilled water. Subsequently, bone mineral content (BMC) and bone mineral density (BMD) of various bones were assessed. Femurs and uteri were harvested for bone ash analysis and histopathological examinations, respectively. Sera were analyzed for carboxy-terminal cross-linked telopeptide of type 1 collagen, procollagen type 1 amino-terminal propeptide, calcium, phosphorous, tumor necrosis factor-α (TNF-α) and total antioxidant capacity levels. Ovariectomy resulted in significant reduction in bone density (P<0.05). Kefir+ω3+vit-C significantly improved BMC of lumbar spine (0.699±0.027 g compared with 0.580±0.018 in the OVX group), and kefir, kefir+vit-C and kefir+ω3+vit-C significantly increased BMD of tibia (0.118±0.003 g/cm2, 0.119±0.001 and 0.120±0.004 compared with 0.102±0.005 in the OVX group). Moreover, ovariectomy markedly elevated TNF-α level, which was significantly reversed by kefir+ω3+vit-C. Significant atrophy of the uterus was observed following ovariectomy, although the uterus parameters did not change by any of the interventions. In conclusion, kefir fortified with omega-3 fatty acids and vitamin C may have protective effects against bone loss through suppressing inflammation.


Assuntos
Kefir , Osteoporose , Ratos , Feminino , Animais , Humanos , Osteoporose/prevenção & controle , Ratos Sprague-Dawley , Ácido Ascórbico/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Densidade Óssea , Vitaminas/farmacologia , Água/farmacologia , Ovariectomia
20.
J Insect Sci ; 23(6)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38055943

RESUMO

Managed populations of honey bees (Apis mellifera Linnaeus; Hymenoptera: Apidae) are regularly exposed to infectious diseases. Good hive management including the occasional application of antibiotics can help mitigate infectious outbreaks, but new beekeeping tools and techniques that bolster immunity and help control disease transmission are welcome. In this review, we focus on the applications of beneficial microbes for disease management as well as to support hive health and sustainability within the apicultural industry. We draw attention to the latest advances in probiotic approaches as well as the integration of fermented foods (such as water kefir) with disease-fighting properties that might ultimately be delivered to hives as an alternative or partial antidote to antibiotics. There is substantial evidence from in vitro laboratory studies that suggest beneficial microbes could be an effective method for improving disease resistance in honey bees. However, colony level evidence is lacking and there is urgent need for further validation via controlled field trials experimentally designed to test defined microbial compositions against specific diseases of interest.


Assuntos
Criação de Abelhas , Abelhas , Fermentação , Microbioma Gastrointestinal , Probióticos , Animais , Antibacterianos/imunologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Criação de Abelhas/métodos , Abelhas/efeitos dos fármacos , Abelhas/imunologia , Abelhas/microbiologia , Fermentação/imunologia , Microbioma Gastrointestinal/imunologia , Probióticos/farmacologia , Probióticos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA