RESUMO
Kisspeptins are the family of neuropeptide products of the KISS-1 gene that exert the biological action by binding with the G-protein coupled receptor 54 (GPR54), also known as the KISS-1 receptor. The kisspeptin level dramatically increases during pregnancy, and the placenta is supposed to be its primary source. The role of kisspeptin has already been widely studied in hypogonadotropic hypogonadism, fertility, puberty disorders, and insulin resistance-related conditions, including type 2 diabetes mellitus, polycystic ovary syndrome, and obesity. Gestational diabetes mellitus (GDM), preeclampsia (PE), preterm birth, fetal growth restriction (FGR), or spontaneous abortion affected 2 to 20% of pregnancies worldwide. Their occurrence is associated with numerous short and long-term consequences for mothers and newborns; hence, novel, non-invasive predictors of their development are intensively investigated. The study aims to present a comprehensive review emphasizing the role of kisspeptin in the most common pregnancy-related disorders and neonatal outcomes. The decreased level of kisspeptin is observed in women with GDM, FGR, and a high risk of spontaneous abortion. Nevertheless, there are still many inconsistencies in kisspeptin concentration in pregnancies with preterm birth or PE. Further research is needed to determine the usefulness of kisspeptin as an early marker of gestational and neonatal complications.
Assuntos
Aborto Espontâneo , Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Pré-Eclâmpsia , Complicações na Gravidez , Nascimento Prematuro , Aborto Espontâneo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Gestacional/metabolismo , Feminino , Humanos , Recém-Nascido , Kisspeptinas/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Gravidez , Complicações na Gravidez/metabolismo , Nascimento Prematuro/metabolismoRESUMO
Kisspeptin1 (KISS1) is a tumor metastatic suppressor, and its increased expression is validated in human placenta trophoblast cells. Nonetheless, the actions of KISS1 in hydrogen peroxide (H2 O2 )-impaired human trophoblast HTR8 cells still remain imprecise. This research aims to uncover whether KISS1 can mitigate H2 O2 -triggered cell injury. HTR8 cells were pretreated with 250 µM H2 O2 for 4 hours; the autophagic markers (Beclin-1 and LC3B), cell viability, invasion and apoptosis were appraised. Real-time quantitative polymerase chain reaction and Western blot trials were enforced for the valuation of KISS1 mRNA and protein levels. After si-KISS1 transfection and 3-MA manipulation, the aforesaid biological processes were reassessed for ascertaining the influences of repressed KISS1 in H2 O2 -impaired HTR8 cells. Phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway was eventually estimated. H2 O2 enhanced Beclin-1 and LC3B expression, restricted cell viability, and invasion, and meanwhile caused apoptosis. The elevation of KISS1 evoked by H2 O2 was observed in HTR8 cells. In addition, silencing KISS1 was distinctly annulled the function of H2 O2 in HTR8 cells. Eventually, we observed that the repression of KISS1 triggered the activation of PI3K/AKT/mTOR in HTR8 cells under H2 O2 management. The diverting research unveiled that KISS1 repression eased H2 O2 -caused HTR8 cells injury via mediating PI3K/AKT/mTOR pathway.
Assuntos
Autofagia/efeitos dos fármacos , Autofagia/genética , Peróxido de Hidrogênio/farmacologia , Kisspeptinas/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo , Trofoblastos/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Feminino , Humanos , Kisspeptinas/metabolismo , Gravidez , Transfecção , Trofoblastos/metabolismoRESUMO
RESEARCH QUESTION: A close association between Kisspeptin-1 (KISS-1) and reproductive physiology has been reported, but the results on circulatory KISS-1 are ambiguous in patients with polycystic ovary syndrome (PCOS). A systematic review and meta-analysis were conducted to evaluate the association between KISS-1 and PCOS, and to test its diagnostic test accuracy (DTA) through DTA meta-analysis. DESIGN: Relevant studies were identified by searching PubMed and other databases in addition to manual searching of cross-references. Random-effects model was used to obtain standardized mean differences (SMD), pooled correlation coefficients and summary of DTA. Meta-regression and sub-group analyses were conducted to explore heterogeneity. The presence of publication bias was tested using funnel plot analysis. RESULTS: This meta-analysis finally included 12 studies. Compared with controls, women with PCOS showed significantly increased circulatory KISS-1 levels (SMDâ¯=â¯0.47; Pâ¯=â¯0.002). Meta-analysis of correlations showed positive associations between KISS-1 and anti-Müllerian hormone (AMH) (Pâ¯=â¯0.03), testosterone (P < 0.001) and dehydroepiandrosterone (Pâ¯=â¯0.004). The pooled diagnostic odds ratio and area under curve were 13.71 and 0.835, respectively. A one-study leave-out sensitivity analysis indicated that no single study had a significant influence on the overall outcome, suggesting the robustness of this meta-analysis. CONCLUSIONS: This meta-analysis showed significantly increased KISS-1 level in PCOS, and its association with AMH reflects its role in reproductive physiology. In our DTA meta-analysis, KISS-1 showed good accuracy for PCOS detection. Further large-scale studies are required to establish its validity.
Assuntos
Técnicas de Diagnóstico Endócrino/normas , Testes Diagnósticos de Rotina/normas , Kisspeptinas/sangue , Síndrome do Ovário Policístico/sangue , Hormônio Antimülleriano/sangue , Estudos de Casos e Controles , Testes Diagnósticos de Rotina/métodos , Feminino , Humanos , Síndrome do Ovário Policístico/diagnóstico , Síndrome do Ovário Policístico/epidemiologia , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Testosterona/sangueRESUMO
BACKGROUND/AIMS: Thyroid cancer is the most common malignancy in human endocrine system. Smad ubiquitination regulatory factor 1 (Smurf1) is an E3 ubiquitin-protein ligase in ubiquitin-proteasome pathway (UPP) system. This study aimed to investigate the effects of Smurf1 on thyroid cancer proliferation and metastasis, as well as underlying potential mechanism. METHODS: The expression levels of Smurf1 in thyroid tumor tissues and thyroid cancer cells were detected by western blotting and qRT-PCR. Then, the effects of up-regulation or down-regulation of Smurf1 on thyroid cancer cell viability, migration, invasion, proliferation and apoptosis were measured using trypan blue exclusion assay, two-chamber migration (invasion) assay, cell colony formation assay and Guava Nexin assay, respectively. The ubiquitination of kisspeptin-1 (KISS-1) was assessed by protein ubiquitination assay. Finally, the effects of KISS-1 overexpression on activity of nuclear factor-kappa B (NF-κB) signaling pathway, as well as thyroid cancer cell viability, migration, invasion, proliferation and apoptosis were also detected, respectively. RESULTS: Smurf1 was highly expressed in thyroid tumor tissues and thyroid cancer cells. Up-regulation of Smurf1 promoted the viability, migration, invasion and proliferation of thyroid cancer cells. Knockdown of Smurf1 had opposite effects. Moreover, smurf1 promoted the ubiquitination of KISS-1. Overexpression of KISS-1 inactivated NF-κB pathway, suppressed thyroid cancer cell viability, migration, invasion and proliferation, and induced cell apoptosis. CONCLUSION: Up-regulation of Smurf1 exerted important roles in thyroid cancer formation and development by promoting thyroid cancer proliferation and metastasis. The ubiquitin-dependent degradation of KISS-1 induced by Smurf1 and the activation of NF-κB signaling pathway might be involved in this process. Smurf1 could be an effective therapy target and biomarker for thyroid cancer treatment.
Assuntos
Kisspeptinas/metabolismo , Neoplasias da Glândula Tireoide/patologia , Ubiquitina-Proteína Ligases/metabolismo , Adulto , Apoptose , Caspase 3/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , Kisspeptinas/genética , Masculino , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Neoplasias da Glândula Tireoide/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Proteína X Associada a bcl-2/metabolismoRESUMO
PURPOSE: Hypothalamic kisspeptin neurons are considered to play a critical role in regulating mammalian reproduction and integrating humoral and neuronal inputs that control gonadotropin-releasing hormone (GnRH)/gonadotropin release. The present study aimed to investigate the upstream regulator candidates for kisspeptin neurons. METHODS: Visualized kisspeptin neurons that were taken from the arcuate nucleus (ARC) of Kiss1-tdTomato rats were subjected to next-generation sequencing (NGS) analysis. In situ hybridization (ISH) for the calcitonin receptor gene (Calcr) was performed throughout the whole forebrain of ovariectomized wild-type female rats that had been implanted with a negative feedback level of estrogen, because the Calcr expression was evident in the ARC kisspeptin neurons from the NGS analysis. Then, a double ISH was performed for the Calcr and kisspeptin gene (Kiss1) in the brain regions, containing either the anteroventral periventricular nucleus (AVPV) or ARC of the female rats. RESULTS: The NGS analysis revealed that the Calcr was highly expressed in the ARC kisspeptin neurons. It was found that the Calcr was co-expressed in 12% and 22% of the Kiss1-expressing cells in the ARC and AVPV, respectively. CONCLUSION: The present study suggests that calcitonin receptor signaling could be involved in the regulation of reproductive function through the direct control of the ARC and/or AVPV kisspeptin neurons, and then GnRH/gonadotropin release.
RESUMO
The habenula, located on the dorsal thalamic surface, is an emotional and reward processing center. As in the mammalian brain, the zebrafish habenula is divided into dorsal (dHb) and ventral (vHb) subdivisions that project to the interpeduncular nucleus and median raphe (MR) respectively. Previously, we have shown that kisspeptin 1 (Kiss1) expressing in the vHb, regulates the serotonin (5-HT) system in the MR. However, the connectivity between the Kiss1 neurons and the 5-HT system remains unknown. To resolve this issue, we generated a specific antibody against zebrafish Kiss1 receptor (Kiss-R1); using this primary antibody we found intense immunohistochemical labeling in the ventro-anterior corner of the MR (vaMR) but not in 5-HT neurons, suggesting the potential involvement of interneurons in 5-HT modulation by Kiss1. Double-fluorescence labeling showed that the majority of habenular Kiss1 neurons are glutamatergic. In the MR region, Kiss1 fibers were mainly seen in close association with glutamatergic neurons and only scarcely within GABAergic and 5-HT neurons. Our findings indicate that the habenular Kiss1 neurons potentially modulate the 5-HT system primarily through glutamatergic neurotransmission via as yet uncharacterized interneurons. The neuropeptide kisspeptin (Kiss1) play a key role in vertebrate reproduction. We have previously shown modulatory role of habenular Kiss1 in the raphe serotonin (5-HT) systems. This study proposed that the habenular Kiss1 neurons modulate the 5-HT system primarily through glutamatergic neurotransmission, which provides an important insight for understanding of the modulation of 5-HT system by the habenula-raphe pathway.
Assuntos
Ácido Glutâmico/metabolismo , Habenula/citologia , Kisspeptinas/metabolismo , Neurônios/metabolismo , Núcleos da Rafe/citologia , Serotonina/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Glutamato Descarboxilase/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Habenula/metabolismo , Masculino , Dados de Sequência Molecular , Rede Nervosa/metabolismo , RNA Mensageiro/metabolismo , Núcleos da Rafe/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1 , Fator de Transcrição Brn-3A/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genéticaRESUMO
Breast cancer is a global health issue, and as the tumor burden increases, we need to come up with newer, better technologies which are convenient, cheap, rapid, sensitive with a high specificity. Technological advancements in the field of cancer biomarker has led to the development of techniques such as mass spectrometric analysis and microarray analysis in which genes, proteins and hundreds and thousands of metabolites can be identified with the emergence of genomics, proteomics and metabolomics. This research is focused on finding biomarkers for diagnosis, prognosis, staging, treatment response and targets for chemotherapy, generating a panel of markers which provide better clinical information compared to a single marker in the panel. This review briefly summarizes application of genomics and proteomics followed by key concepts and applications of metabolomics in breast cancer, with the conclusion that an integration of the three "OMIC" technologies may hold the key to future biomarker discovery. SOURCES OF DATA STUDY SELECTION: The information for this review was collected by searching the Google Scholar and PubMed database for English articles published in the period from 2002 to 2015. The search terms included "biomarkers in breast cancer" along with the following search terms: "genomics", "proteomics", "metabolomics", "breast cancer", "mass spectrometry", "molecular markers" and "cancer biomarker". We have endeavored to quote only the primary sources. Titles and abstracts of retrieved studies were assessed first followed by selection and retrieval of selected full text articles.
RESUMO
The effect of a synthetic analog of kisspeptin 1, a peptide involved in the regulation of the hypothalamicpituitary- gonadal (HPG) stress axis, on the cortisol level of Danio rerio fish was investigated. Kisspeptin 1 was administered at doses of 2 µg/kg and 8 µg/kg followed by resting for 1 h and 4 h. We found that kisspeptin at doses of 2 µg/kg and 8 µg/kg increased cortisol levels, with a significant spike in cortisol levels at 1 h post-injection.
Assuntos
Hidrocortisona , Kisspeptinas , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Kisspeptinas/farmacologia , Kisspeptinas/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Masculino , FemininoRESUMO
The neuroendocrine control of reproduction is strictly coordinated at the central level by the pulsatile release of gonadotropin-releasing hormone (GnRH) by the hypothalamic GnRH neurons. Alterations of the GnRH-network, especially during development, lead to long-term reproductive and systemic consequences, also causing infertility. Recent evidence shows that benzo[a]pyrene (BaP), a diffuse pollutant that can play a role as an endocrine disruptor, affects gonadal function and gamete maturation, whereas data demonstrating its impact at hypothalamic level are very scarce. This study investigated the effects of BaP (10 µM) in a primary cell culture isolated from the human fetal hypothalamus (hfHypo) and exhibiting a clear GnRH neuron phenotype. BaP significantly decreased gene and protein expression of both GnRH and kisspeptin receptor (KISS1R), the master regulator of GnRH neuron function. Moreover, BaP exposure increased phospho-ERK1/2 signaling, a well-known mechanism associated with KISS1R activation. Interestingly, BaP altered the electrophysiological membrane properties leading to a significant depolarizing effect and it also significantly increased GnRH release, with both effects being not affected by kisspeptin addition. In conclusion, our findings demonstrate that BaP may alter GnRH neuron phenotype and function, mainly interfering with KISS1R signaling and GnRH secretion and therefore with crucial mechanisms implicated in the central neuroendocrine control of reproduction.
Assuntos
Hormônio Liberador de Gonadotropina , Kisspeptinas , Humanos , Receptores de Kisspeptina-1/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Benzo(a)pireno/toxicidade , Benzo(a)pireno/metabolismo , Reprodução/fisiologia , NeurôniosRESUMO
Cancer is one of the world's major causes of death. The aim of this study is to examine the acute effects of resveratrol on testicular toxicity, oxidative stress, and apoptosis caused by MTX, which is widely used in the treatment of many diseases, especially cancer, histochemically, immunohistochemically, and biochemical methods using different parameters. A total of 32 Wistar albino male rats were randomly divided into 4 groups: control, resveratrol (RES), MTX, and MTX + RES, with 8 animals in each group. At the end of the experiment, tissue and blood samples were taken, and histochemical, immunohistochemical, and biochemical parameters were examined. In this study, where parameters were compared for the first time, total thiol (TT) and native thiol (NT) are the highest in the RES group, disulfide (DS), and ischemia-modified albumin (IMA) are the highest in the MTX group. Total oxidant status (TOS) and oxidative stress index (OSI) are the highest in the MTX group, and total antioxidant status (TAS) is the highest in the RES group. Separation and deterioration in the tunica albuginea, congestion and edema in the interstitial region, vacuolization in the seminiferous epithelium, and spermatogenic serial cells spilling into the lumen without completing their maturation were observed. When examined in terms of histochemical, immunohistochemical, and biochemical examinations, our study revealed that resveratrol has positive effects on methotrexate-induced acute testicular damage, oxidative stress, and apoptosis.
Assuntos
Metotrexato , Neoplasias , Ratos , Masculino , Animais , Resveratrol/farmacologia , Metotrexato/toxicidade , Biomarcadores , Ratos Wistar , Albumina Sérica/farmacologia , Antioxidantes/farmacologia , Estresse Oxidativo , Compostos de Sulfidrila/farmacologiaRESUMO
PURPOSE: Recombinant human growth hormone (rhGH) has been used to treat short stature and rhGH-related syndromes. However, there are concerns that rhGH-treatment may cause precocious puberty. We investigated the effects of rhGH-treatment on the puberty onset, sexual maturation, androgen production, and hypothalamic gene expression in prepubertal male rats. MATERIALS AND METHODS: Sprague-Dawley male rats were injected subcutaneously daily with 1 or 2 IU/kg/d rhGH or 0.1 mL saline from postnatal day (PND) 21 to 30. At PND 31 bodyweight, reproductive organs weight, preputial separation, testis histology, circulating testosterone, and expression of testicular steroidogenic pathway genes and hypothalamic Kiss1 were examined. RESULTS: By day 4 of injection bodyweights of rhGH groups were significantly higher than those of controls. rhGH 2 IU group showed earlier preputial separation compared to the control group. At PND 31, the weights of testes, epididymides, seminal vesicles, prostates, and preputial glands of the 2 IU-rhGH group were significantly higher than control group. Serum testosterone levels of the 2 IU-rhGH group were significantly higher than control group. Testicular steroidogenic pathway gene Hsd17b3 and Nr5a1 mRNA and cell counts and areas of Leydig cells in rhGH groups were significantly higher than control group, suggesting functional differentiation of Leydig cells. Hypothalamic Kiss1 mRNA levels of the 1 IU-rhGH group were significantly lower than control group, suggesting negative feedback of Kiss1 by elevated testosterone. CONCLUSIONS: Prepubertal rhGH-treatment in male rats may induce early onset of puberty, sexual maturation, elevation of testosterone, and spermatogenesis, and accompanies downregulation of hypothalamic KISS1.
RESUMO
Orofacial pain and headache disorders are among the most debilitating pain conditions. While the pathophysiological basis of these disorders may be diverse, it is generally accepted that a common mechanism behind the arising pain is the sensitization of extra- and intracranial trigeminal primary afferents. In the present study we investigated gene expression changes in the trigeminal ganglia (TRG), trigeminal nucleus caudalis (TNC) and peripheral blood mononuclear cells (PBMC) evoked by Complete Freund's Adjuvant (CFA)-induced orofacial inflammation in rats, as a model of trigeminal sensitization. Microarray analysis revealed 512 differentially expressed genes between the ipsi- and contralateral TRG samples 7 days after CFA injection. Time-dependent expression changes of G-protein coupled receptor 39 (Gpr39), kisspeptin-1 receptor (Kiss1r), kisspeptin (Kiss1), as well as synaptic plasticity-associated Lkaaear1 (Lkr) and Neurod2 mRNA were described on the basis of qPCR results. The greatest alterations were observed on day 3 ipsilaterally, when orofacial mechanical allodynia reached its maximum. This corresponded well with patterns of neuronal (Fosb), microglia (Iba1), and astrocyte (Gfap) activation markers in both TRG and TNC, and interestingly also in PBMCs. This is the first description of up- and downregulated genes both in primary and secondary sensory neurones of the trigeminovascular system that might play important roles in neuroinflammatory activation mechanisms. We are the first to show transcriptomic alterations in the PBMCs that are similar to the neuronal changes. These results open new perspectives and initiate further investigations in the research of trigeminal pain disorders.
RESUMO
Kisspeptin is a neuropeptide, encoded by kisspeptin 1 (KISS1)/Kiss1 gene, which primarily acts as the regulator of reproductive functions via its receptor, kisspeptin receptor (KissR) in vertebrates. In the brain, Kiss1 gene is mainly expressed in the hypothalamic region, but KissR gene is widely distributed throughout the brain, suggesting that kisspeptin-KissR system may be involved in not only reproductive, but also non-reproductive functions. In non-mammalian vertebrates, there are two or more kisspeptin and KissR types. The zebrafish (Danio rerio) possess two kisspeptin (Kiss1 and Kiss2) and their respective receptors [Kiss1 receptor (KissR1) and KissR2]. In the brain of zebrafish, while Kiss2 is expressed in the preoptic-hypothalamic area, Kiss1 is predominantly expressed in the habenula, an evolutionarily conserved epithalamic structure. Similarly, KissR1 is expressed only in the habenula, while KissR2 is widely distributed in the brain, suggesting that the two kisspeptin systems play specific roles in the brain. The habenular Kiss1 is involved in the modulation of the raphe nuclei and serotonin-related behaviors such as fear response in the zebrafish. This review summarizes the roles of multiple kisspeptin-KissR systems in reproductive and non-reproductive functions and neuronal mechanism, and debates the biological and evolutional significance of habenular kisspeptin-KissR systems in teleost species.