Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 485
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Cell ; 182(5): 1252-1270.e34, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32818467

RESUMO

Aryl hydrocarbon receptor (AHR) activation by tryptophan (Trp) catabolites enhances tumor malignancy and suppresses anti-tumor immunity. The context specificity of AHR target genes has so far impeded systematic investigation of AHR activity and its upstream enzymes across human cancers. A pan-tissue AHR signature, derived by natural language processing, revealed that across 32 tumor entities, interleukin-4-induced-1 (IL4I1) associates more frequently with AHR activity than IDO1 or TDO2, hitherto recognized as the main Trp-catabolic enzymes. IL4I1 activates the AHR through the generation of indole metabolites and kynurenic acid. It associates with reduced survival in glioma patients, promotes cancer cell motility, and suppresses adaptive immunity, thereby enhancing the progression of chronic lymphocytic leukemia (CLL) in mice. Immune checkpoint blockade (ICB) induces IDO1 and IL4I1. As IDO1 inhibitors do not block IL4I1, IL4I1 may explain the failure of clinical studies combining ICB with IDO1 inhibition. Taken together, IL4I1 blockade opens new avenues for cancer therapy.


Assuntos
L-Aminoácido Oxidase/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Adulto , Idoso , Animais , Linhagem Celular , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Glioma/imunologia , Glioma/metabolismo , Glioma/terapia , Células HEK293 , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/terapia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Ratos
2.
Genes Dev ; 37(21-24): 998-1016, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38092521

RESUMO

Reductions in brain kynurenic acid levels, a neuroinhibitory metabolite, improve cognitive function in diverse organisms. Thus, modulation of kynurenic acid levels is thought to have therapeutic potential in a range of brain disorders. Here we report that the steroid 5-androstene 3ß, 17ß-diol (ADIOL) reduces kynurenic acid levels and promotes associative learning in Caenorhabditis elegans We identify the molecular mechanisms through which ADIOL links peripheral metabolic pathways to neural mechanisms of learning capacity. Moreover, we show that in aged animals, which normally experience rapid cognitive decline, ADIOL improves learning capacity. The molecular mechanisms that underlie the biosynthesis of ADIOL as well as those through which it promotes kynurenic acid reduction are conserved in mammals. Thus, rather than a minor intermediate in the production of sex steroids, ADIOL is an endogenous hormone that potently regulates learning capacity by causing reductions in neural kynurenic acid levels.


Assuntos
Ácido Cinurênico , Esteroides , Animais , Ácido Cinurênico/farmacologia , Hormônios , Mamíferos
3.
Genes Dev ; 34(15-16): 1033-1038, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32675325

RESUMO

Kynurenic acid (KynA) levels link peripheral metabolic status to neural functions including learning and memory. Since neural KynA levels dampen learning capacity, KynA reduction has been proposed as a therapeutic strategy for conditions of cognitive deficit such as neurodegeneration. While KynA is generated locally within the nervous system, its precursor, kynurenine (Kyn), is largely derived from peripheral resources. The mechanisms that import Kyn into the nervous system are poorly understood. Here, we provide genetic, anatomical, biochemical, and behavioral evidence showing that in C. elegans an ortholog of the human LAT1 transporter, AAT-1, imports Kyn into sites of KynA production.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/metabolismo , Ácido Cinurênico/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/fisiologia , Neurônios/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ingestão de Alimentos , Cinurenina/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Aprendizagem/fisiologia , Mutação
4.
Genes Dev ; 32(1): 14-19, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29386332

RESUMO

A general feature of animal aging is decline in learning and memory. Here we show that in Caenorhabditis elegans, a significant portion of this decline is due to accumulation of kynurenic acid (KYNA), an endogenous antagonist of neural N-methyl-D-aspartate receptors (NMDARs). We show that activation of a specific pair of interneurons either through genetic means or by depletion of KYNA significantly improves learning capacity in aged animals even when the intervention is applied in aging animals. KYNA depletion also improves memory. We show that insulin signaling is one factor in KYNA accumulation.


Assuntos
Envelhecimento/metabolismo , Ácido Cinurênico/metabolismo , Aprendizagem , Memória , Envelhecimento/psicologia , Animais , Caenorhabditis elegans/metabolismo , Insulina/metabolismo , Transdução de Sinais
5.
Int Immunol ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38869080

RESUMO

The intricate and dynamic tryptophan (Trp) metabolic pathway in both the microbiome and host cells highlights its profound implications for health and disease. This pathway involves complex interactions between host cellular and bacteria processes, producing bioactive compounds such as 5-Hydroxytryptamine (5-HT) and kynurenine (Kyn) derivatives. Immune responses to Trp metabolites through specific receptors have been explored, highlighting the role of the aryl hydrocarbon receptor (AHR) in inflammation modulation. Dysregulation of this pathway is implicated in various diseases, such as Alzheimer's and Parkinson's diseases, mood disorders, neuronal diseases, autoimmune diseases such as multiple sclerosis (MS), and cancer. In this article, we describe the impact of the 5-HT, Trp, indole, and Trp metabolites on health and disease. Further, we review the impact of microbiome-derived Trp metabolites that affect immune responses and contribute to maintaining homeostasis, especially in an experimental autoimmune encephalitis (EAE) model of MS.

6.
Am J Physiol Cell Physiol ; 327(2): C438-C445, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38912735

RESUMO

The kynurenine pathway (KP) of tryptophan degradation generates several metabolites such as kynurenine (KYN) or kynurenic acid (KA) that serve as endogenous ligands of the aryl hydrocarbon receptor (AHR). Due to its distinct biological roles particularly modulating the immune system, the AHR is a current therapeutic target across different inflammation-related diseases. Here, we show an acute exercise-induced increase in AHR ligand availability on a systemic level and a kynurenine pathway activation in peripheral blood mononuclear cells (PBMCs). Concurrently, the AHR is activated in PBMCs following acute exercise. Exercise effects on both, kynurenic acid and AHR activation in PBMCs were greater in response to high-intensity interval exercise (HIIE) (50 min, six 3-min intervals at 90% V̇o2peak, and 3-min intervals at 50% V̇o2peak in between) compared with workload-matched moderate-intensity continuous exercise (MICE) (50 min). In conclusion, these data indicate a novel mechanistic link in how exercise modulates the immune system through the kynurenine pathway-AHR axis, potentially underlying exercise-induced benefits in various chronic diseases.NEW & NOTEWORTHY The findings of this study show that acute endurance exercise activates a receptor that has been described to integrate metabolic signals into the immune system. We uncover a potential mechanistic link on how exercise modulates the immune system through the kynurenine pathway-AHR axis, potentially underlying exercise-induced benefits in various chronic diseases and of relevance for other cell types.


Assuntos
Ácido Cinurênico , Cinurenina , Leucócitos Mononucleares , Receptores de Hidrocarboneto Arílico , Receptores de Hidrocarboneto Arílico/metabolismo , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/imunologia , Cinurenina/metabolismo , Masculino , Animais , Ácido Cinurênico/metabolismo , Ácido Cinurênico/sangue , Exercício Físico/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Humanos , Condicionamento Físico Animal/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Transdução de Sinais , Triptofano/metabolismo , Triptofano/sangue
7.
Apoptosis ; 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39153038

RESUMO

Acute myocardial infarction, often associated with ischemia/reperfusion injury (I/R), is a leading cause of death worldwide. Although the endogenous tryptophan metabolite kynurenic acid (KYNA) has been shown to exert protection against I/R injury, its mechanism of action at the cellular and molecular level is not well understood yet. Therefore, we examined the potential involvement of antiapoptotic mechanisms, as well as N-methyl-D-aspartate (NMDA) receptor modulation in the protective effect of KYNA in cardiac cells exposed to simulated I/R (SI/R). KYNA was shown to attenuate cell death induced by SI/R dose-dependently in H9c2 cells or primary rat cardiomyocytes. Analysis of morphological and molecular markers of apoptosis (i.e., membrane blebbing, apoptotic nuclear morphology, DNA double-strand breaks, activation of caspases) revealed considerably increased apoptotic activity in cardiac cells undergoing SI/R. The investigated apoptotic markers were substantially improved by treatment with the cytoprotective dose of KYNA. Although cardiac cells were shown to express NMDA receptors, another NMDA antagonist structurally different from KYNA was unable to protect against SI/R-induced cell death. Our findings provide evidence that the protective effect of KYNA against SI/R-induced cardiac cell injury involves antiapoptotic mechanisms, that seem to evoke independently of NMDA receptor signaling.

8.
Neurochem Res ; 49(5): 1200-1211, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38381245

RESUMO

Cognitive dysfunctions are now recognized as core symptoms of various psychiatric disorders e.g., major depressive disorder. Sustained immune activation may leads to cognitive dysfunctions. Proinflammatory cytokines shunt the metabolism of tryptophan towards kynurenine and quinolinic acid may accumulate at toxic concentrations. This acid triggers an increase in neuronal nitric oxide synthase function and promotes oxidative stress. The searching for small molecules that can regulate tryptophan metabolites produced in the kynurenic pathway has become an important goal in developing treatments for various central nervous system diseases with an inflammatory component. Previously we have identified a small hybrid molecule - MM165 which significantly reduces depressive-like symptoms caused by inflammation induced by lipopolysaccharide administration. In the present study, we investigated whether this compound would mitigate cognitive deficits induced by lipopolysaccharide administration and whether treatment with it would affect the plasma or brain levels of quinolinic acid and kynurenic acid. Neuroinflammation was induced in rats by administering lipopolysaccharide at a dose of 0.5 mg/kg body weight for 10 days. We conducted two tests: novel object recognition and object location, to assess the effect on memory impairment in animals previously treated with lipopolysaccharide. In plasma collected from rats, the concentrations of C-reactive protein and tumor necrosis factor alfa were determined. The concentrations of kynurenic acid and quinolinic acid were determined in plasma and homogenates obtained from the cerebral cortex of rats. Interleukin 6 in the cerebral cortex of rats was determined. Additionally, the body and spleen mass and spontaneous activity were measured in rats. Our study shows that MM165 may mitigate cognitive deficits induced by inflammation after administration of lipopolysaccharide and alter the concentrations of tryptophan metabolites in the brain. Compounds exhibiting a mechanism of action analogous to that of MM165 may serve as foundational structures for the development of a new class of antidepressants.


Assuntos
Transtorno Depressivo Maior , Cinurenina , Humanos , Ratos , Animais , Cinurenina/metabolismo , Triptofano/metabolismo , Lipopolissacarídeos/toxicidade , Ácido Cinurênico/metabolismo , Ácido Quinolínico/toxicidade , Ácido Quinolínico/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico
9.
Environ Sci Technol ; 58(4): 1842-1853, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38228288

RESUMO

Following its introduction as an alternative to perfluorooctanoic acid, hexafluoropropylene oxide dimer acid (HFPO-DA) has been extensively detected in various environmental matrices. Despite this prevalence, limited information is available regarding its hepatotoxicity biomarkers. In this study, toxicokinetic simulations indicated that under repeated treatment, HFPO-DA in mice serum reached a steady state by the 4th day. To assess its subacute hepatic effects and identify potential biomarkers, mice were administered HFPO-DA orally at doses of 0, 0.1, 0.5, 2.5, 12.5, or 62.5 mg/kg/d for 7 d. Results revealed that the lowest observed adverse effect levels were 0.5 mg/kg/d for hepatomegaly and 2.5 mg/kg/d for hepatic injury. Serum metabolomics analysis identified 34, 58, and 118 differential metabolites in the 0.1, 0.5, and 2.5 mg/kg/d groups, respectively, compared to the control group. Based on weighted gene coexpression network analysis, eight potential hepatotoxicity-related metabolites were identified; among them, kynurenic acid (KA) in mouse serum exhibited the highest correlation with liver injury. Furthermore, liver-targeted metabolomics analysis demonstrated that HFPO-DA exposure induced metabolic migration of the kynurenine pathway from KA to nicotinamide adenine dinucleotide, resulting in the activation of endoplasmic reticulum stress and the nuclear factor kappa-B signaling pathway. Notably, pretreatment with KA significantly attenuated liver injury induced by HFPO-DA exposure in mice, highlighting the pivotal roles of KA in the hepatotoxicity of HFPO-DA.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fluorocarbonos , Propionatos , Masculino , Camundongos , Animais , Ácido Cinurênico , Fluorocarbonos/toxicidade , Biomarcadores
10.
Artigo em Inglês | MEDLINE | ID: mdl-38819463

RESUMO

Metabolites disruptions in tryptophan (TRP) and kynurenine pathway (KP) are believed to disturb neurotransmitter homeostasis and contribute to depressive symptoms. This study aims to investigate serum levels of KP metabolites in adolescent major depressive disorder (AMDD), and examine their relationship with depression severities. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to analyze serum levels of TRP, kynurenic acid (KYNA), kynurenine (KYN), and 3-hydroxy-kynurenine (3-HK) in 143 AMDD participants and 98 healthy controls (HC). Clinical data, including Children's Depression Inventory (CDI) scores, were collected and analyzed using statistical methods, such as ANOVA, logistic regression, Receiver operating characteristic curve analysis and a significance level of p < 0.05 was used for all analyses. AMDD showed significantly decreased serum levels of KYNA (-25.5%), KYN (-14.2%), TRP (-11.0%) and the KYNA/KYN ratio (-11.9%) compared to HC (p < 0.01). Conversely, significant increases were observed in 3-HK levels (+50.4%), the 3-HK/KYNA ratio (+104.3%) and the 3-HK/KYN ratio (+93.0%) (p < 0.01). Logistic regression analysis identified increased level of 3-HK as a contributing factor to AMDD, while increased level of KYNA acted as a protective factor against AMDD. The 3-HK/KYNA ratio demonstrated an area under the curve (AUC) of 0.952. This study didn't explore AMDD's inflammatory status and its metabolites relationship explicitly. These findings indicate that metabolites of TRP and KP may play a crucial role in the pathogenesis of AMDD, emphasizing the potential of the 3-HK/KYNA ratio as a laboratory biomarker for early detection and diagnosis of AMDD.

11.
Acta Pharmacol Sin ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811774

RESUMO

Exercise training effectively relieves anxiety disorders via modulating specific brain networks. The role of post-translational modification of proteins in this process, however, has been underappreciated. Here we performed a mouse study in which chronic restraint stress-induced anxiety-like behaviors can be attenuated by 14-day persistent treadmill exercise, in association with dramatic changes of protein phosphorylation patterns in the medial prefrontal cortex (mPFC). In particular, exercise was proposed to modulate the phosphorylation of Nogo-A protein, which drives the ras homolog family member A (RhoA)/ Rho-associated coiled-coil-containing protein kinases 1(ROCK1) signaling cascade. Further mechanistic studies found that liver-derived kynurenic acid (KYNA) can affect the kynurenine metabolism within the mPFC, to modulate this RhoA/ROCK1 pathway for conferring stress resilience. In sum, we proposed that circulating KYNA might mediate stress-induced anxiety-like behaviors via protein phosphorylation modification within the mPFC, and these findings shed more insights for the liver-brain communications in responding to both stress and physical exercise.

12.
Cell Biochem Funct ; 42(4): e4065, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38807444

RESUMO

Cancer is the second leading cause of mortality worldwide. The development of anticancer therapy plays a crucial role in mitigating tumour progression and metastasis. Epithelioid hemangioendothelioma is a very rare cancer, however, with a high systemic involvement. Kynurenine metabolites which include l-kynurenine, 3-hydroxykynurenine, 3-hydroxyanthranilic acid and quinolinic acid have been shown to inhibit T-cell proliferation resulting in a decrease in cell growth of natural killer cells and T cells. Furthermore, metabolites such as  l-kynurenine have been shown to inhibit proliferation of melanoma cells in vitro. Considering these metabolite properties, the present study aimed to explore the in vitro effects of  l-kynurenine, quinolinic acid and kynurenic acid on endothelioma sEnd-2 cells and on endothelial (EA. hy926 cells) (control cell line). The in vitro effect at 24, 48, and 72 h exposure to a range of 1-4 mM of the respective kynurenine metabolites on the two cell lines in terms of cell morphology, cell cycle progression and induction of apoptosis was assessed. The half inhibitory concentration (IC50), as determined using nonlinear regression, for  l-kynurenine, quinolinic acid and kynurenic acid was 9.17, 15.56, and 535.40 mM, respectively. Optical transmitted light differential interference contrast and hematoxylin and eosin staining revealed cells blocked in metaphase, formation of apoptotic bodies and compromised cell density in  l-kynurenine-treated cells. A statistically significant increase in the number of cells present in the sub-G1 phase was observed in  l-kynurenine-treated sample. To our knowledge, this was the first in vitro study conducted to investigate the mechanism of action of kynurenine metabolites on endothelioma sEnd-2 cells. It can be concluded that  l-kynurenine exerts an antiproliferative effect on the endothelioma sEnd-2 cell line by decreasing cell growth and proliferation as well as a metaphase block. These hallmarks suggest cell death via apoptosis. Further research will be conducted on  l-kynurenine to assess the effect on cell adhesion in vitro and in vivo as cell-cell adhesion has been shown to increase metastasis to distant organs therefore, the inhibition of adhesion may lead to a decrease in metastasis.


Assuntos
Apoptose , Proliferação de Células , Cinurenina , Ácido Quinolínico , Cinurenina/metabolismo , Cinurenina/farmacologia , Cinurenina/análogos & derivados , Humanos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ácido Quinolínico/farmacologia , Ácido Quinolínico/metabolismo , Ácido Cinurênico/farmacologia , Ácido Cinurênico/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Relação Dose-Resposta a Droga
13.
Chem Pharm Bull (Tokyo) ; 72(4): 385-388, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38631893

RESUMO

Ephedra plants, the main components of which are ephedrine alkaloids, are used as traditional medicines in Eastern Asian countries. In this study, we isolated non-ephedrine constituents from various Ephedra plant species cultivated in Japan. HPLC analysis suggested that kynurenic acid and its derivatives accumulated in a wide range of Ephedra plant species. Furthermore, a large amount of (2R,3S)-O-benzoyl isocitrate has been isolated from E. intermedia. This study suggests that Ephedra plants have diverse non-ephedrine constituents.


Assuntos
Alcaloides , Ephedra , Efedrina , Japão , Cromatografia Líquida de Alta Pressão
14.
J Liposome Res ; : 1-12, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38779944

RESUMO

Anti-glutamatergic agents may have neuroprotective effects against excitotoxicity that is known to be involved in the pathogenesis of Parkinson's disease (PD). One of these agents is kynurenic acid (KYNA), a tryptophan metabolite, which is an endogenous N-methyl-D-aspartic acid (NMDA) receptor antagonist. However, its pharmacological properties of poor water solubility and limited blood-brain barrier (BBB) permeability rules out its systemic administration in disorders affecting the central nervous system. Our aim in the present study was to investigate the neuroprotective effects of KYNA-loaded micelles (KYNA-MICs) against PD in vitro and in vivo. Lipid-based micelles (MICs) in conjunction with KYNA drug delivery have the potential to enhance the penetration of therapeutic drugs into a diseased brain without BBB obstacles. KYNA-MICs were characterized by particle size (105.8 ± 12.1 nm), loading efficiency (78.3 ± 4.23%), and in vitro drug release (approximately 30% at 24 h). The in vitro experiments showed that KYNA-MICs effectively reduced 2-fold protein aggregation. The in vivo studies revealed that KYNA was successfully delivered by 5-fold increase in neurotoxin-induced PD brains. The results showed significant enhancement of KYNA delivery into brain. We also found that the KYNA-MICs exhibited several therapeutic effects. The KYNA-MICs reduced protein aggregation of an in vitro PD model, ameliorated motor functions, and prevented loss of the striatal neurons in a PD animal model. The beneficial effects of KYNA-MICs are probably explained by the anti-excitotoxic activity of the treatment's complex. As the KYNA-MICs did not induce any appreciable side-effects at the protective dose applied to a chronic PD mouse model, our results demonstrate that KYNA provides neuroprotection and attenuates PD pathology.

15.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612652

RESUMO

Systemic sclerosis (SSc), a predominantly female-affected systemic autoimmune disease, requires tailored treatment strategies contingent on organ involvement and symptom severity. Given SSc's inflammatory nature, the involvement of the kynurenine pathway (KP) in its pathophysiology is underexplored. Our study aimed to investigate sex-related differences in KP activation among SSc patients and assess the impact of angiotensin-converting enzyme (ACE) inhibitors and estimated glomerular filtration rate (eGFR) on KP metabolite concentrations. We enrolled 48 SSc patients and 53 healthy controls, quantifying KP metabolites (tryptophan (TRP), kynurenine (KYN), and kynurenic acid (KYNA)) in serum via high-performance liquid chromatography. Separate multivariate analyses of covariance (MANCOVAs) for women and men were performed to ascertain mean differences between patients and healthy controls while correcting for age. For our secondary objective, we conducted a MANCOVA to explore disparities in ACE inhibitor users and non-users among patients, with BMI correction. Our findings revealed decreased TRP concentrations but increased KYNA/TRP ratio and KYN/TRP ratio in both male and female SSc patients compared to their respective controls. Unlike women, SSc males exhibited higher KYN concentrations and decreased KYNA/KYN ratio relative to their controls. Additionally, SSc patients using ACE inhibitors had higher serum KYNA levels than non-users. Notably, we established a significant correlation between eGFR and KYNA in SSc patients. These results indicate differential KP activation in male and female SSc patients, with males demonstrating heightened KP activation. While ACE inhibitors may influence the KP in SSc patients, further research is necessary to comprehensively understand their impact on symptoms and prognosis in the context of these KP alterations.


Assuntos
Cinurenina , Escleroderma Sistêmico , Humanos , Feminino , Masculino , Triptofano , Inibidores da Enzima Conversora de Angiotensina , Antivirais , Ácido Cinurênico
16.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000041

RESUMO

Persistent systemic chronic inflammatory conditions are linked with many pathologies, including cardiovascular diseases (CVDs), a leading cause of death across the globe. Among various risk factors, one of the new possible contributors to CVDs is the metabolism of essential amino acid tryptophan. Proinflammatory signals promote tryptophan metabolism via the kynurenine (KYN) pathway (KP), thereby resulting in the biosynthesis of several immunomodulatory metabolites whose biological effects are associated with the development of symptoms and progression of various inflammatory diseases. Some participants in the KP are agonists of aryl hydrocarbon receptor (AhR), a central player in a signaling pathway that, along with a regulatory influence on the metabolism of environmental xenobiotics, performs a key immunomodulatory function by triggering various cellular mechanisms with the participation of endogenous ligands to alleviate inflammation. An AhR ligand with moderate affinity is the central metabolite of the KP: KYN; one of the subsequent metabolites of KYN-kynurenic acid (KYNA)-is a more potent ligand of AhR. Understanding the role of AhR pathway-related metabolites of the KP that regulate inflammatory factors in cells of the cardiovascular system is interesting and important for achieving effective treatment of CVDs. The purpose of this review was to summarize the results of studies about the participation of the KP metabolite-KYNA-and of the AhR signaling pathway in the regulation of inflammation in pathological conditions of the heart and blood vessels and about the possible interaction of KYNA with AhR signaling in some CVDs.


Assuntos
Doenças Cardiovasculares , Inflamação , Ácido Cinurênico , Receptores de Hidrocarboneto Arílico , Transdução de Sinais , Humanos , Receptores de Hidrocarboneto Arílico/metabolismo , Doenças Cardiovasculares/metabolismo , Ácido Cinurênico/metabolismo , Inflamação/metabolismo , Animais , Cinurenina/metabolismo , Triptofano/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos
17.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673879

RESUMO

Reactive astrocytes are key players in HIV-associated neurocognitive disorders (HAND), and different types of reactive astrocytes play opposing roles in the neuropathologic progression of HAND. A recent study by our group found that gp120 mediates A1 astrocytes (neurotoxicity), which secrete proinflammatory factors and promote HAND disease progression. Here, by comparing the expression of A2 astrocyte (neuroprotective) markers in the brains of gp120 tgm mice and gp120+/α7nAChR-/- mice, we found that inhibition of alpha 7 nicotinic acetylcholine receptor (α7nAChR) promotes A2 astrocyte generation. Notably, kynurenine acid (KYNA) is an antagonist of α7nAChR, and is able to promote the formation of A2 astrocytes, the secretion of neurotrophic factors, and the enhancement of glutamate uptake through blocking the activation of α7nAChR/NF-κB signaling. In addition, learning, memory and mood disorders were significantly improved in gp120 tgm mice by intraperitoneal injection of kynurenine (KYN) and probenecid (PROB). Meanwhile, the number of A2 astrocytes in the mouse brain was significantly increased and glutamate toxicity was reduced. Taken together, KYNA was able to promote A2 astrocyte production and neurotrophic factor secretion, reduce glutamate toxicity, and ameliorate gp120-induced neuropathological deficits. These findings contribute to our understanding of the role that reactive astrocytes play in the development of HAND pathology and provide new evidence for the treatment of HAND via the tryptophan pathway.


Assuntos
Astrócitos , Ácido Glutâmico , Cinurenina , Animais , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Ácido Glutâmico/toxicidade , Camundongos , Cinurenina/metabolismo , Ácido Cinurênico/metabolismo , Ácido Cinurênico/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , Proteína gp120 do Envelope de HIV/toxicidade , Transdução de Sinais/efeitos dos fármacos , Camundongos Knockout , Probenecid/farmacologia , Camundongos Endogâmicos C57BL , Masculino , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/efeitos dos fármacos , NF-kappa B/metabolismo
18.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542368

RESUMO

The central nervous system (CNS) is the final frontier in drug delivery because of the blood-brain barrier (BBB), which poses significant barriers to the access of most drugs to their targets. Kynurenic acid (KYNA), a tryptophan (Trp) metabolite, plays an important role in behavioral functions, and abnormal KYNA levels have been observed in neuropsychiatric conditions. The current challenge lies in delivering KYNA to the CNS owing to its polar side chain. Recently, C-3 side chain-modified KYNA analogs have been shown to cross the BBB; however, it is unclear whether they retain the biological functions of the parent molecule. This study examined the impact of KYNA analogs, specifically, SZR-72, SZR-104, and the newly developed SZRG-21, on behavior. The analogs were administered intracerebroventricularly (i.c.v.), and their effects on the motor domain were compared with those of KYNA. Specifically, open-field (OF) and rotarod (RR) tests were employed to assess motor activity and skills. SZR-104 increased horizontal exploratory activity in the OF test at a dose of 0.04 µmol/4 µL, while SZR-72 decreased vertical activity at doses of 0.04 and 0.1 µmol/4 µL. In the RR test, however, neither KYNA nor its analogs showed any significant differences in motor skills at either dose. Side chain modification affects affective motor performance and exploratory behavior, as the results show for the first time. In this study, we showed that KYNA analogs alter emotional components such as motor-associated curiosity and emotions. Consequently, drug design necessitates the development of precise strategies to traverse the BBB while paying close attention to modifications in their effects on behavior.


Assuntos
Ácido Cinurênico , Fármacos Neuroprotetores , Barreira Hematoencefálica , Sistemas de Liberação de Medicamentos , Fármacos Neuroprotetores/química , Teste de Campo Aberto
19.
Molecules ; 29(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38675522

RESUMO

Kynurenic acid (KYNA) is a bioactive compound exhibiting multiple actions and positive effects on human health due to its antioxidant, anti-inflammatory and neuroprotective properties. KYNA has been found to have a beneficial effect on wound healing and the prevention of scarring. Despite notable progress in the research focused on KYNA observed during the last 10 years, KYNA's presence in flax (Linum usitatissimum L.) has not been proven to date. In the present study, parts of flax plants were analysed for KYNA synthesis. Moreover, eight different cultivars of flax seeds were tested for the presence of KYNA, resulting in a maximum of 0.432 µg/g FW in the seeds of the cultivar Jan. The level of KYNA was also tested in the stems and roots of two selected flax cultivars: an oily cultivar (Linola) and a fibrous cultivar (Nike). The exposure of plants to the KYNA precursors tryptophan and kynurenine resulted in higher levels of KYNA accumulation in flax shoots and roots. Thus, the obtained results indicate that KYNA might be synthesized in flax. The highest amount of KYNA (295.9 µg/g dry weight [DW]) was detected in flax roots derived from plants grown in tissue cultures supplemented with tryptophan. A spectroscopic analysis of KYNA was performed using the FTIR/ATR method. It was found that, in tested samples, the characteristic KYNA vibration bands overlap with the bands corresponding to the vibrations of biopolymers (especially pectin and cellulose) present in flax plants and fibres.


Assuntos
Linho , Ácido Cinurênico , Raízes de Plantas , Linho/química , Linho/metabolismo , Ácido Cinurênico/metabolismo , Ácido Cinurênico/análise , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Sementes/química , Sementes/metabolismo , Triptofano/metabolismo , Triptofano/análise , Triptofano/química , Extratos Vegetais/química
20.
J Physiol ; 601(11): 2165-2188, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36814134

RESUMO

Exercise-induced perturbation of skeletal muscle metabolites is a probable mediator of long-term health benefits in older adults. Although specific metabolites have been identified to be impacted by age, physical activity and exercise, the depth of coverage of the muscle metabolome is still limited. Here, we investigated resting and exercise-induced metabolite distribution in muscle from well-phenotyped older adults who were active or sedentary, and a group of active young adults. Percutaneous biopsies of the vastus lateralis were obtained before, immediately after and 3 h following a bout of endurance cycling. Metabolite profile in muscle biopsies was determined by tandem mass spectrometry. Mitochondrial energetics in permeabilized fibre bundles was assessed by high resolution respirometry and fibre type proportion was assessed by immunohistology. We found that metabolites of the kynurenine/tryptophan pathway were impacted by age and activity. Specifically, kynurenine was elevated in muscle from older adults, whereas downstream metabolites of kynurenine (kynurenic acid and NAD+ ) were elevated in muscle from active adults and associated with cardiorespiratory fitness and muscle oxidative capacity. Acylcarnitines, a potential marker of impaired metabolic health, were elevated in muscle from physically active participants. Surprisingly, despite baseline group difference, acute exercise-induced alterations in whole-body substrate utilization, as well as muscle acylcarnitines and ketone bodies, were remarkably similar between groups. Our data identified novel muscle metabolite signatures that associate with the healthy ageing phenotype provoked by physical activity and reveal that the metabolic responsiveness of muscle to acute endurance exercise is retained [NB]:AUTHOR: Please ensure that the appropriate material has been provide for Table S2, as well as for Figures S1 to S7, as also cited in the text with age regardless of activity levels. KEY POINTS: Kynurenine/tryptophan pathway metabolites were impacted by age and physical activity in human muscle, with kynurenine elevated in older muscle, whereas downstream products kynurenic acid and NAD+ were elevated in exercise-trained muscle regardless of age. Acylcarnitines, a marker of impaired metabolic health when heightened in circulation, were elevated in exercise-trained muscle of young and older adults, suggesting that muscle act as a metabolic sink to reduce the circulating acylcarnitines observed with unhealthy ageing. Despite the phenotypic differences, the exercise-induced response of various muscle metabolite pools, including acylcarnitine and ketone bodies, was similar amongst the groups, suggesting that older adults can achieve the metabolic benefits of exercise seen in young counterparts.


Assuntos
Cinurenina , Triptofano , Adulto Jovem , Humanos , Idoso , Cinurenina/metabolismo , Triptofano/metabolismo , Ácido Cinurênico , NAD/metabolismo , Músculo Esquelético/fisiologia , Exercício Físico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA