Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Immunity ; 57(5): 1037-1055.e6, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38593796

RESUMO

Memory B cells (MBCs) are key providers of long-lived immunity against infectious disease, yet in chronic viral infection, they do not produce effective protection. How chronic viral infection disrupts MBC development and whether such changes are reversible remain unknown. Through single-cell (sc)ATAC-seq and scRNA-seq during acute versus chronic lymphocytic choriomeningitis viral infection, we identified a memory subset enriched for interferon (IFN)-stimulated genes (ISGs) during chronic infection that was distinct from the T-bet+ subset normally associated with chronic infection. Blockade of IFNAR-1 early in infection transformed the chromatin landscape of chronic MBCs, decreasing accessibility at ISG-inducing transcription factor binding motifs and inducing phenotypic changes in the dominating MBC subset, with a decrease in the ISG subset and an increase in CD11c+CD80+ cells. However, timing was critical, with MBCs resistant to intervention at 4 weeks post-infection. Together, our research identifies a key mechanism to instruct MBC identity during viral infection.


Assuntos
Epigênese Genética , Interferon Tipo I , Coriomeningite Linfocítica , Vírus da Coriomeningite Linfocítica , Células B de Memória , Animais , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Camundongos , Vírus da Coriomeningite Linfocítica/imunologia , Células B de Memória/imunologia , Camundongos Endogâmicos C57BL , Receptor de Interferon alfa e beta/genética , Memória Imunológica/imunologia , Doença Crônica , Subpopulações de Linfócitos B/imunologia , Análise de Célula Única
2.
Immunity ; 55(11): 2103-2117.e10, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36323311

RESUMO

The surface of the central nervous system (CNS) is protected by the meninges, which contain a dense network of meningeal macrophages (MMs). Here, we examined the role of tissue-resident MM in viral infection. MHC-II- MM were abundant neonatally, whereas MHC-II+ MM appeared over time. These barrier macrophages differentially responded to in vivo peripheral challenges such as LPS, SARS-CoV-2, and lymphocytic choriomeningitis virus (LCMV). Peripheral LCMV infection, which was asymptomatic, led to a transient infection and activation of the meninges. Mice lacking macrophages but conserving brain microglia, or mice bearing macrophage-specific deletion of Stat1 or Ifnar, exhibited extensive viral spread into the CNS. Transcranial pharmacological depletion strategies targeting MM locally resulted in several areas of the meninges becoming infected and fatal meningitis. Low numbers of MHC-II+ MM, which is seen upon LPS challenge or in neonates, corelated with higher viral load upon infection. Thus, MMs protect against viral infection and may present targets for therapeutic manipulation.


Assuntos
COVID-19 , Coriomeningite Linfocítica , Animais , Camundongos , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , SARS-CoV-2 , Vírus da Coriomeningite Linfocítica/fisiologia , Macrófagos , Meninges
3.
Immunity ; 55(3): 475-493.e5, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35216666

RESUMO

CD4+ T cell-derived interleukin 21 (IL-21) sustains CD8+ T cell responses during chronic viral infection, but the helper subset that confers this protection remains unclear. Here, we applied scRNA and ATAC-seq approaches to determine the heterogeneity of IL-21+CD4+ T cells during LCMV clone 13 infection. CD4+ T cells were comprised of three transcriptionally and epigenetically distinct populations: Cxcr6+ Th1 cells, Cxcr5+ Tfh cells, and a previously unrecognized Slamf6+ memory-like (Tml) subset. T cell differentiation was specifically redirected toward the Tml subset during chronic, but not acute, LCMV infection. Although this subset displayed an enhanced capacity to accumulate and some developmental plasticity, it remained largely quiescent, which may hinder its helper potential. Conversely, mixed bone marrow chimera experiments revealed that Tfh cell-derived IL-21 was critical to sustain CD8+ T cell responses and viral control. Thus, strategies that bolster IL-21+Tfh cell responses may prove effective in enhancing CD8+ T cell-mediated immunity.


Assuntos
Células T Auxiliares Foliculares , Viroses , Linfócitos T CD8-Positivos , Humanos , Interleucinas
4.
Immunity ; 55(4): 656-670.e8, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35366396

RESUMO

Reinvigoration of exhausted CD8+ T (Tex) cells by checkpoint immunotherapy depends on the activation of precursors of exhausted T (Tpex) cells, but the local anatomical context of their maintenance, differentiation, and interplay with other cells is not well understood. Here, we identified transcriptionally distinct Tpex subpopulations, mapped their differentiation trajectories via transitory cellular states toward Tex cells, and localized these cell states to specific splenic niches. Conventional dendritic cells (cDCs) were critical for successful αPD-L1 therapy and were required to mediate viral control. cDC1s were dispensable for Tpex cell expansion but provided an essential niche to promote Tpex cell maintenance, preventing their overactivation and T-cell-mediated immunopathology. Mechanistically, cDC1s insulated Tpex cells via MHC-I-dependent interactions to prevent their activation within other inflammatory environments that further aggravated their exhaustion. Our findings reveal that cDC1s maintain and safeguard Tpex cells within distinct anatomical niches to balance viral control, exhaustion, and immunopathology.


Assuntos
Linfócitos T CD8-Positivos , Células Dendríticas , Diferenciação Celular , Imunoterapia , Contagem de Linfócitos
5.
Immunity ; 55(1): 82-97.e8, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34847356

RESUMO

CD8+ T cells responding to chronic infection adapt an altered differentiation program that provides some restraint on pathogen replication yet limits immunopathology. This adaptation is imprinted in stem-like cells and propagated to their progeny. Understanding the molecular control of CD8+ T cell differentiation in chronic infection has important therapeutic implications. Here, we find that the chemokine receptor CXCR3 is highly expressed on viral-specific stem-like CD8+ T cells and that one of its ligands, CXCL10, regulates the persistence and heterogeneity of responding CD8+ T cells in spleens of mice chronically infected with lymphocytic choriomeningitis virus. CXCL10 is produced by inflammatory monocytes and fibroblasts of the splenic red pulp, where it grants stem-like cells access to signals promoting differentiation and limits their exposure to pro-survival niches in the white pulp. Consequently, functional CD8+ T cell responses are greater in Cxcl10-/- mice and are associated with a lower viral set point.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Quimiocina CXCL10/metabolismo , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/fisiologia , Monócitos/metabolismo , Receptores CXCR3/metabolismo , Baço/patologia , Animais , Antígeno B7-H1/antagonistas & inibidores , Diferenciação Celular , Proliferação de Células , Autorrenovação Celular , Quimiocina CXCL10/genética , Doença Crônica , Seleção Clonal Mediada por Antígeno , Feminino , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CXCR3/genética
6.
Immunity ; 54(3): 526-541.e7, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33515487

RESUMO

Chronic viral infections increase severity of Mycobacterium tuberculosis (Mtb) coinfection. Here, we examined how chronic viral infections alter the pulmonary microenvironment to foster coinfection and worsen disease severity. We developed a coordinated system of chronic virus and Mtb infection that induced central clinical manifestations of coinfection, including increased Mtb burden, extra-pulmonary dissemination, and heightened mortality. These disease states were not due to chronic virus-induced immunosuppression or exhaustion; rather, increased amounts of the cytokine TNFα initially arrested pulmonary Mtb growth, impeding dendritic cell mediated antigen transportation to the lymph node and subverting immune-surveillance, allowing bacterial sanctuary. The cryptic Mtb replication delayed CD4 T cell priming, redirecting T helper (Th) 1 toward Th17 differentiation and increasing pulmonary neutrophilia, which diminished long-term survival. Temporally restoring CD4 T cell induction overcame these diverse disease sequelae to enhance Mtb control. Thus, Mtb co-opts TNFα from the chronic inflammatory environment to subvert immune-surveillance, avert early immune function, and foster long-term coinfection.


Assuntos
Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/fisiologia , Mycobacterium tuberculosis/fisiologia , Neutrófilos/imunologia , Células Th1/imunologia , Células Th17/imunologia , Tuberculose/imunologia , Imunidade Adaptativa , Animais , Doença Crônica , Coinfecção , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fagocitose , Índice de Gravidade de Doença , Fatores de Tempo
7.
Immunity ; 53(5): 985-1000.e11, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33128876

RESUMO

Central memory CD8+ T cells (Tcm) control systemic secondary infections and can protect from chronic infection and cancer as a result of their stem-cell-like capacity to expand, differentiate, and self-renew. Central memory is generally thought to emerge following pathogen clearance and to form based on the de-differentiation of cytolytic effector cells. Here, we uncovered rare effector-phase CD8+ T cells expressing high amounts of the transcription factor Tcf7 (Tcf1) that showed no evidence of prior cytolytic differentiation and that displayed key hallmarks of Tcm cells. These effector-phase Tcf7hi cells quantitatively yielded Tcm cells based on lineage tracing. Mechanistically, Tcf1 counteracted the differentiation of Tcf7hi cells and sustained the expression of conserved adult stem-cell genes that were critical for CD8+ T cell stemness. The discovery of stem-cell-like CD8+ T cells during the effector response to acute infection provides an opportunity to optimize Tcm cell formation by vaccination.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular/imunologia , Citotoxicidade Imunológica , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Memória Imunológica , Fator 1 de Transcrição de Linfócitos T/metabolismo , Animais , Linfócitos T CD8-Positivos/citologia , Diferenciação Celular/genética , Montagem e Desmontagem da Cromatina , Citotoxicidade Imunológica/genética , Imunofluorescência , Expressão Gênica , Fator 1-alfa Nuclear de Hepatócito/química , Fator 1-alfa Nuclear de Hepatócito/genética , Humanos , Imunização , Memória Imunológica/genética , Imunofenotipagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Conformação Proteica , Baço/imunologia , Baço/metabolismo , Relação Estrutura-Atividade , Fator 1 de Transcrição de Linfócitos T/química , Fator 1 de Transcrição de Linfócitos T/genética
8.
Immunity ; 51(6): 1028-1042.e4, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31810883

RESUMO

Although CD4+ T cell "help" is crucial to sustain antiviral immunity, the mechanisms by which CD4+ T cells regulate CD8+ T cell differentiation during chronic infection remain elusive. Here, using single-cell RNA sequencing, we show that CD8+ T cells responding to chronic infection were more heterogeneous than previously appreciated. Importantly, our findings uncovered the formation of a CX3CR1-expressing CD8+ T cell subset that exhibited potent cytolytic function and was required for viral control. Notably, our data further demonstrate that formation of this cytotoxic subset was critically dependent on CD4+ T cell help via interleukin-21 (IL-21) and that exploitation of this developmental pathway could be used therapeutically to enhance the killer function of CD8+ T cells infiltrated into the tumor. These findings uncover additional molecular mechanisms of how "CD4+ T cell help" regulates CD8+ T cell differentiation during persistent infection and have implications toward optimizing the generation of protective CD8+ T cells in immunotherapy.


Assuntos
Infecções , Neoplasias , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Humanos , Receptor de Morte Celular Programada 1 , Subpopulações de Linfócitos T
9.
Immunity ; 50(1): 91-105.e4, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30638736

RESUMO

Memory CD4+ T cells mediate long-term immunity, and their generation is a key objective of vaccination strategies. However, the transcriptional circuitry controlling the emergence of memory cells from early CD4+ antigen-responders remains poorly understood. Here, using single-cell RNA-seq to study the transcriptome of virus-specific CD4+ T cells, we identified a gene signature that distinguishes potential memory precursors from effector cells. We found that both that signature and the emergence of memory CD4+ T cells required the transcription factor Thpok. We further demonstrated that Thpok cell-intrinsically protected memory cells from a dysfunctional, effector-like transcriptional program, similar to but distinct from the exhaustion pattern of cells responding to chronic infection. Mechanistically, Thpok- bound genes encoding the transcription factors Blimp1 and Runx3 and acted by antagonizing their expression. Thus, a Thpok-dependent circuitry promotes both memory CD4+ T cells' differentiation and functional fitness, two previously unconnected critical attributes of adaptive immunity.


Assuntos
Linfócitos T CD4-Positivos/fisiologia , Subpopulações de Linfócitos T/fisiologia , Fatores de Transcrição/metabolismo , Animais , Antígenos Virais/imunologia , Diferenciação Celular , Células Cultivadas , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Humanos , Memória Imunológica/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Ligação Proteica , Análise de Sequência de RNA , Análise de Célula Única , Fatores de Transcrição/genética , Transcriptoma
10.
Immunity ; 51(6): 1043-1058.e4, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31810882

RESUMO

T cell dysfunction is a characteristic feature of chronic viral infection and cancer. Recent studies in chronic lymphocytic choriomeningitis virus (LCMV) infection have defined a PD-1+ Tcf-1+ CD8+ T cell subset capable of self-renewal and differentiation into more terminally differentiated cells that downregulate Tcf-1 and express additional inhibitory molecules such as Tim3. Here, we demonstrated that expression of the glycoprotein CD101 divides this terminally differentiated population into two subsets. Stem-like Tcf-1+ CD8+ T cells initially differentiated into a transitory population of CD101-Tim3+ cells that later converted into CD101+ Tim3+ cells. Recently generated CD101-Tim3+ cells proliferated in vivo, contributed to viral control, and were marked by an effector-like transcriptional signature including expression of the chemokine receptor CX3CR1, pro-inflammatory cytokines, and granzyme B. PD-1 pathway blockade increased the numbers of CD101-Tim3+ CD8+ T cells, suggesting that these newly generated transitional cells play a critical role in PD-1-based immunotherapy.


Assuntos
Antígenos CD/metabolismo , Linfócitos T CD8-Positivos/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Animais , Biomarcadores/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo , Feminino , Granzimas/genética , Granzimas/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/biossíntese , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Coriomeningite Linfocítica/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/genética
11.
Immunity ; 48(4): 730-744.e5, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29669251

RESUMO

Although characterization of T cell exhaustion has unlocked powerful immunotherapies, the mechanisms sustaining adaptations of short-lived innate cells to chronic inflammatory settings remain unknown. During murine chronic viral infection, we found that concerted events in bone marrow and spleen mediated by type I interferon (IFN-I) and Toll-like receptor 7 (TLR7) maintained a pool of functionally exhausted plasmacytoid dendritic cells (pDCs). In the bone marrow, IFN-I compromised the number and the developmental capacity of pDC progenitors, which generated dysfunctional pDCs. Concurrently, exhausted pDCs in the periphery were maintained by self-renewal via IFN-I- and TLR7-induced proliferation of CD4- subsets. On the other hand, pDC functional loss was mediated by TLR7, leading to compromised IFN-I production and resistance to secondary infection. These findings unveil the mechanisms sustaining a self-perpetuating pool of functionally exhausted pDCs and provide a framework for deciphering long-term exhaustion of other short-lived innate cells during chronic inflammation.


Assuntos
Autorrenovação Celular/imunologia , Células Dendríticas/imunologia , Interferon Tipo I/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Glicoproteínas de Membrana/imunologia , Receptor 7 Toll-Like/imunologia , Células 3T3 , Animais , Proteínas de Transporte/biossíntese , Linhagem Celular , Proliferação de Células , Proteínas de Ligação a DNA/biossíntese , Células Dendríticas/citologia , Humanos , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/biossíntese , Proteínas Repressoras , Transdução de Sinais/imunologia , Fator de Transcrição 4/biossíntese , Fatores de Transcrição/biossíntese
12.
Immunity ; 49(2): 247-263.e7, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30054205

RESUMO

CD4+ T cell differentiation into multiple T helper (Th) cell lineages is critical for optimal adaptive immune responses. This report identifies an intrinsic mechanism by which programmed death-1 receptor (PD-1) signaling imparted regulatory phenotype to Foxp3+ Th1 cells (denoted as Tbet+iTregPDL1 cells) and inducible regulatory T (iTreg) cells. Tbet+iTregPDL1 cells prevented inflammation in murine models of experimental colitis and experimental graft versus host disease (GvHD). Programmed death ligand-1 (PDL-1) binding to PD-1 imparted regulatory function to Tbet+iTregPDL1 cells and iTreg cells by specifically downregulating endo-lysosomal protease asparaginyl endopeptidase (AEP). AEP regulated Foxp3 stability and blocking AEP imparted regulatory function in Tbet+iTreg cells. Also, Aep-/- iTreg cells significantly inhibited GvHD and maintained Foxp3 expression. PD-1-mediated Foxp3 maintenance in Tbet+ Th1 cells occurred both in tumor infiltrating lymphocytes (TILs) and during chronic viral infection. Collectively, this report has identified an intrinsic function for PD-1 in maintaining Foxp3 through proteolytic pathway.


Assuntos
Cisteína Endopeptidases/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Animais , Diferenciação Celular/imunologia , Células Cultivadas , Colite/imunologia , Colite/patologia , Feminino , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/patologia , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/patologia , Vírus da Coriomeningite Linfocítica/imunologia , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T Reguladores/citologia , Células Th1/citologia
13.
Immunity ; 49(6): 1049-1061.e6, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30566882

RESUMO

Appropriate immune responses require a fine balance between immune activation and attenuation. NLRC3, a non-inflammasome-forming member of the NLR innate immune receptor family, attenuates inflammation in myeloid cells and proliferation in epithelial cells. T lymphocytes express the highest amounts of Nlrc3 transcript where its physiologic relevance is unknown. We show that NLRC3 attenuated interferon-γ and TNF expression by CD4+ T cells and reduced T helper 1 (Th1) and Th17 cell proliferation. Nlrc3-/- mice exhibited increased and prolonged CD4+ T cell responses to lymphocytic choriomeningitis virus infection and worsened experimental autoimmune encephalomyelitis (EAE). These functions of NLRC3 were executed in a T-cell-intrinsic fashion: NLRC3 reduced K63-linked ubiquitination of TNF-receptor-associated factor 6 (TRAF6) to limit NF-κB activation, lowered phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1), and diminished glycolysis and oxidative phosphorylation. This study reveals an unappreciated role for NLRC3 in attenuating CD4+ T cell signaling and metabolism.


Assuntos
Autoimunidade/imunologia , Encefalomielite Autoimune Experimental/imunologia , Imunidade Inata/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Autoimunidade/genética , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Encefalomielite Autoimune Experimental/genética , Fatores de Iniciação em Eucariotos , Humanos , Imunidade Inata/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Coriomeningite Linfocítica/genética , Coriomeningite Linfocítica/microbiologia , Vírus da Coriomeningite Linfocítica/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/imunologia , NF-kappa B/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/imunologia , Fosfoproteínas/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/imunologia , Fator 6 Associado a Receptor de TNF/metabolismo , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/imunologia , Células Th17/metabolismo
14.
Immunity ; 49(4): 678-694.e5, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30314757

RESUMO

CD8+ T cell exhaustion impedes control of chronic viral infection; yet how new T cell responses are mounted during chronic infection is unclear. Unlike T cells primed at the onset of infection that rapidly differentiate into effectors and exhaust, we demonstrate that virus-specific CD8+ T cells primed after establishment of chronic LCMV infection preferentially generate memory-like transcription factor TCF1+ cells that were transcriptionally and proteomically distinct, less exhausted, and more responsive to immunotherapy. Mechanistically, adaptations of antigen-presenting cells and diminished T cell signaling intensity promoted differentiation of the memory-like subset at the expense of rapid effector cell differentiation, which was now highly dependent on IL-21-mediated CD4+ T cell help for its functional generation. Chronic viral infection similarly redirected de novo differentiation of tumor-specific CD8+ T cells, ultimately preventing cancer control. Thus, targeting these T cell stimulatory pathways could enable strategies to control chronic infection, tumors, and enhance immunotherapeutic efficacy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Imunidade/imunologia , Memória Imunológica/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Células Apresentadoras de Antígenos/virologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/virologia , Diferenciação Celular/genética , Doença Crônica , Perfilação da Expressão Gênica/métodos , Imunidade/genética , Memória Imunológica/genética , Imunoterapia , Coriomeningite Linfocítica/terapia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/fisiologia , Camundongos Endogâmicos C57BL , Proteômica/métodos , Fator 1 de Transcrição de Linfócitos T/genética , Fator 1 de Transcrição de Linfócitos T/imunologia , Fator 1 de Transcrição de Linfócitos T/metabolismo
15.
Immunol Rev ; 316(1): 136-159, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37038909

RESUMO

Upon resolution of an acute viral infection, during latent-reactivating infection and during chronic active infections virus-specific T-cells differentiate into distinct subsets that differ in phenotype, longevity, transcriptional, metabolic, and epigenetic profiles, and effector functions. With recent advances in single-cell profiling, this substantial heterogeneity has become apparent and new subsets of virus-specific T cells, either of stable or transitory nature, are being identified. A unifying principle of T cells emerging in these different conditions is their precursor-progeny relationship. For acute and resolved viral infections, this relationship becomes apparent during re-challenge, whereas a constant differentiation of progenitor T cells into more differentiated cells occurs during latent-reactivating and active chronic viral infections. In this review, we summarize and discuss current knowledge about T-cell heterogeneity and progenitor-progeny relationships in the setting of persistent viral infections.


Assuntos
Linfócitos T CD8-Positivos , Viroses , Humanos , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Fenótipo , Memória Imunológica
16.
Proc Natl Acad Sci U S A ; 120(16): e2210047120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37040405

RESUMO

CD8+ T cells are crucial for the clearance of viral infections. During the acute phase, proinflammatory conditions increase the amount of circulating phosphatidylserine+ (PS) extracellular vesicles (EVs). These EVs interact especially with CD8+ T cells; however, it remains unclear whether they can actively modulate CD8+ T cell responses. In this study, we have developed a method to analyze cell-bound PS+ EVs and their target cells in vivo. We show that EV+ cell abundance increases during viral infection and that EVs preferentially bind to activated, but not naive, CD8+ T cells. Superresolution imaging revealed that PS+ EVs attach to clusters of CD8 molecules on the T cell surface. Furthermore, EV-binding induces antigen (Ag)-specific TCR signaling and increased nuclear translocation of the transcription factor Nuclear factor of activated T-cells (NFATc1) in vivo. EV-decorated but not EV-free CD8+ T cells are enriched for gene signatures associated with T-cell receptor signaling, early effector differentiation, and proliferation. Our data thus demonstrate that PS+ EVs provide Ag-specific adjuvant effects to activated CD8+ T cells in vivo.


Assuntos
Vesículas Extracelulares , Viroses , Humanos , Linfócitos T CD8-Positivos , Fosfatidilserinas/metabolismo , Vesículas Extracelulares/metabolismo , Viroses/metabolismo , Diferenciação Celular
17.
EMBO J ; 40(23): e108605, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34622466

RESUMO

The immune cells of the central nervous system (CNS) comprise parenchymal microglia and at the CNS border regions meningeal, perivascular, and choroid plexus macrophages (collectively called CNS-associated macrophages, CAMs). While previous work has shown that microglial properties depend on environmental signals from the commensal microbiota, the effects of microbiota on CAMs are unknown. By combining several microbiota manipulation approaches, genetic mouse models, and single-cell RNA-sequencing, we have characterized CNS myeloid cell composition and function. Under steady-state conditions, the transcriptional profiles and numbers of choroid plexus macrophages were found to be tightly regulated by complex microbiota. In contrast, perivascular and meningeal macrophages were affected to a lesser extent. An acute perturbation through viral infection evoked an attenuated immune response of all CAMs in germ-free mice. We further assessed CAMs in a more chronic pathological state in 5xFAD mice, a model for Alzheimer's disease, and found enhanced amyloid beta uptake exclusively by perivascular macrophages in germ-free 5xFAD mice. Our results aid the understanding of distinct microbiota-CNS macrophage interactions during homeostasis and disease, which could potentially be targeted therapeutically.


Assuntos
Doença de Alzheimer/imunologia , Bactérias/crescimento & desenvolvimento , Sistema Nervoso Central/imunologia , Homeostase , Macrófagos/imunologia , Células Mieloides/imunologia , Doença de Alzheimer/genética , Doença de Alzheimer/microbiologia , Doença de Alzheimer/patologia , Animais , Bactérias/classificação , Bactérias/metabolismo , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/microbiologia , Sistema Nervoso Central/patologia , Feminino , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota , Células Mieloides/metabolismo , Células Mieloides/microbiologia , Células Mieloides/patologia , Transcriptoma
18.
J Virol ; 98(3): e0200623, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38334330

RESUMO

Lymphocytic choriomeningitis virus (LCMV) is a bisegmented negative-sense RNA virus classified within the Arenaviridae family of the Bunyavirales order. LCMV is associated with fatal disease in immunocompromized populations, and as the prototypical arenavirus, acts as a model for the many serious human pathogens within this group. Here, we examined the dependence of LCMV multiplication on cellular trafficking components using a recombinant LCMV expressing enhanced green fluorescent protein in conjunction with a curated siRNA library. The screen revealed a requirement for subunits of both the coat protein 1 (COPI) coatomer and adapter protein 4 (AP-4) complexes. By rescuing a recombinant LCMV harboring a FLAG-tagged glycoprotein (GP-1) envelope spike (rLCMV-GP1-FLAG), we showed infection resulted in marked co-localization of individual COPI and AP-4 components with both LCMV nucleoprotein (NP) and GP-1, consistent with their involvement in viral processes. To further investigate the role of both COPI and AP-4 complexes during LCMV infection, we utilized the ARF-I inhibitor brefeldin A (BFA) that prevents complex formation. Within a single 12-h cycle of virus multiplication, BFA pre-treatment caused no significant change in LCMV-specific RNA synthesis, alongside no significant change in LCMV NP expression, as measured by BFA time-of-addition experiments. In contrast, BFA addition resulted in a significant drop in released virus titers, approaching 50-fold over the same 12-h period, rising to over 600-fold over 24 h. Taken together, these findings suggest COPI and AP-4 complexes are important host cell factors required for the formation and release of infectious LCMV. IMPORTANCE: Arenaviruses are rodent-borne, segmented, negative-sense RNA viruses, with several members responsible for fatal human disease, with the prototypic member lymphocytic choriomeningitis virus (LCMV) being under-recognised as a pathogen capable of inflicting neurological infections with fatal outcome. A detailed understanding of how arenaviruses subvert host cell processes to complete their multiplication cycle is incomplete. Here, using a combination of gene ablation and pharmacological inhibition techniques, we showed that host cellular COPI and AP-4 complexes, with native roles in cellular vesicular transport, were required for efficient LCMV growth. We further showed these complexes acted on late stages of the multiplication cycle, post-gene expression, with a significant impact on infectious virus egress. Collectively, our findings improve the understanding of arenaviruses host-pathogen interactions and reveal critical cellular trafficking pathways required during infection.


Assuntos
Complexo 4 de Proteínas Adaptadoras , Coriomeningite Linfocítica , Vírus da Coriomeningite Linfocítica , Animais , Humanos , Chlorocebus aethiops , Vírus da Coriomeningite Linfocítica/fisiologia , Células Vero , Replicação Viral/genética , Complexo 4 de Proteínas Adaptadoras/metabolismo , Complexo I de Proteína do Envoltório
19.
J Virol ; 98(3): e0188323, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38376197

RESUMO

Many viruses, including mammarenaviruses, have evolved mechanisms to counteract different components of the host cell innate immunity, which is required to facilitate robust virus multiplication. The double-stranded RNA (dsRNA) sensor protein kinase receptor (PKR) pathway plays a critical role in the cell anti-viral response. Whether PKR can restrict the multiplication of the Old World mammarenavirus lymphocytic choriomeningitis virus (LCMV) and the mechanisms by which LCMV may counteract the anti-viral functions of PKR have not yet been investigated. Here we present evidence that LCMV infection results in very limited levels of PKR activation, but LCMV multiplication is enhanced in the absence of PKR. In contrast, infection with a recombinant LCMV with a mutation affecting the 3'-5' exonuclease (ExoN) activity of the viral nucleoprotein resulted in robust PKR activation in the absence of detectable levels of dsRNA, which was associated with severely restricted virus multiplication that was alleviated in the absence of PKR. However, pharmacological inhibition of PKR activation resulted in reduced levels of LCMV multiplication. These findings uncovered a complex role of the PKR pathway in LCMV-infected cells involving both pro- and anti-viral activities.IMPORTANCEAs with many other viruses, the prototypic Old World mammarenavirus LCMV can interfere with the host cell innate immune response to infection, which includes the dsRNA sensor PKR pathway. A detailed understanding of LCMV-PKR interactions can provide novel insights about mammarenavirus-host cell interactions and facilitate the development of effective anti-viral strategies against human pathogenic mammarenaviruses. In the present work, we present evidence that LCMV multiplication is enhanced in PKR-deficient cells, but pharmacological inhibition of PKR activation unexpectedly resulted in severely restricted propagation of LCMV. Likewise, we document a robust PKR activation in LCMV-infected cells in the absence of detectable levels of dsRNA. Our findings have revealed a complex role of the PKR pathway during LCMV infection and uncovered the activation of PKR as a druggable target for the development of anti-viral drugs against human pathogenic mammarenaviruses.


Assuntos
Arenaviridae , Coriomeningite Linfocítica , Humanos , Arenaviridae/metabolismo , Linhagem Celular , Proteínas Quinases/metabolismo , Interações Hospedeiro-Patógeno , Vírus da Coriomeningite Linfocítica/metabolismo , Proteínas de Transporte , Antivirais , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo
20.
Immunity ; 45(2): 415-27, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27533016

RESUMO

Chronic infections promote the terminal differentiation (or "exhaustion") of T cells and are thought to preclude the formation of memory T cells. In contrast, we discovered a small subpopulation of virus-specific CD8(+) T cells that sustained the T cell response during chronic infections. These cells were defined by, and depended on, the expression of the transcription factor Tcf1. Transcriptome analysis revealed that this population shared key characteristics of central memory cells but lacked an effector signature. Unlike conventional memory cells, Tcf1-expressing T cells displayed hallmarks of an "exhausted" phenotype, including the expression of inhibitory receptors such as PD-1 and Lag-3. This population was crucial for the T cell expansion that occurred in response to inhibitory receptor blockade during chronic infection. These findings identify a memory-like T cell population that sustains T cell responses and is a prime target for therapeutic interventions to improve the immune response in chronic infections.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Hepacivirus/imunologia , Hepatite C Crônica/imunologia , Imunoterapia/métodos , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Fator 1 de Transcrição de Linfócitos T/metabolismo , Adulto , Animais , Antígenos CD/metabolismo , Linfócitos T CD8-Positivos/virologia , Proliferação de Células , Células Cultivadas , Senescência Celular , Doença Crônica , Feminino , Humanos , Memória Imunológica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Receptor de Morte Celular Programada 1/metabolismo , Fator 1 de Transcrição de Linfócitos T/genética , Transcriptoma , Proteína do Gene 3 de Ativação de Linfócitos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA