Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(4): 821-836.e13, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36750096

RESUMO

The low-density lipoprotein (LDL) receptor-related protein 2 (LRP2 or megalin) is representative of the phylogenetically conserved subfamily of giant LDL receptor-related proteins, which function in endocytosis and are implicated in diseases of the kidney and brain. Here, we report high-resolution cryoelectron microscopy structures of LRP2 isolated from mouse kidney, at extracellular and endosomal pH. The structures reveal LRP2 to be a molecular machine that adopts a conformation for ligand binding at the cell surface and for ligand shedding in the endosome. LRP2 forms a homodimer, the conformational transformation of which is governed by pH-sensitive sites at both homodimer and intra-protomer interfaces. A subset of LRP2 deleterious missense variants in humans appears to impair homodimer assembly. These observations lay the foundation for further understanding the function and mechanism of LDL receptors and implicate homodimerization as a conserved feature of the LRP receptor subfamily.


Assuntos
Endocitose , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Animais , Humanos , Camundongos , Microscopia Crioeletrônica , Rim/metabolismo , Ligantes , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo
2.
Development ; 149(14)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35833708

RESUMO

Eye size is a key parameter of visual function, but the precise mechanisms of eye size control remain poorly understood. Here, we discovered that the lipogenic transcription factor sterol regulatory element-binding protein 2 (SREBP2) has an unanticipated function in the retinal pigment epithelium (RPE) to promote eye size in postnatal mice. SREBP2 transcriptionally represses low density lipoprotein receptor-related protein 2 (Lrp2), which has been shown to restrict eye overgrowth. Bone morphogenetic protein 2 (BMP2) is the downstream effector of Srebp2 and Lrp2, and Bmp2 is suppressed by SREBP2 transcriptionally but activated by Lrp2. During postnatal development, SREBP2 protein expression in the RPE decreases whereas that of Lrp2 and Bmp2 increases as the eye growth rate reduces. Bmp2 is the key determinant of eye size such that its level in mouse RPE inversely correlates with eye size. Notably, RPE-specific Bmp2 overexpression by adeno-associated virus effectively prevents the phenotypes caused by Lrp2 knock out. Together, our study shows that rapid postnatal eye size increase is governed by an RPE-derived signaling pathway, which consists of both positive and negative regulators of eye growth.


Assuntos
Proteína Morfogenética Óssea 2 , Proteína de Ligação a Elemento Regulador de Esterol 2 , Animais , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Regulação da Expressão Gênica , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Epitélio Pigmentado da Retina/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
3.
J Cell Sci ; 135(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35979861

RESUMO

Endocytosis allows cells to internalise a wide range of molecules from their environment and to maintain their plasma membrane composition. It is vital during development and for maintenance of tissue homeostasis. The ability to visualise endocytosis in vivo requires suitable assays to monitor the process. Here, we describe imaging-based assays to visualise endocytosis in the neuroepithelium of living zebrafish embryos. Injection of fluorescent tracers into the brain ventricles followed by live imaging was used to study fluid-phase or receptor-mediated endocytosis, for which we used receptor-associated protein (RAP, encoded by Lrpap1) as a ligand for low-density lipoprotein receptor-related protein (LRP) receptors. Using dual-colour imaging combined with expression of endocytic markers, it is possible to track the progression of endocytosed tracers and to monitor trafficking dynamics. Using these assays, we reveal a role for the Lowe syndrome protein Ocrl in endocytic trafficking within the neuroepithelium. We also found that the RAP-binding receptor Lrp2 (encoded by lrp2a) appears to contribute only partially to neuroepithelial RAP endocytosis. Altogether, our results provide a basis to track endocytosis within the neuroepithelium in vivo and support a role for Ocrl in this process. This article has an associated First Person interview with the first author of the paper.


Assuntos
Síndrome Oculocerebrorrenal , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Proteínas de Transporte/metabolismo , Endocitose , Ligantes , Lipoproteínas LDL/metabolismo , Peixe-Zebra/metabolismo
4.
Development ; 148(2)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500317

RESUMO

Pathogenic mutations in the endocytic receptor LRP2 in humans are associated with severe neural tube closure defects (NTDs) such as anencephaly and spina bifida. Here, we have combined analysis of neural tube closure in mouse and in the African Clawed Frog Xenopus laevis to elucidate the etiology of Lrp2-related NTDs. Lrp2 loss of function impaired neuroepithelial morphogenesis, culminating in NTDs that impeded anterior neural plate folding and neural tube closure in both model organisms. Loss of Lrp2 severely affected apical constriction as well as proper localization of the core planar cell polarity (PCP) protein Vangl2, demonstrating a highly conserved role of the receptor in these processes, which are essential for neural tube formation. In addition, we identified a novel functional interaction of Lrp2 with the intracellular adaptor proteins Shroom3 and Gipc1 in the developing forebrain. Our data suggest that, during neurulation, motifs within the intracellular domain of Lrp2 function as a hub that orchestrates endocytic membrane removal for efficient apical constriction, as well as PCP component trafficking in a temporospatial manner.


Assuntos
Endocitose , Espaço Intracelular/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Tubo Neural/embriologia , Animais , Membrana Celular/metabolismo , Polaridade Celular , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/deficiência , Camundongos Endogâmicos C57BL , Modelos Biológicos , Morfogênese , Tubo Neural/metabolismo , Tubo Neural/ultraestrutura , Células Neuroepiteliais/metabolismo , Prosencéfalo/metabolismo , Ligação Proteica , Xenopus , Proteínas de Xenopus/metabolismo
5.
Neurochem Res ; 49(1): 199-211, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37702891

RESUMO

Activation of glial cells, astrocytes and microglia, has been observed in neurodegenerative diseases including Alzheimer's disease (AD). Amyloid ß (Aß), which is aggregated and the aggregation is detected as characteristic pathology in AD brain, is known to be produced by neurons and to activate glial cells. Clearance of Aß from the brain via active transport system is important to prevent the accumulation and aggregation. Low density lipoprotein receptor-related protein 2 (LRP2/megalin) is an Aß transporter. However, expression and contribution of LRP2 in astrocytes and microglia remain to be clarified. In the present study, we examined the expression of LRP2 and its roles in cultured astrocytes prepared from rat embryonic brain cortex and mouse microglial cell line BV-2. Both cultured rat astrocytes and BV-2 cells expressed LRP2 mRNA detected by RT-PCR. When lipopolysaccharide (LPS) or all-trans retinoic acid (ATRA) were added to BV-2 cells, LRP2 mRNA expression and uptake of microbeads, Aß and insulin were increased. On the other hand, LPS decreased LRP2 expression and uptake of Aß and insulin in cultured astrocytes. Knockdown of LRP2 using siRNA attenuated the LPS- or ATRA-increased uptake of microbeads, Aß and insulin in BV-2 cells. These results suggest that LRP2 was expressed in both astrocytes and microglia and might be involved in endocytosis activities. Adequate control of LRP2 expression and function in astrocytes and microglia might regulate Aß and insulin levels in brain and would be a potential target in AD pathology.


Assuntos
Doença de Alzheimer , Insulinas , Ratos , Camundongos , Animais , Peptídeos beta-Amiloides/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Microglia/metabolismo , Astrócitos/metabolismo , Lipopolissacarídeos/farmacologia , Doença de Alzheimer/metabolismo , RNA Mensageiro/metabolismo , Insulinas/metabolismo , Células Cultivadas
6.
Cell Tissue Res ; 392(2): 535-551, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36764939

RESUMO

Motile cilia are protruding organelles on specialized epithelia that beat in a synchronous fashion to propel extracellular fluids. Coordination and orientation of cilia beating on individual cells and across tissues is a complex process dependent on planar cell polarity (PCP) signaling. Asymmetric sorting of PCP pathway components, essential to establish planar polarity, involves trafficking along the endocytic path, but the underlying regulatory processes remain incompletely understood. Here, we identified the endocytic receptor LRP2 as regulator of PCP component trafficking in ependyma, a multi-ciliated cell type that is involved in facilitating flow of the cerebrospinal fluid in the brain ventricular system. Lack of receptor expression in gene-targeted mice results in a failure to sort PCP core proteins to the anterior or posterior cell side and, consequently, in the inability to coordinate cilia arrangement and to aligned beating (loss of rotational and translational polarity). LRP2 deficiency coincides with a failure to sort NHERF1, a cytoplasmic LRP2 adaptor to the anterior cell side. As NHERF1 is essential to translocate PCP core protein Vangl2 to the plasma membrane, these data suggest a molecular mechanism whereby LRP2 interacts with PCP components through NHERF1 to control their asymmetric sorting along the endocytic path. Taken together, our findings identified the endocytic receptor LRP2 as a novel regulator of endosomal trafficking of PCP proteins, ensuring their asymmetric partition and establishment of translational and rotational planar cell polarity in the ependyma.


Assuntos
Polaridade Celular , Cílios , Animais , Camundongos , Cílios/metabolismo , Epêndima/metabolismo , Ventrículos Cerebrais/metabolismo , Proteínas de Transporte/metabolismo , Via de Sinalização Wnt , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo
7.
Clin Genet ; 103(6): 699-703, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36807241

RESUMO

Hereditary deafness and retinal dystrophy are each genetically heterogenous and clinically variable. Three small unrelated families segregating the combination of deafness and retinal dystrophy were studied by exome sequencing (ES). The proband of Family 1 was found to be compound heterozygous for NM_004525.3: LRP2: c.5005A > G, p.(Asn1669Asp) and c.149C > G, p.(Thr50Ser). In Family 2, two sisters were found to be compound heterozygous for LRP2 variants, p.(Tyr3933Cys) and an experimentally confirmed c.7715 + 3A > T consensus splice-altering variant. In Family 3, the proband is compound heterozygous for a consensus donor splice site variant LRP2: c.8452_8452 + 1del and p.(Cys3150Tyr). In mouse cochlea, Lrp2 is expressed abundantly in the stria vascularis marginal cells demonstrated by smFISH, single-cell and single-nucleus RNAseq, suggesting that a deficiency of LRP2 may compromise the endocochlear potential, which is required for hearing. LRP2 variants have been associated with Donnai-Barrow syndrome and other multisystem pleiotropic phenotypes different from the phenotypes of the four cases reported herein. Our data expand the phenotypic spectrum associated with pathogenic variants in LRP2 warranting their consideration in individuals with a combination of hereditary hearing loss and retinal dystrophy.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Miopia , Distrofias Retinianas , Animais , Camundongos , Humanos , Perda Auditiva Neurossensorial/genética , Surdez/genética , Miopia/genética , Mutação , Linhagem , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética
9.
FASEB J ; 36(7): e22392, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35716070

RESUMO

N6 -methyladenosine (m6 A) is the most abundant mRNA modification affecting diverse biological processes. However, the functions and precise mechanisms of m6 A signaling in adult hippocampal neurogenesis and neurogenesis-related depression remain largely enigmatic. We found that depletion of Mettl3 or Mettl14 in neural stem cells (NSCs) dramatically reduced m6 A abundance, proliferation, and neuronal genesis, coupled with enhanced glial differentiation. Conversely, overexpressing Mettl3 promoted proliferation and neuronal differentiation. Mechanistically, the m6 A modification of Lrp2 mRNA by Mettl3 enhanced its stability and translation efficiency relying on the reader protein Ythdc2, which in turn promoted neurogenesis. Importantly, mice lacking Mettl3 manifested reduced hippocampal neurogenesis, which could contribute to spatial memory decline, and depression-like behaviors. We found that these defective behaviors were notably reversed by Lrp2 overexpression. Moreover, Mettl3 overexpression in the hippocampus of depressive mice rescues behavioral defects. Our findings uncover the biological role of m6 A modification in Lrp2-mediated neurogenesis via m6 A-binding protein Ythdc2, and propose a rationale that targeting Mettl3-Ythdc2-Lrp2 axis regulation of neurogenesis might serve as a promising antidepressant strategy.


Assuntos
Adenosina , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Metiltransferases , Neurogênese , RNA Helicases , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Metiltransferases/metabolismo , Camundongos , Neurogênese/fisiologia , RNA Helicases/metabolismo , RNA Mensageiro/genética
10.
Sleep Breath ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38008818

RESUMO

PURPOSE: Vitamin D deficiency has been associated with the occurrence of obstructive sleep apnea syndrome (OSAS). Megalin (LRP2) and cubilin (CUBN) are implicated in vitamin D metabolism, whereas LRP2 and CUBN polymorphisms have been previously associated with variable serum vitamin D levels. The present study aimed to evaluate the role of LRP2 rs2228171 c.8614C > T and CUBN rs1801222 c.758A > G polymorphisms in OSAS susceptibility, independently or in synergy with vitamin D levels. METHODS: Vitamin D serum concentration of consecutive individuals was measured. PCR-RFLP was used for LRP2 rs2228171 and CUBN rs1801222 genotyping. RESULTS: A total of 176 individuals was enrolled, including 144 patients with OSAS and 32 controls. Frequency of LRP2 rs2228171 c.8614 T and CUBN rs1801222 c.758G alleles was estimated at 22.4% and 79.8%, respectively. LRP2 and CUBN polymorphisms were not associated with OSAS occurrence (rs2228171Τ allele: 22.9% in OSAS group vs. 20.3% in controls, p = 0.651; rs1801222A allele 19.4% in OSAS group vs. 23.4% in controls, p = 0.471). Frequency of CUBN rs1801222A allele carriers was increased in patients with moderate or severe OSAS compared to mild OSAS (p = 0.028). Patients with OSAS homozygous for LRP2 CC and CUBN GG genotypes had lower vitamin D serum concentration compared to controls carrying the same genotype (18.0 vs 27.0 ng/mL, p = 0.006 and 19.0 vs 27.5 ng/mL, p = 0.007, respectively). CONCLUSION: CUBN rs1801222 polymorphism may affect OSAS severity. Among other factors, low vitamin D concentration is associated with OSAS occurrence, irrespectively of LRP2 and CUBN polymorphisms.

11.
Int J Mol Sci ; 22(9)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066779

RESUMO

The mechanisms underlying the transport of leptin into the brain are still largely unclear. While the leptin receptor has been implicated in the transport process, recent evidence has suggested an additional role of LRP2 (megalin). To evaluate the function of LRP2 for leptin transport across the blood-brain barrier (BBB), we developed a novel leptin-luciferase fusion protein (pLG), which stimulated leptin signaling and was transported in an in vitro BBB model based on porcine endothelial cells. The LRP inhibitor RAP did not affect leptin transport, arguing against a role of LRP2. In line with this, the selective deletion of LRP2 in brain endothelial cells and epithelial cells of the choroid plexus did not influence bodyweight, body composition, food intake, or energy expenditure of mice. These findings suggest that LRP2 at the BBB is not involved in the transport of leptin into the brain, nor in the development of obesity as has previously been described.


Assuntos
Barreira Hematoencefálica/metabolismo , Leptina/metabolismo , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Animais , Sítios de Ligação , Composição Corporal , Peso Corporal , Células CHO , Plexo Corióideo/metabolismo , Cricetulus , Células Endoteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Luciferases/metabolismo , Masculino , Modelos Biológicos , Fosforilação , Transporte Proteico , Receptores para Leptina/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Suínos
12.
Int J Mol Sci ; 22(16)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34445520

RESUMO

Endocytic trafficking is an under-appreciated pathway in cardiac development. Several genes related to endocytic trafficking have been uncovered in a mutagenic ENU screen, in which mutations led to congenital heart defects (CHDs). In this article, we review the relationship between these genes (including LRP1 and LRP2) and cardiac neural crest cells (CNCCs) during cardiac development. Mice with an ENU-induced Lrp1 mutation exhibit a spectrum of CHDs. Conditional deletion using a floxed Lrp1 allele with different Cre drivers showed that targeting neural crest cells with Wnt1-Cre expression replicated the full cardiac phenotypes of the ENU-induced Lrp1 mutation. In addition, LRP1 function in CNCCs is required for normal OFT lengthening and survival/expansion of the cushion mesenchyme, with other cell lineages along the NCC migratory path playing an additional role. Mice with an ENU-induced and targeted Lrp2 mutation demonstrated the cardiac phenotype of common arterial trunk (CAT). Although there is no impact on CNCCs in Lrp2 mutants, the loss of LRP2 results in the depletion of sonic hedgehog (SHH)-dependent cells in the second heart field. SHH is known to be crucial for CNCC survival and proliferation, which suggests LRP2 has a non-autonomous role in CNCCs. In this article, other endocytic trafficking proteins that are associated with CHDs that may play roles in the NCC pathway during development, such as AP1B1, AP2B1, FUZ, MYH10, and HECTD1, are reviewed.


Assuntos
Etilnitrosoureia/efeitos adversos , Cardiopatias Congênitas/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Animais , Linhagem da Célula , Modelos Animais de Doenças , Endocitose , Cardiopatias Congênitas/induzido quimicamente , Camundongos , Mutação , Crista Neural/metabolismo , Transdução de Sinais
13.
FASEB J ; 33(6): 7684-7693, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30893561

RESUMO

Osteoblast differentiation of human mesenchymal stem cells (hMSCs) is stimulated by 1α,25-dihydroxycholecalciferol [1α,25(OH)2D3] and 25-hydroxycholecalciferol [25(OH)D3]; the latter's effects require intracellular hydroxylation to 1α,25(OH)2D3. Thus, hMSCs are both a source of and target for 1α,25(OH)2D3. Megalin is a transmembrane receptor for serum d-binding protein (DBP) in kidney cells and is required for uptake of the 25(OH)D3-DBP complex. We tested the hypothesis that megalin is required for D actions in hMSCs with cells from surgically discarded marrow for RT-PCR, for effects of 25(OH)D3 and 1α,25(OH)2D3, for 1α,25(OH)2D3 biosynthesis, for osteoblastogenesis, and for small interfering RNA for megalin (si-Meg) and control (si-Ctr). In hMSCs with high constitutive megalin expression, both 1α,25(OH)2D3 and 25(OH)D3 stimulated osteoblastogenesis (P < 0.05), but only 1α,25(OH)2D3 did so in hMSCs with lower megalin (lo-Meg, P < 0.001) or in si-Meg cells (P < 0.05). In addition, 1α,25(OH)2D3 biosynthesis was significantly lower in lo-Meg (46%, P = 0.034) and in si-Meg (23%, P < 0.001) than each control. Leptin significantly stimulated megalin expression 2.1-fold in lo-Meg cells (P < 0.01). These studies show that megalin is expressed in hMSCs and is required for the biosynthesis of 1α,25(OH)2D3 and for the 25(OH)D3/DBP complex to stimulate vitamin D receptor targets and osteoblastogenesis.-Gao, Y., Zhou, S., Luu, S., Glowacki, J. Megalin mediates 25-hydroxyvitamin D3 actions in human mesenchymal stem cells.


Assuntos
Calcifediol/farmacologia , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/fisiologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Idoso , Células Cultivadas , Meios de Cultura , Feminino , Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Leptina/farmacologia , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Masculino , Pessoa de Meia-Idade , Estudo de Prova de Conceito , RNA Interferente Pequeno/genética , Receptores de Calcitriol/metabolismo
14.
BMC Nephrol ; 21(1): 364, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32831033

RESUMO

BACKGROUND: Anti-low density lipoprotein receptor-related protein 2 (LRP2) nephropathy/anti-brush border antibody (ABBA) disease is a disorder characterized by acute tubulointerstitial injury associated with circulating antibodies to kidney proximal tubular brush border protein LRP2/megalin. Patients are typically elderly and present with acute kidney injury and subnephrotic proteinuria. They progress to end-stage renal disease with poor response to immunosuppressive therapies. CASE PRESENTATION: We report a case of a 29-year-old Chinese woman, who presented with nephrotic syndrome with normal kidney function. Kidney biopsy showed no obvious tubular injury or interstitial inflammation. Positive immunoglobulin G (IgG) staining was revealed along the brush border of proximal tubular cells. Anti-LRP2 antibody was identified in serum, consistent with a diagnosis of anti-LRP2 nephropathy. The patient achieved complete remission after receiving prednisone and cyclophosphamide. CONCLUSIONS: Anti-LRP2 nephropathy can also present as nephrotic syndrome in young patients and complete remission from nephrotic syndrome may be achieved after immunosuppressive therapy.


Assuntos
Autoanticorpos/imunologia , Glucocorticoides/uso terapêutico , Imunossupressores/uso terapêutico , Túbulos Renais Proximais/imunologia , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/imunologia , Síndrome Nefrótica/tratamento farmacológico , Adulto , Ciclofosfamida/uso terapêutico , Feminino , Humanos , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Microvilosidades/metabolismo , Síndrome Nefrótica/imunologia , Síndrome Nefrótica/patologia , Prednisolona/uso terapêutico , Indução de Remissão
16.
Am J Kidney Dis ; 74(1): 132-137, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30876746

RESUMO

In older adults, the most common kidney biopsy diagnoses include pauci-immune crescentic glomerulonephritis, membranous nephropathy, and focal segmental glomerulosclerosis. Recently, investigators described a small series of older patients (aged 66-80 years) with acute kidney injury and a kidney biopsy demonstrating tubular basement membrane (TBM) immune deposits of polytypic immunoglobulin G (IgG) and C3, acute tubular injury, and tubulointerstitial inflammation. They identified a circulating antibody against kidney tubular low-density lipoprotein (LDL) receptor-related protein 2 (LRP2; also known as megalin) in patients' sera and colocalization of LRP2 with IgG in TBM deposits. We present a rare case of anti-LRP2 nephropathy/anti-brush border antibody disease and describe the novel feature of abundant IgG4-positive interstitial plasma cells. Along with the combination of TBM deposits, tubulointerstitial nephritis (TIN), and segmental glomerular subepithelial immune deposits seen in both entities, this newly described feature adds to the morphologic overlap with IgG4-related TIN. Identification of large TBM deposits using light microscopy and IgG staining of apical aspects of proximal tubules using immunofluorescence microscopy can point to the correct diagnosis of anti-LRP2 nephropathy and prompt confirmatory studies. Particularly in older patients with immune complex-mediated TIN who lack clinical, laboratory, radiographic, and/or characteristic histologic features of IgG4-TIN or other autoimmune, infectious, or drug-related injury, a diagnosis of anti-LRP2 nephropathy should be considered.


Assuntos
Injúria Renal Aguda , Glomerulonefrite Membranosa/diagnóstico , Glomérulos Renais , Túbulos Renais , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/imunologia , Metilprednisolona/administração & dosagem , Nefrite Intersticial/diagnóstico , Diálise Renal/métodos , Rituximab/administração & dosagem , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/imunologia , Injúria Renal Aguda/patologia , Injúria Renal Aguda/terapia , Idoso de 80 Anos ou mais , Anticorpos/sangue , Biópsia/métodos , Diagnóstico Diferencial , Feminino , Humanos , Imunoglobulina G/imunologia , Imunossupressores/administração & dosagem , Glomérulos Renais/imunologia , Glomérulos Renais/patologia , Túbulos Renais/imunologia , Túbulos Renais/patologia , Plasmócitos/imunologia , Resultado do Tratamento
17.
BMC Neurosci ; 19(1): 2, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29370749

RESUMO

BACKGROUND: Alzheimer's disease (AD) is characterized by the deposition of amyloid-ß (Aß) in brain parenchyma and cerebral blood vessels as cerebral amyloid angiopathy (CAA). Clusterin, a chaperon protein associated with Aß aggregation, toxicity and transport through blood-brain barrier, may play a key role in the development of AD. Recently, clusterin peptide D-[113-122] was shown to mimic clusterin's function and exerted therapeutic effect in atherosclerosis. In this study, we investigated whether this clusterin peptide also affected (Aß) deposition in AD transgenic mouse. RESULTS: Using a micropump, synthetic peptide 113-122 of clusterin protein (20 µg/200 µl) was infused into the lateral ventricle of 8-month 5 × FAD transgenic mouse model (Tg6799), for 2 weeks. Water-maze testing showed an improved cognitive function of the Tg6799 mice treated with clusterin. Immunocytochemistry and quantitative analysis revealed that intraventricular (icv) administration of clusterin peptide in Tg6799 mouse reduced Aß plaques as well the severity of cerebral amyloid angiopathy. Enzyme-linked immunosorbent assay demonstrated a decreased in the soluble levels of Aß (Aß40 and Aß42) in the brain. Western-blot revealed an increased level of LRP-2 after clusterin peptide treatment. CONCLUSION: These results suggest that icv infusion of clusterin peptide D-[113-122] offers a promising therapeutic approach to reduce Aß deposition as well as CAA. The LRP2-mediated clearance system might be involved in the mechanism of these effects.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Barreira Hematoencefálica/efeitos dos fármacos , Angiopatia Amiloide Cerebral/tratamento farmacológico , Clusterina/farmacologia , Cognição/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Clusterina/administração & dosagem , Modelos Animais de Doenças , Infusões Intraventriculares , Camundongos Transgênicos
19.
Int J Mol Sci ; 19(9)2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30149579

RESUMO

High-grade serous epithelial ovarian cancer (HGSOC) is the fifth leading cause of cancer death in women and the first among gynecological malignancies. Despite an initial response to standard chemotherapy, most HGSOC patients relapse. To improve treatment options, we must continue investigating tumor biology. Tumor characteristics (e.g., risk factors and epidemiology) are valuable clues to accomplish this task. The two most frequent risk factors for HGSOC are the lifetime number of ovulations, which is associated with increased oxidative stress in the pelvic area caused by ovulation fluid, and a positive family history due to genetic factors. In the attempt to identify novel genetic factors (i.e., genes) associated with HGSOC, we observed that several genes in linkage with HGSOC are expressed in the ciliated cells of the fallopian tube. This finding made us hypothesize that ciliated cells, despite not being the cell of origin for HGSOC, may take part in HGSOC tumor initiation. Specifically, malfunction of the ciliary beat impairs the laminar fluid flow above the fallopian tube epithelia, thus likely reducing the clearance of oxidative stress caused by follicular fluid. Herein, we review the up-to-date findings dealing with HGSOC predisposition with the hypothesis that fallopian ciliated cells take part in HGSOC onset. Finally, we review the up-to-date literature concerning genes that are located in genomic loci associated with epithelial ovarian cancer (EOC) predisposition that are expressed by the fallopian ciliated cells.


Assuntos
Cistadenocarcinoma Seroso/etiologia , Cistadenocarcinoma Seroso/metabolismo , Tubas Uterinas/metabolismo , Mucosa/metabolismo , Neoplasias Ovarianas/etiologia , Neoplasias Ovarianas/metabolismo , Animais , Biomarcadores , Carcinoma Epitelial do Ovário/diagnóstico , Carcinoma Epitelial do Ovário/etiologia , Carcinoma Epitelial do Ovário/metabolismo , Cistadenocarcinoma Seroso/diagnóstico , Suscetibilidade a Doenças , Tubas Uterinas/patologia , Feminino , Predisposição Genética para Doença , Variação Genética , Humanos , Mucosa/patologia , Gradação de Tumores , Células-Tronco Neoplásicas/metabolismo , Oncogenes , Neoplasias Ovarianas/diagnóstico
20.
Dev Biol ; 415(2): 198-215, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-26875496

RESUMO

The Hedgehog signalling pathway plays a fundamental role in orchestrating normal craniofacial development in vertebrates. In particular, Sonic hedgehog (Shh) is produced in three key domains during the early formation of the head; neuroectoderm of the ventral forebrain, facial ectoderm and the pharyngeal endoderm; with signal transduction evident in both ectodermal and mesenchymal tissue compartments. Shh signalling from the prechordal plate and ventral midline of the diencephalon is required for appropriate division of the eyefield and forebrain, with mutation in a number of pathway components associated with Holoprosencephaly, a clinically heterogeneous developmental defect characterized by a failure of the early forebrain vesicle to divide into distinct halves. In addition, signalling from the pharyngeal endoderm and facial ectoderm plays an essential role during development of the face, influencing cranial neural crest cells that migrate into the early facial processes. In recent years, the complexity of Shh signalling has been highlighted by the identification of multiple novel proteins that are involved in regulating both the release and reception of this protein. Here, we review the contributions of Shh signalling during early craniofacial development, focusing on Hedgehog receptor function and describing the consequences of disruption for inherited anomalies of this region in both mouse models and human populations.


Assuntos
Anormalidades Craniofaciais/embriologia , Proteínas Hedgehog/fisiologia , Desenvolvimento Maxilofacial/fisiologia , Receptores Patched/fisiologia , Transdução de Sinais , Animais , Movimento Celular , Cílios/fisiologia , Ciliopatias/embriologia , Ciliopatias/genética , Ciliopatias/fisiopatologia , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/fisiopatologia , Diencéfalo/embriologia , Modelos Animais de Doenças , Ectoderma/embriologia , Endoderma/embriologia , Face/anormalidades , Face/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Holoprosencefalia/embriologia , Holoprosencefalia/genética , Holoprosencefalia/fisiopatologia , Humanos , Desenvolvimento Maxilofacial/genética , Proteínas de Membrana/fisiologia , Crista Neural/citologia , Crista Neural/embriologia , Receptores Patched/genética , Transdução de Sinais/genética , Crânio/anormalidades , Crânio/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA