Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Periodontol ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38660744

RESUMO

AIM: This prospective study investigated the salivary proteome before and after periodontal therapy. MATERIALS AND METHODS: Ten systemically healthy, non-smoking, stage III, grade C periodontitis patients underwent non-surgical periodontal treatment. Full-mouth periodontal parameters were measured, and saliva (n = 30) collected pre- (T0), and one (T1) and six (T6) months post-treatment. The proteome was investigated by label-free quantitative proteomics. Protein expression changes were modelled over time, with significant protein regulation considered at false discovery rate <0.05. RESULTS: Treatment significantly reduced bleeding scores, percentages of sites with pocket depth ≥5 mm, plaque and gingival indexes. One thousand seven hundred and thirteen proteins were identified and 838 proteins (human = 757, bacterial = 81) quantified (≥2 peptides). At T1, 80 (T1 vs. T0: 60↑:20↓), and at T6, 118 human proteins (T6 vs. T0: 67↑:51↓) were regulated. The salivary proteome at T6 versus T1 remained stable. Highest protein activity post- versus pre-treatment was observed for cellular movement and inflammatory response. The small proline-rich protein 3 (T1 vs. T0: 5.4-fold↑) and lymphocyte-specific protein 1 (T6 vs. T0: 4.6-fold↓) were the top regulated human proteins. Proteins from Neisseria mucosa and Treponema socranskii (T1 vs. T0: 8.0-fold↓, 4.9-fold↓) were down-regulated. CONCLUSIONS: Periodontal treatment reduced clinical disease parameters and these changes were reflected in the salivary proteome. This underscores the potential of utilizing saliva biomarkers as prognostic tools for monitoring treatment outcomes.

2.
Clin Proteomics ; 20(1): 15, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024778

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the major causes of cancer-related death worldwide. Although commercial biomarkers of CRC are currently available, they are still lacking in terms of sensitivity and specificity; thus, searching for reliable blood-based biomarkers are important for the primary screening of CRC. METHODS: Plasma samples of patients with non-metastatic (NM) and metastatic (M) CRC and healthy controls were fractionated using MARS-14 immunoaffinity chromatography. The flow-through and elute fractions representing low- and high-abundant proteins, respectively, were analyzed by label-free quantitative proteomics mass spectrometry. The functional analysis of the proteins with greater than 1.5-fold differential expression level between the CRC and the healthy control groups were analyzed for their biological processes and molecular functions. In addition, the levels of plasma proteins showing large alterations in CRC patients were confirmed by immunoblotting using two independent cohorts. Moreover, receiver operating characteristic (ROC) curve analysis was performed for individual and combinations of biomarker candidates so as to evaluate the diagnostic performance of biomarker candidates. RESULTS: From 163 refined identifications, five proteins were up-regulated and two proteins were down-regulated in NM-CRC while eight proteins were up-regulated and three proteins were down-regulated in M-CRC, respectively. Altered plasma proteins in NM-CRC were mainly involved in complement activation, while those in M-CRC were clustered in acute-phase response, complement activation, and inflammatory response. Results from the study- and validation-cohorts indicate that the levels of leucine-rich alpha-2-glycoprotein-1(LRG), complement component C9 (C9), alpha-1-acid glycoprotein 1 (AGP1), and alpha-1-antitrypsin (A1AT) were statistically increased, while fibronectin (FN) level was statistically decreased in CRC patients compared to healthy controls, with most alterations found in a metastatic stage-dependent manner. ROC analysis revealed that FN exhibited the best diagnostic performance to discriminate CRC patients and healthy controls while AGP1 showed the best discrimination between the disease stages in both cohorts. The combined biomarker candidates, FN + A1AT + AGP1, exhibited perfect discriminatory power to discriminate between the CRC population and healthy controls whereas LRG + A1AT + AGP1 was likely to be the best panel to discriminate the metastatic stages in both cohorts. CONCLUSIONS: This study identified and quantified distinct plasma proteome profiles of CRC patients. Selected CRC biomarker candidates including FN, LRG, C9, A1AT, and AGP1 may be further applied for screening larger cohorts including disease groups from other types of cancer or other diseases.

3.
Mol Cell Proteomics ; 20: 100005, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33177156

RESUMO

Modulation of the host cell is integral to the survival and replication of microbial pathogens. Several intracellular bacterial pathogens deliver bacterial proteins, termed "effector proteins" into the host cell during infection by sophisticated protein translocation systems, which manipulate cellular processes and functions. The functional contribution of individual effectors is poorly characterized, particularly in intracellular bacterial pathogens with large effector protein repertoires. Technical caveats have limited the capacity to study these proteins during a native infection, with many effector proteins having only been demonstrated to be translocated during over-expression of tagged versions. Here, we developed a novel strategy to examine effector proteins in the context of infection. We coupled a broad, unbiased proteomics-based screen with organelle purification to study the host-pathogen interactions occurring between the host cell mitochondrion and the Gram-negative, Q fever pathogen Coxiella burnetii. We identify four novel mitochondrially-targeted C. burnetii effector proteins, renamed Mitochondrial Coxiella effector protein (Mce) B to E. Examination of the subcellular localization of ectopically expressed proteins confirmed their mitochondrial localization, demonstrating the robustness of our approach. Subsequent biochemical analysis and affinity enrichment proteomics of one of these effector proteins, MceC, revealed the protein localizes to the inner membrane and can interact with components of the mitochondrial quality control machinery. Our study adapts high-sensitivity proteomics to study intracellular host-pathogen interactions, providing a robust strategy to examine the subcellular localization of effector proteins during native infection. This approach could be applied to a range of pathogens and host cell compartments to provide a rich map of effector dynamics throughout infection.


Assuntos
Proteínas de Bactérias/metabolismo , Coxiella burnetii/fisiologia , Interações Hospedeiro-Patógeno , Mitocôndrias/metabolismo , Mitocôndrias/microbiologia , Células HEK293 , Células HeLa , Humanos , Proteoma , Proteômica , Febre Q , Células THP-1
4.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36901944

RESUMO

Aldo-keto reductase family 1 member C3 (AKR1C3) plays an important role in prostate cancer (PCa) progression, particularly in castration-resistant prostate cancer (CRPC). It is necessary to establish a genetic signature associated with AKR1C3 that can be used to predict the prognosis of PCa patients and provide important information for clinical treatment decisions. AKR1C3-related genes were identified via label-free quantitative proteomics of the AKR1C3-overexpressing LNCaP cell line. A risk model was constructed through the analysis of clinical data, PPI, and Cox-selected risk genes. Cox regression analysis, Kaplan-Meier (K-M) curves, and receiver operating characteristic (ROC) curves were used to verify the accuracy of the model, and two external datasets were used to verify the reliability of the results. Subsequently, the tumor microenvironment and drug sensitivity were explored. Moreover, the roles of AKR1C3 in the progression of PCa were verified in LNCaP cells. MTT, colony formation, and EdU assays were conducted to explore cell proliferation and drug sensitivity to enzalutamide. Migration and invasion abilities were measured using wound-healing and transwell assays, and qPCR was used to assess the expression levels of AR target genes and EMT genes. CDC20, SRSF3, UQCRH, INCENP, TIMM10, TIMM13, POLR2L, and NDUFAB1 were identified as AKR1C3-associated risk genes. These risk genes, established using the prognostic model, can effectively predict the recurrence status, immune microenvironment, and drug sensitivity of PCa. Tumor-infiltrating lymphocytes and several immune checkpoints that promote cancer progression were higher in high-risk groups. Furthermore, there was a close correlation between the sensitivity of PCa patients to bicalutamide and docetaxel and the expression levels of the eight risk genes. Moreover, through in vitro experiments, Western blotting confirmed that AKR1C3 enhanced SRSF3, CDC20, and INCENP expression. We found that PCa cells with a high expression of AKR1C3 have high proliferation ability and high migration ability and were insensitive to enzalutamide. AKR1C3-associated genes had a significant role in the process of PCa, immune responses, and drug sensitivity and offer the potential for a novel model for prognostic prediction in PCa.


Assuntos
Neoplasias da Próstata , Proteômica , Masculino , Humanos , Reprodutibilidade dos Testes , Linhagem Celular Tumoral , Neoplasias da Próstata/metabolismo , Microambiente Tumoral , Membro C3 da Família 1 de alfa-Ceto Redutase , Fatores de Processamento de Serina-Arginina
5.
Int J Mol Sci ; 25(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38203496

RESUMO

Diapause, an adaptative strategy for survival under harsh conditions, is a dynamic multi-stage process. Bombus terrestris, an important agricultural pollinator, is declining in the wild, but artificial breeding is possible by imitating natural conditions. Mated queen bees enter reproductive diapause in winter and recover in spring, but the regulatory mechanisms remain unclear. Herein, we conducted a comparative 4D label-free proteomic analysis of queen bees during artificial breeding at seven timepoints, including pre-diapause, diapause, and post-diapause stages. Through bioinformatics analysis of proteomic and detection of substance content changes, our results found that, during pre-diapause stages, queen bees had active mitochondria with high levels of oxidative phosphorylation, high body weight, and glycogen and TAG content, all of which support energy consumption during subsequent diapause. During diapause stages, body weight and water content were decreased but glycerol increased, contributing to cold resistance. Dopamine content, immune defense, and protein phosphorylation were elevated, while fat metabolism, protein export, cell communication, signal transduction, and hydrolase activity decreased. Following diapause termination, JH titer, water, fatty acid, and pyruvate levels increased, catabolism, synaptic transmission, and insulin signaling were stimulated, ribosome and cell cycle proteins were upregulated, and cell proliferation was accelerated. Meanwhile, TAG and glycogen content decreased, and ovaries gradually developed. These findings illuminate changes occurring in queen bees at different diapause stages during commercial production.


Assuntos
Diapausa , Proteômica , Abelhas , Animais , Peso Corporal , Glicogênio , Água
6.
J Obstet Gynaecol ; 43(2): 2259982, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37743728

RESUMO

BACKGROUND: Preeclampsia (PE) is a serious pregnancy complication, resulting in potentially life-threatening conditions for both mother and foetus. It is worth noting that early-onset PE has become a great challenge for clinicians due to its complex manifestation, rapid progression and serious complications. This study aims to investigate differential serum proteome profiles in patients with early-onset PE. METHODS: Each serum sample was separated using a nanoliter flow rate Easy-nLC chromatography system. Then the samples were analysed by mass spectrometry. Bioinformatics analyses were conducted to analyse the functional categories or signal transduction pathways for differentially abundant proteins. Key proteins identified by mass spectrometry were verified by ELISA. RESULTS: We found 30 and 34 proteins were upregulated and downregulated in early-onset PE patients (n = 3) vs controls (n = 3), respectively. Functional enrichment analysis revealed differentially expressed proteins related to the immune response and regulation of peptidase activity. ELISA confirmed that there were lower CSH1 levels and higher LPA concentrations in the serum samples of early-onset PE patients (n = 22) than in healthy controls (n = 19) (p < 0.05 for CSH1 and p < 0.001 for LPA). CONCLUSIONS: This study revealed the critical features of serum proteins in early-onset PE patients. LPA and CSH1 may serve as biomarkers for early-onset PE diagnosis and therapy.


Early-onset preeclampsia (PE) is still lacking definitive diagnostic or therapeutic strategies. Thus, we tried to identify effective and specific biomarkers for early-onset PE. In this study, we explored the serum protein profiles through the approach of label-free quantitation proteomics between early-onset PE patients and healthy controls. We identified 64 differentially expressed proteins in early-onset PE patients' serum samples. These differentially expressed proteins are associated with the immune response and regulation of peptidase activity. In addition, our findings suggest that LPA and CSH1 may serve as candidate biomarkers for early-onset PE diagnosis and therapy. These results may help physicians to diagnose early-onset PE clinically. What's more, our findings provide new insights into the onset and progression of early-onset PE disease.


Assuntos
Pré-Eclâmpsia , Gravidez , Feminino , Humanos , Pré-Eclâmpsia/diagnóstico , Proteômica/métodos , Espectrometria de Massas , Biomarcadores , Proteínas Sanguíneas
7.
Fish Shellfish Immunol ; 127: 585-593, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35803507

RESUMO

Lysine succinylation is a novel protein post-translational modification associated with the regulation of a variety of cellular processes. Post-translational modifications may regulate the immune response of Pinctada fucata martensii, a marine bivalve used to produce cultured pearls, in response to the surgical implantation of the seed pearl. This allograft-induced stress response may lead to transplant rejection or host death. However, the regulatory effects of post-translational modifications following nucleus insertion surgery in P.f. martensii remain largely unknown. Here, we used 4D label-free quantitative proteomics (4D-LFQ) with LC-MS/MS to explore the effects of nucleus implantation on lysine succinylation in P.f. martensii. We identified 4430 succinylated sites on 964 succinylated proteins in P.f. martensii after nucleus insertion surgery, and seven conserved motifs were identified upstream and downstream of these sites. In total, 269 succinylation sites were differentially expressed in response to implantation (|fold-change| > 1.5 and FDR <1%; 211 upregulation and 58 downregulation), corresponding to 163 differentially expressed succinylated proteins (DESPs; 124 upregulated and 39 downregulated). The terms over-enriched in the DESPs included "cellular processes", "metabolic pathways", and "binding activity", while the significantly enriched pathways included "ECM-receptor interaction", "PI3K-Akt signaling", and "focal adhesion". "EGF-like structural domains", "platelet-responsive protein type 1 structural domains", and "laminin EGF-like (domains III and V) domains" were overrepresented in the DESPs. Parallel reaction-monitoring (PRM) analysis validated 13 DESPs from the proteomics data. The succinylome of P.f. martensii (generated here for the first time) helps to clarify the biological role of large-scale succinylation in this bivalve after nucleus insertion surgery, providing a theoretical basis for further investigations of stress-induced post-translational modifications in other mollusks and extending our knowledge of the molluscan succinylated proteome.


Assuntos
Pinctada , Aloenxertos , Animais , Cromatografia Líquida , Fator de Crescimento Epidérmico , Lisina , Fosfatidilinositol 3-Quinases , Espectrometria de Massas em Tandem
8.
Molecules ; 27(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35164377

RESUMO

Plant extracts have shown beneficial properties in terms of skin repair, promoting wound healing through a plethora of mechanisms. In particular, the poly-/oligosaccharidic aqueous extract of Triticum vulgare (TVE), as well as TVE-based products, shows interesting biological assets, hastening wound repair. Indeed, TVE acts in the treatment of tissue regeneration mainly on decubitus and venous leg ulcers. Moreover, on scratched monolayers, TVE prompts HaCat cell migration, correctly modulating the expression of metalloproteases toward a physiological matrix remodeling. Here, using the same HaCat-based in vitro scratch model, the TVE effect has been investigated thanks to an LFQ proteomic analysis of HaCat secretomes and immunoblotting. Indeed, the unbiased TVE effect on secreted proteins has not yet been fully understood, and it could be helpful to obtain a comprehensive picture of its bio-pharmacological profile. It has emerged that TVE treatment induces significant up-regulation of several proteins in the secretome (153 to be exact) whereas only a few were down-regulated (72 to be exact). Interestingly, many of the up-regulated proteins are implicated in promoting wound-healing-related processes, such as modulating cell-cell interaction and communication, cell proliferation and differentiation, and prompting cell adhesion and migration.


Assuntos
Queratinócitos/metabolismo , Extratos Vegetais/farmacologia , Proteoma/metabolismo , Proteômica/métodos , Triticum/química , Cicatrização , Diferenciação Celular , Movimento Celular , Proliferação de Células , Humanos , Queratinócitos/efeitos dos fármacos , Proteoma/análise
9.
Proteomics ; 21(2): e2000072, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33025732

RESUMO

Escherichia coli and Shigella spp. causing illnesses in humans represent a genotypically and phenotypically diverse group of pathogens. Although E. coli diversity has been studied by comparative genomics, the intra-species variation at the proteome level is currently unknown. The proteomes of 16 pathogenic E. coli, 2 non-pathogenic E. coli, and 5 Shigella strains originating from 18 phylogenetic lineages are investigated. By applying label-free quantitative proteomics on trypsin-digested cell extracts from bacteria grown on blood agar, 4018 proteins are detected, 3285 of which arequantified, and 261 represented virulence factors. Of 753 proteins quantified in all strains, the levels of 153 vary substantially between strains and are functionally associated mostly with stress response and peripheral metabolism. The levels of proteins associated with the central metabolism vary considerably less than the levels of proteins from other metabolic pathways. Hierarchical clustering analysis based on the protein levels results in strains grouping that differ from that obtained by gene-based phylogenetic analysis. Finally, strains of some E. coli pathotypes have more similar protein profiles even when the strains are not genetically closely related. The results suggest that the degree of genetic relatedness may not necessarily be a good predictor of E. coli phenotypic characteristics.


Assuntos
Escherichia coli , Shigella , Infecções por Escherichia coli , Proteínas de Escherichia coli/genética , Humanos , Filogenia , Proteômica
10.
Proteomics ; 21(2): e2000003, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33108051

RESUMO

The degradation of aromatic compounds comprises an important step in the removal of pollutants and re-utilization of plastics and other non-biological polymers. Here, Pseudomonas sp. strain phDV1, a gram-negative bacterium that is selected for its ability to degrade aromatic compounds is studied. In order to understand how the aromatic compounds and their degradation products are reintroduced in the metabolism of the bacteria and the systematic/metabolic response of the bacterium to the new carbon source, the proteome of this strain is analyzed in the presence of succinate, phenol, and o-, m-, and p-cresol as the sole carbon source. As a reference proteome, the bacteria are grown in succinate and then compared with the respective proteomes of bacteria grown on phenol and different cresols. In total, 2295 proteins are identified; 1908 proteins are used for quantification between different growth conditions. The carbon source affects the synthesis of enzymes related to aromatic compound degradation and in particular the enzyme involved in the meta-pathway of monocyclic aromatic compounds degradation. In addition, proteins involved in the production of polyhydroxyalkanoate (PHA), an attractive biomaterial, show higher abundance in the presence of monocyclic aromatic compounds. The results provide, for the first time, comprehensive information on the proteome response of this strain to monocyclic aromatic compounds.


Assuntos
Proteômica , Pseudomonas , Proteínas de Bactérias , Biodegradação Ambiental , Fenol , Proteoma
11.
BMC Biotechnol ; 21(1): 43, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301236

RESUMO

BACKGROUND: The ability to achieve high peak viable cell density earlier in CHO cell culture and maintain an extended cell viability throughout the production process is highly desirable to increase recombinant protein yields, reduce host cell impurities for downstream processing and reduce the cost of goods. In this study we implemented label-free LC-MS/MS proteomic profiling of IgG4 producing CHO cell lines throughout the duration of the cell culture to identify differentially expressed (DE) proteins and intracellular pathways associated with the high peak viable cell density (VCD) and extended culture VCD phenotypes. RESULTS: We identified key pathways in DNA replication, mitotic cell cycle and evasion of p53 mediated apoptosis in high peak VCD clonally derived cell lines (CDCLs). ER to Golgi vesicle mediated transport was found to be highly expressed in extended culture VCD CDCLs while networks involving endocytosis and oxidative stress response were significantly downregulated. CONCLUSION: This investigation highlights key pathways for targeted engineering to generate desirable CHO cell phenotypes for biotherapeutic production.


Assuntos
Células CHO/química , Células CHO/citologia , Proliferação de Células , Proteínas/genética , Animais , Células CHO/metabolismo , Ciclo Celular , Cromatografia Líquida , Cricetinae , Cricetulus , Imunoglobulina G , Fenótipo , Proteínas/química , Proteínas/metabolismo , Proteoma/química , Proteoma/genética , Proteoma/metabolismo , Proteômica , Espectrometria de Massas em Tandem
12.
Proteome Sci ; 19(1): 6, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33810819

RESUMO

BACKGROUND: Spotted stem borer- Chilo partellus - a Lepidopteran insect pest of Sorghum bicolor is responsible for major economic losses. It is an oligophagous pest, which bores through the plant stem, causing 'deadheart' and hampering the development of the main cob. We applied a label-free quantitative proteomics approach on three genotypes of S. bicolor with differential resistance/ susceptibility to insect pests, intending to identify the S. bicolor's systemic protein complement contributing to C. partellus tolerance. METHODS: The proteomes of S. bicolor with variable resistance to insect pests, ICSV700, IS2205 (resistant) and Swarna (susceptible) were investigated and compared using label-free quantitative proteomics to identify putative leaf proteins contributing to resistance to C. partellus. RESULTS: The multivariate analysis on a total of 967 proteins led to the identification of proteins correlating with insect resistance/susceptibility of S. bicolor. Upon C. partellus infestation S. bicolor responded by suppression of protein and amino acid biosynthesis, and induction of proteins involved in maintaining photosynthesis and responding to stresses. The gene ontology analysis revealed that C. partellus-responsive proteins in resistant S. bicolor genotypes were mainly involved in stress and defense, small molecule biosynthesis, amino acid metabolism, catalytic and translation regulation activities. At steady-state, the resistant S. bicolor genotypes displayed at least two-fold higher numbers of unique proteins than the susceptible genotype Swarna, mostly involved in catalytic activities. Gene expression analysis of selected candidates was performed on S. bicolor by artificial induction to mimic C. partellus infestation. CONCLUSION: The collection of identified proteins differentially expressed in resistant S. bicolor, are interesting candidates for further elucidation of their role in defense against insect pests.

13.
Proteome Sci ; 19(1): 4, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750393

RESUMO

BACKGROUND: Escherichia coli (E. coli) is the principal pathogen that causes biofilm formation. Biofilms are associated with infectious diseases and antibiotic resistance. This study employed proteomic analysis to identify differentially expressed proteins after coculture of E. coli with Lactobacillus rhamnosus GG (LGG) microcapsules. METHODS: To explore the relevant protein abundance changes after E. coli and LGG coculture, label-free quantitative proteomic analysis and qRT-PCR were applied to E. coli and LGG microcapsule groups before and after coculture, respectively. RESULTS: The proteomic analysis characterised a total of 1655 proteins in E. coli K12MG1655 and 1431 proteins in the LGG. After coculture treatment, there were 262 differentially expressed proteins in E. coli and 291 in LGG. Gene ontology analysis showed that the differentially expressed proteins were mainly related to cellular metabolism, the stress response, transcription and the cell membrane. A protein interaction network and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis indicated that the differentiated proteins were mainly involved in the protein ubiquitination pathway and mitochondrial dysfunction. CONCLUSIONS: These findings indicated that LGG microcapsules may inhibit E. coli biofilm formation by disrupting metabolic processes, particularly in relation to energy metabolism and stimulus responses, both of which are critical for the growth of LGG. Together, these findings increase our understanding of the interactions between bacteria under coculture conditions.

14.
Biotechnol Lett ; 43(4): 919-932, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33502659

RESUMO

OBJECTIVES: To identify proteins that may be associated with antibiotic resistance in the multidrug-resistant Salmonella enterica D14, by constructing proteomic profiles using mass spectrometry-based label-free quantitative proteomics (LFQP). RESULTS: D14 was cultured with four antibiotics (ampicillin, nalidixic acid, streptomycin, and tetracycline) separately. Subsequently, the findings from an equal combination of the four cultures were compared with the profile of sensitive S. enterica 104. 2255 proteins, including 149 differentially up-regulated proteins, were identified. Many of these up-regulated proteins were associated with flagellar assembly and chemotaxis, two-component system, amino acid metabolism, ß-lactam resistance, and transmembrane transport. A subset of 10 genes was evaluated via quantitative real-time PCR (qPCR), followed by the construction of cheR, fliS, fliA, arnA, and yggT deletion mutants. Only the yggT-deleted D14 mutant showed decrease in streptomycin resistance, whereas the other deletions had no effect. Furthermore, complementation of yggT and the overexpression of yggT in S. enterica ATCC 14028 increased the streptomycin resistance. Additionally, spot dilution assay results confirmed that Salmonella strains, harboring yggT, exhibited an advantage in the presence of streptomycin. CONCLUSIONS: The above proteomic and mutagenic analyses revealed that yggT is involved in streptomycin resistance in S. enterica.


Assuntos
Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla , Proteômica/métodos , Salmonella enteritidis/crescimento & desenvolvimento , Estreptomicina/farmacologia , Proteínas de Bactérias/genética , Cromatografia Líquida , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Mutação , Salmonella enteritidis/efeitos dos fármacos , Salmonella enteritidis/genética , Salmonella enteritidis/metabolismo , Espectrometria de Massas em Tandem
15.
Biotechnol Lett ; 43(8): 1551-1563, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34131805

RESUMO

OBJECTIVES: We used miRNA and proteomic profiling to understand intracellular pathways that contribute to high and low specific productivity (Qp) phenotypes in CHO clonally derived cell lines (CDCLs) from the same cell line generation project. RESULTS: Differentially expressed (DE) miRNAs were identified which are predicted to target several proteins associated with protein folding. MiR-200a was found to have a number of predicted targets associated with the unfolded protein response (UPR) which were shown to have decreased expression in high Qp CDCLs and have no detected change at the mRNA level. MiR-200a overexpression in a CHO CDCL was found to increase recombinant protein titer by 1.2 fold and Qp by 1.8 fold. CONCLUSION: These results may suggest a role for miR-200a in post-transcriptional regulation of the UPR, presenting miR-200a as a potential target for engineering industrially attractive CHO cell phenotypes.


Assuntos
Fragmentos Fc das Imunoglobulinas , MicroRNAs , Proteínas Recombinantes de Fusão , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/metabolismo , MicroRNAs/química , MicroRNAs/genética , MicroRNAs/metabolismo , Dobramento de Proteína , Proteômica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
16.
Anaerobe ; 72: 102449, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34543761

RESUMO

BACKGROUND: The opportunistic pathogens Fusobacterium nucleatum and Porphyromonas gingivalis are Gram-negative bacteria associated with oral biofilm and periodontal disease. This study investigated interactions between F. nucleatum and P. gingivalis proteomes with the objective to identify proteins relevant in biofilm formation. METHODS: We applied liquid chromatography-tandem mass spectrometry to determine the expressed proteome of F. nucleatum and P. gingivalis cells grown in biofilm or planktonic culture, and as mono- and dual-species models. The detected proteins were classified into functional categories and their label-free quantitative (LFQ) intensities statistically compared. RESULTS: The proteomic analyses detected 1,322 F. nucleatum and 966 P. gingivalis proteins, including abundant virulence factors. Using univariate statistics, we identified significant changes between biofilm and planktonic culture (p-value ≤0.05) in 0,4% F. nucleatum, 7% P. gingivalis, and 14% of all proteins in the dual-species model. For both species, proteins involved in vitamin B2 (riboflavin) metabolism had significantly increased levels in biofilm. In both mono- and dual-species biofilms, P. gingivalis increased the production of proteins for translation, oxidation-reduction, and amino acid metabolism compared to planktonic cultures. However, when we compared LFQ intensities between mono- and dual-species, over 90% of the significantly changed P. gingivalis proteins had their levels reduced in biofilm and planktonic settings of the dual-species model. CONCLUSIONS: The findings suggest that P. gingivalis reduces the production of multiple proteins because of the F. nucleatum presence. The results highlight the complex interactions of bacteria contributing to oral biofilms, which need to be considered in the design of prevention strategies.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Bacteroidaceae/microbiologia , Biofilmes , Infecções por Fusobacterium/microbiologia , Fusobacterium nucleatum/metabolismo , Porphyromonas gingivalis/metabolismo , Proteoma , Proteômica/métodos , Cromatografia Líquida , Biologia Computacional/métodos , Análise de Dados , Humanos , Espectrometria de Massas , Microbiota , Boca/microbiologia , Fatores de Virulência
17.
Proteomics ; 20(2): e1900290, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31874121

RESUMO

Mass spectrometry-based proteomics enables the unbiased and sensitive profiling of cellular proteomes and extracellular environments. Recent technological and bioinformatic advances permit identifying dual biological systems in a single experiment, supporting investigation of infection from both the host and pathogen perspectives. At the ocular surface, Pseudomonas aeruginosa is commonly associated with biofilm formation and inflammation of the ocular tissues, causing damage to the eye. The interaction between P. aeruginosa and the immune system at the site of infection describes limitations in clearance of infection and enhanced pathogenesis. Here, the extracellular environment (eye wash) of murine ocular surfaces infected with a clinical isolate of P. aeruginosa is profiled and neutrophil marker proteins are detected, indicating neutrophil recruitment to the site of infection. The first potential diagnostic markers of P. aeruginosa-associated keratitis are also identified. In addition, the deepest murine corneal proteome to date is defined and proteins, categories, and networks critical to the host response are detected. Moreover, the first identification of bacterial proteins attached to the ocular surface is reported. The findings are validated through in silico comparisons and enzymatic profiling. Overall, the work provides comprehensive profiling of the host-pathogen interface and uncovers differences between general and site-specific host responses to infection.


Assuntos
Neutrófilos/metabolismo , Proteômica/métodos , Infecções por Pseudomonas/metabolismo , Animais , Córnea/metabolismo , Córnea/microbiologia , Ceratite/metabolismo , Ceratite/microbiologia , Camundongos , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade
18.
Clin Proteomics ; 16: 12, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30988666

RESUMO

BACKGROUND: Esophageal cancer (EC) is one of the malignant tumors with a poor prognosis. The early stage of EC is asymptomatic, so identification of cancer biomarkers is important for early detection and clinical practice. METHODS: In this study, we compared the protein expression profiles in esophageal squamous cell carcinoma (ESCC) tissues and adjacent normal esophageal tissues from five patients through high-resolution label-free mass spectrometry. Through bioinformatics analysis, we found the differentially expressed proteins of ESCC. To perform the rapid identification of biomarkers, we adopted a high-throughput protein identification technique of Quantitative Dot Blot (QDB). Meanwhile, the QDB results were verified by classical immunohistochemistry. RESULTS: In total 2297 proteins were identified, out of which 308 proteins were differentially expressed between ESCC tissues and normal tissues. By bioinformatics analysis, the four up-regulated proteins (PTMA, PAK2, PPP1CA, HMGB2) and the five down-regulated proteins (Caveolin, Integrin beta-1, Collagen alpha-2(VI), Leiomodin-1 and Vinculin) were selected and validated in ESCC by Western Blot. Furthermore, we performed the QDB and IHC analysis in 64 patients and 117 patients, respectively. The PTMA expression was up-regulated gradually along the progression of ESCC, and the PTMA expression ratio between tumor and adjacent normal tissue was significantly increased along with the progression. Therefore, we suggest that PTMA might be a potential candidate biomarker for ESCC. CONCLUSION: In this study, label-free quantitative proteomics combined with QDB revealed that PTMA expression was up-regulated in ESCC tissues, and PTMA might be a potential candidate for ESCC. Since Western Blot cannot achieve rapid and high-throughput screening of mass spectrometry results, the emergence of QDB meets this demand and provides an effective method for the identification of biomarkers.

19.
Mol Cell Biochem ; 451(1-2): 1-10, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29934862

RESUMO

Endocardial endothelium, which lines the chambers of the heart, is distinct in its origin, structure, and function. Characterization studies using genomics and proteomics have reported molecular signatures supporting the structural and functional heterogeneity of various endothelial cells. However, though functionally very important, no studies at protein level have been conducted so far characterizing endocardial endothelium. In this study, we used endothelial cells from pig heart to investigate if endocardial endothelial cells are distinct at the proteome level. Using a high-throughput liquid chromatography-tandem mass spectrometry for proteome profiling and expression, we identified sets of proteins that belong to specific biological processes and metabolic pathways in endocardial endothelial cells supporting its specific structural and functional roles. The study also identified several transcription factors and cell surface markers, which may have roles in the specificity of endocardial endothelium. The detection of sets proteins preferentially expressed in endocardial endothelium offers new insights into its role in the regulation of cardiac function. Data are made available through ProteomeXchange with identifier PXD009194.


Assuntos
Biomarcadores/metabolismo , Endocárdio/metabolismo , Endotélio Vascular/metabolismo , Proteoma/análise , Proteômica/métodos , Animais , Endocárdio/citologia , Endotélio Vascular/citologia , Masculino , Suínos
20.
Mar Drugs ; 17(6)2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31234367

RESUMO

The acceleration of the process of understanding the pharmacological application of new marine bioactive compounds requires identifying the compound protein targets leading the molecular mechanisms in a living cell. The thermal proteome profiling (TPP) methodology does not fulfill the requirements for its application to any bioactive compound lacking chemical and functional characterization. Here, we present a modified method that we called bTPP for bioactive thermal proteome profiling that guarantees target specificity from a soluble subproteome. We showed that the precipitation of the microsomal fraction before the thermal shift assay is crucial to accurately calculate the melting points of the protein targets. As a probe of concept, the protein targets of 132-hydroxy-pheophytin, a compound previously isolated from a marine cyanobacteria for its lipid reducing activity, were analyzed on the hepatic cell line HepG2. Our improved method identified 9 protein targets out of 2500 proteins, including 3 targets (isocitrate dehydrogenase, aldehyde dehydrogenase, phosphoserine aminotransferase) that could be related to obesity and diabetes, as they are involved in the regulation of insulin sensitivity and energy metabolism. This study demonstrated that the bTPP method can accelerate the field of biodiscovery, revealing protein targets involved in mechanisms of action (MOA) connected with future applications of bioactive compounds.


Assuntos
Organismos Aquáticos/metabolismo , Cianobactérias/metabolismo , Feofitinas/metabolismo , Proteoma/metabolismo , Bioensaio/métodos , Linhagem Celular Tumoral , Células Hep G2 , Humanos , Lipídeos , Proteômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA