Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Sensors (Basel) ; 24(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38793972

RESUMO

Delamination represents one of the most significant and dangerous damages in composite plates. Recently, many papers have presented the capability of structural health monitoring (SHM) techniques for the investigation of structural delamination with various shapes and thickness depths. However, few studies have been conducted regarding the utilization of convolutional neural network (CNN) methods for automating the non-destructive testing (NDT) techniques database to identify the delamination size and depth. In this paper, an automated system qualified for distinguishing between pristine and damaged structures and classifying three classes of delamination with various depths is presented. This system includes a proposed CNN model and the Lamb wave technique. In this work, a unidirectional composite plate with three samples of delamination inserted at different depths was prepared for numerical and experimental investigations. In the numerical part, the guided wave propagation and interaction with three samples of delamination were studied to observe how the delamination depth can affect the scattered and trapped waves over the delamination region. This numerical study was validated experimentally using an efficient ultrasonic guided waves technique. This technique involved piezoelectric wafer active sensors (PWASs) and a scanning laser Doppler vibrometer (SLDV). Both numerical and experimental studies demonstrate that the delamination depth has a direct effect on the trapped waves' energy and distribution. Three different datasets were collected from the numerical and experimental studies, involving the numerical wavefield image dataset, experimental wavefield image dataset, and experimental wavenumber spectrum image dataset. These three datasets were used independently with the proposed CNN model to develop a system that can automatically classify four classes (pristine class and three different delamination classes). The results of all three datasets show the capability of the proposed CNN model for predicting the delamination depth with high accuracy. The proposed CNN model results of the three different datasets were validated using the GoogLeNet CNN. The results of both methods show an excellent agreement. The results proved the capability of the wavefield image and wavenumber spectrum datasets to be used as input data to the CNN for the detection of delamination depth.

2.
Sensors (Basel) ; 24(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38544191

RESUMO

The early detection of small cracks in large metal structures is a crucial requirement for the implementation of a structural health monitoring (SHM) system with a low transducers density. This work tackles the challenging problem of the early detection of submillimeter notch-type defects with a semielliptical shape and a groove at a constant width of 100 µm and 3 mm depth in a 4.1 mm thick aluminum plate. This defect is investigated with an ultrasonic guided wave (UGW) A0 mode at 550 kHz to investigate the long range in thick metal plates. The mode selection is obtained by interdigital transducers (IDTs) designed to operate with a 5 mm central wavelength. The novel contribution is the validation of the detection by pulse-echo and pitch and catch with UGW transducers to cover a distance up to 70 cm to reduce the transducers density. The analysis of scattering from this submillimeter defect at different orientations is carried out using simulations with a Finite Element Model (FEM). The detection of the defect is obtained by comparing the scattered signals from the defect with baseline signals of the pristine laminate. Finally, the paper shows that the simulated results are in good agreement with the experimental ones, demonstrating the possible implementation in an SHM system based on the efficient propagation of an antisymmetric mode by IDTs.

3.
Sensors (Basel) ; 24(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39275477

RESUMO

Carbon fiber-reinforced polymers (CFRPs) are widely used in the fabrication of solid rocket motor casings due to their exceptional performance. However, the bonding interface between CFRP and viscoelastic materials (rubber) is prone to debonding damage during service and storage under complex environmental conditions, which poses a significant threat to the structural integrity and reliability of the engine. Existing nondestructive testing (NDT) methods, such as X-ray imaging, infrared thermography, and ultrasonic testing, although somewhat effective, exhibit significant limitations in detecting interfacial defects in deep or multilayered composite materials, particularly under the challenging conditions of service and storage. This study proposes an innovative method based on active Lamb wave energy analysis and introduces the Damage Evolution Factor (DEF), specifically designed to detect and evaluate interfacial debonding defects in CFRP-rubber bonded structures within solid rocket motors during service and storage. Through numerical simulations and experimental validation, we selected the A0 mode Lamb wave, which is more sensitive to interfacial damage, as the incident wave and excited it on the surface of the structure. Displacement time-history response signals at observation points under different damage models were extracted and analyzed, and DEF values were calculated. The results show that DEF values increase with the size of the interfacial debonding damage. Similar trends were observed in experimental studies, further validating the effectiveness of this method and demonstrating that DEF can be used for the quantitative evaluation of interfacial debonding defects in CFRP-rubber bilayer bonded structures.

4.
Sensors (Basel) ; 23(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36850649

RESUMO

Most imaging methods based on ultrasonic Lamb waves in structural health monitoring requires reference signals, recorded in the intact state. This paper focuses on a novel baseline-free method for damage localization using Lamb waves based on a hyperbolic algorithm. This method employs a special array with a relatively small number of transducers and only one branch of the hyperbola. The novel symmetrical array was arranged on plate structures to eliminate the direct waves. The time difference between the received signals at symmetrical sensors was obtained from the damage-scattered waves. The sequence of time difference for constructing the hyperbolic trajectory was calculated by the cross-correlation method. Numerical simulation and experimental measurements were implemented on an aluminum plate with a through-thickness hole in the current state. The imaging results show that both the damages outside and inside the diamond-shaped arrays can be localized, and the positioning error reaches the maximum for the diamond-shaped array with the minimum size. The results indicate that the position of the through-hole in the aluminum plate can be identified and localized by the proposed baseline-free method.

5.
Sensors (Basel) ; 23(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36772139

RESUMO

In this paper, we propose and demonstrate a damage detection technique based on the automatic classification of the Lamb wave signals acquired on a metallic plate. In the reported experiments, Lamb waves are excited in an aluminum plate through a piezoelectric transducer glued onto the monitored structure. The response of the monitored structure is detected through a high-resolution phase-sensitive optical time-domain reflectometer (ϕ-OTDR). The presence and location of a small perturbation, induced by placing a lumped mass of 5 g on the plate, are determined by processing the optical fiber sensor data through support vector machine (SVM) classifiers trained with experimental data. The results show that the proposed method takes full advantage of the multipoint sensing nature of the ϕ-OTDR technology, resulting in accurate damage detection and localization.

6.
Sensors (Basel) ; 23(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36772389

RESUMO

In this study, the Convolution Neural Network (CNN) algorithm is applied for non-destructive evaluation of aluminum panels. A method of classifying the locations of defects is proposed by exciting an aluminum panel to generate ultrasonic Lamb waves, measuring data with a sensor array, and then deep learning the characteristics of 2D imaged, reflected waves from defects. For the purpose of a better performance, the optimal excitation location and sensor locations are investigated. To ensure the robustness of the training model and extract the feature effectively, experimental data are collected by slightly changing the excitation frequency and shifting the location of the defect. The high classification accuracy for each defect location can be achieved. It is found that the proposed algorithm is also successfully applied even when a bar is attached to the panel.

7.
Sensors (Basel) ; 23(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38067732

RESUMO

To study the acoustic characteristics of sound scattered from laminated structures such as elastic plates and shells, it is usually required to solve the Lamb waves' dispersion equations. Many traditional root-finding methods such as bisection, the Newton-Raphson method, and the Muller method are not able to tackle the problem completely. A simple but powerful method named local peaks search (LPS) is proposed to overcome their drawbacks. Firstly, the non-zero part of the dispersion equation is defined as the dispersion function, and its reciprocal is used to transform the zeros (i.e., roots) into local peaks. Secondly, the chosen complex domain is discretized, and the coarse local domains where the local peaks exist are determined by the direct search method globally. Thirdly, the Muller method is applied to obtain the refined locations of local peaks. Lastly, in order to refine the results, a hierarchical scheme is designed and the iteration of the above procedures is implemented; the error is set to be 10-16 as the stop criteria. The accuracy of the LPS method is validated by comparing it with the bisection method for the problem of elastic plates in the vacuum. The acoustic echo structures are analyzed experimentally. By computation of Lamb waves' phase velocity, the critical angles are derived numerically and compared with the results acquired by an experiment using monostatic sound transducers. In this way, it is validated that the elastic scattered wave components are the highlights shown in the time-angle figure. Furthermore, the work can be applied for non-destructive testing, especially underwater structural health monitoring.

8.
Sensors (Basel) ; 23(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36850542

RESUMO

Lamb wave-based damage detection technology shows great potential for structural integrity assessment. However, conventional damage features based damage detection methods and data-driven intelligent damage detection methods highly rely on expert knowledge and sufficient labeled data for training, for which collecting is usually expensive and time-consuming. Therefore, this paper proposes an automated fatigue crack detection method using Lamb wave based on finite element method (FEM) and adversarial domain adaptation. FEM-simulation was used to obtain simulated response signals under various conditions to solve the problem of the insufficient labeled data in practice. Due to the distribution discrepancy between simulated signals and experimental signals, the detection performance of classifier just trained with simulated signals will drop sharply on the experimental signals. Then, Domain-adversarial neural network (DANN) with maximum mean discrepancy (MMD) was used to achieve discriminative and domain-invariant feature extraction between simulation source domain and experiment target domain, and the unlabeled experimental signals samples will be accurately classified. The proposed method is validated by fatigue tests on center-hole metal specimens. The results show that the proposed method presents superior detection ability compared to other methods and can be used as an effective tool for cross-domain damage detection.

9.
Sensors (Basel) ; 23(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37177487

RESUMO

Guided acoustic waves (GAW) have proven to be a useful tool for structural health monitoring (SHM). However, the dispersive nature of commonly used Lamb waves compromises the spatial resolution making it difficult to detect small or weakly reflective defects. Here we demonstrate an approach that can compensate for the dispersive effects, allowing advanced algorithms to be used with significantly higher signal-to-noise ratio and spatial resolution. In this paper, the sign coherence factor (SCF) extension of the total focusing method (TFM) algorithm is used. The effectiveness is examined by numerical simulation and experimentally demonstrated by detecting weakly reflective layers with a highly dispersive A0 mode on an aluminum plate, which are not detectable without compensating for the dispersion effects.

10.
Sensors (Basel) ; 23(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37177588

RESUMO

Damage detection and localization based on ultrasonic guided waves revealed to be promising for structural health monitoring and nondestructive testing. However, the use of a piezoelectric sensor's network to locate and image damaged areas in composite structures requires a number of precautions including the consideration of anisotropy and baseline signals. The lack of information related to these two parameters drastically deteriorates the imaging performance of numerous signal processing methods. To avoid such deterioration, the present contribution proposes different methods to build baseline signals in different types of composites. Baseline signals are first constructed from a numerical simulation model using the previously determined elasticity tensor of the structure. Since the latter tensor is not always easy to obtain especially in the case of anisotropic materials, a second PZT network is used in order to obtain signals related to Lamb waves propagating in different directions. Waveforms are then translated according to a simplified theoretical propagation model of Lamb waves in homogeneous structures. The application of the different methods on transversely isotropic, unidirectional and quasi-transversely isotropic composites allows to have satisfactory images that well represent the damaged areas with the help of the delay-and-sum algorithm.

11.
Adv Exp Med Biol ; 1364: 411-422, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35508886

RESUMO

Skull bone is the main obstacle for transcranial ultrasound therapy and imaging applications. Most efforts in characterizing ultrasonic properties of the skull have been limited to a narrow frequency range and normal incidence. On the other hand, acoustic guided waves in plates have been used in non-destructive evaluation of materials and also to assess the strength of long bones. Recent work has likewise revealed the existence of skull-guided waves (SGWs) in mice and humans when performing measurements over a broad range of frequencies and incidence angles. Here we provide an overview on the recent progress in our understanding on the propagation of SGWs, describe the measurement techniques used to detect SGWs, the experimental observations, and the accompanying modeling efforts. Finally, the outstanding challenges to harness SGWs in applications such as transcranial therapy, imaging, and cranial bone assessment are discussed.


Assuntos
Crânio , Terapia por Ultrassom , Animais , Cabeça , Camundongos , Crânio/diagnóstico por imagem , Som
12.
Sensors (Basel) ; 22(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35890863

RESUMO

This paper deals with guided wave-based structural health monitoring of composite overwrapped pressure vessels adopted for space application. Indeed, they are well suited for this scope thanks to their improved performance compared with metallic tanks. However, they are characterized by a complex damage mechanics and suffer from impact induced damage, e.g., due to space debris. After reviewing the limited progress in this specific application, the paper thoroughly covers all the steps needed to design and verify guided wave structural health monitoring system, including methodology, digital modelling, reliability, and noise estimation for a correct decision-making process in a virtual environment. In particular, propagation characteristics of the fundamental anti-symmetric mode are derived experimentally on a real specimen to validate a variety of finite element models useful to investigate wave interaction with damage. Different signal processing techniques are demonstrated sensitive to defect and linearly dependent upon damage severity, showing promising reliability. Those features can be implemented in a probability-based diagnostic imaging in order to detect and localized impact induce damage. A multi-parameter approach is achieved by metrics fusion demonstrating increased capability in damage detection with promising implication in enhancing probability of detection.


Assuntos
Modelos Teóricos , Simulação por Computador , Reprodutibilidade dos Testes , Espalhamento de Radiação
13.
Sensors (Basel) ; 22(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35890993

RESUMO

Scanning laser Doppler vibrometry is a widely adopted method to measure the full-field out-of-plane vibrational response of materials in view of detecting defects or estimating stiffness parameters. Recent technological developments have led to performant 3D scanning laser Doppler vibrometers, which give access to both out-of-plane and in-plane vibrational velocity components. In the present study, the effect of using (i) the in-plane component; (ii) the out-of-plane component; and (iii) both the in-plane and out-of-plane components of the recorded vibration velocity on the inverse determination of the stiffness parameters is studied. Input data were gathered from a series of numerical simulations using a finite element model (COMSOL), as well as from broadband experimental measurements by means of a 3D infrared scanning laser Doppler vibrometer. Various materials were studied, including carbon epoxy composite and wood materials. The full-field vibrational velocity response is converted to the frequency-wavenumber domain by means of Fourier transform, from which complex wavenumbers are extracted using the matrix pencil decomposition method. To infer the orthotropic elastic stiffness tensor, an inversion procedure is developed by coupling the semi-analytical finite element (SAFE) as a forward method to the particle swarm optimizer. It is shown that accounting for the in-plane velocity component leads to a more accurate and robust determination of the orthotropic elastic stiffness parameters.


Assuntos
Vibração
14.
Sensors (Basel) ; 22(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35808243

RESUMO

This work presents a method to determine the type of Lamb mode (antisymmetric or symmetric) that propagates through a lithium-ion pouch cell. To determine the type of mode and the group velocity at a specific frequency, two- and three-transducer setups were created. For these setups, it is important that all transducers have the same polarization direction. Two transducers are affixed to the center of the cell at a distance of several centimeters from each other so that the group velocity can be determined. Using cross-correlation, the group velocity of the emerging mode can be calculated. The measurement setup and the processing method was first validated with experiments on acrylic glass and aluminum plates. The measurements were supported with FEM simulations and a numerically calculated model. The output voltages of the receiving piezo-elements obtained in the FEM simulation are in agreement with the underlying theories. The phase shift, which results from the output voltage of the piezo-elements mounted one above the other on different sides of the plate, shows the type of mode. The results of the experimental determination of the Lamb mode that propagates through a lithium-ion pouch cell were validated with a numerically calculated multi-layer model and therefore validate this novel experimental approach.

15.
Sensors (Basel) ; 22(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35808541

RESUMO

The ultrasonic Lamb wave detection principle can realize the noncontact measurement of liquid level in closed containers. When designing an ultrasonic Lamb wave sensor, it is vital to thoroughly study and select the optimal wedge size at the front of the sensor. In this paper, firstly, we select the best working mode of Lamb waves according to their propagation dispersion curve in aluminum alloy, and we obtain the best angle of wedge through experiments. Secondly, we study the impact of the size of the wedge block on the results, and we obtain the selection method of wedge block parameters. The evaluations show that, when the frequency-thickness product is 3 MHz·mm, the Lamb waves work in the A1 mode, and the experimental effect is the best. At this time, the incident angle of the ultrasonic wave is 27.39°. The wedge thickness should be designed to avoid the near-field area of the ultrasonic field, and we should choose the length as odd multiples of 1/4 wavelength. The rules obtained from the experiment can effectively select the best working mode for ultrasonic Lamb waves, while also providing a basis for the design of the wedge block size in a Lamb wave sensor.

16.
Sensors (Basel) ; 22(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36366131

RESUMO

The identification of damage based on Lamb waves can hardly avoid obtaining the reference signal under healthy conditions. A non-reference damage localization (NRDL) method is proposed in this paper. The NRDL method is established by the improved two-arrival-time difference method (2/ATDM) and BFGS method. The layout principles of the piezoelectric ceramic lead zirconate titanate (PZT) transducer array in the specimen are proposed. In contrast to existing methods, the damage outside the array in the specimen is identified based on the NRDL. The full-area damage location in the specimen is realized. Furthermore, the optimization of the excitation signal center frequency and transducer array layout is carried out. The damage location accuracy is greatly improved.


Assuntos
Cerâmica , Transdutores
17.
Sensors (Basel) ; 22(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36146100

RESUMO

The 2D-FFT is described as a traditional method for signal processing and analysis. Due to the possibility to determine the time and frequency (t,f) domains, such a method has a wide application in various industrial fields. Using that method, the obtained results are presented in images only; thus, for the extraction of quantitative values of phase velocities, additional algorithms should be used. In this work, the 2D-FFT method is presented, which is based on peak detection of the spectrum magnitude at particular frequencies for obtaining the quantitative expressions. The radiofrequency signals of ULWs (ultrasonic Lamb waves) were used for the accuracy evaluation of the method. An uncertainty evaluation was conducted to guarantee the metrological traceability of measurement results and ensure that they are accurate and reliable. Mathematical and experimental verifications were conducted by using signals of Lamb waves propagating in the aluminum plate. The obtained mean relative error of 0.12% for the A0 mode (160 kHz) and 0.05% for the S0 mode (700 kHz) during the mathematical verification indicated that the proposed method is particularly suitable for evaluating the phase-velocity dispersion in clearly expressed dispersion zones. The uncertainty analysis showed that the plate thickness, the mathematical modeling, and the step of the scanner have a significant impact on the estimated uncertainty of the phase velocity for the A0 mode. Those components of uncertainty prevail and make about ~92% of the total standard uncertainty in a clearly expressed dispersion range. The S0 mode analysis in the non-dispersion zone indicates that the repeatability of velocity variations, fluctuations of the frequency of Lamb waves, and the scanning step of the scanner influence significantly the combined uncertainty and represent 98% of the total uncertainty.

18.
Sensors (Basel) ; 23(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36616695

RESUMO

This article proposes an electromagnetic acoustic transducer (EMAT) for selectively improving the purity and amplitude of ultrasonic Lamb waves in non-ferromagnetic plates. The developed EMAT consists of a racetrack coil and a group of periodic permanent magnets (PPMs). Two-dimensional finite element simulations and experiments are implemented to analyze the working mechanism and performance of the PPM EMAT. Thanks to the specific design, the eddy currents increase with increasing wire density and the directions of the magnetic fields and Lorentz forces alternate according to the polarities of the magnet units. Wires laid uniformly beneath the magnets, and the gaps between adjacent magnets generate tangential and normal Lorentz forces, resulting in-plane (IP) and out-of-plane (OP) displacements, respectively. The constructive interference occurs when the wavelength of the generated Lamb wave is twice the spacing of the magnets, leading to large amplitudes of the targeted ultrasonic Lamb waves. Therefore, the PPM EMAT is capable of generating pure symmetric or antisymmetric mode Lamb waves at respective frequencies. The results prove that the developed PPM EMAT can generate pure either S0 or A0 mode Lamb waves at respective frequencies. The increase in wire width and wire density further increases the signal amplitudes. Compared with the case of conventional meander-line-coil (MLC) EMAT, the amplitudes of the A0 and S0 mode Lamb waves of our PPM EMAT are increased to 880% and 328%, respectively.

19.
Sensors (Basel) ; 22(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35161538

RESUMO

When impact damage occurs in carbon fiber-reinforced plastic (CFRP) structures, it is barely visible but may cause significant degradation in the mechanical properties of the structure. Hence, a structural health monitoring (SHM) system that can be installed in CFRP mobility structures and is sensitive to impact damage is needed. In this study, we attempted to establish an SHM system based on ultrasonic guided waves, which are generated by inputting a broadband chirp signal into a film-like piezoelectric actuator. The relationship between impact damage size and maximum time-of-flight (ToF) delay was investigated for three types of CFRP plates: woven, non-woven, and hybrid laminates. As a result, it was found that the maximum ToF delay increased linearly with an increase in the damage size for all CFRP laminates. Moreover, the amplitude of the A0 mode was found to be significantly affected by the damage length in the wave propagation direction. Thus, this SHM method using chirp ultrasonic waves can quantitatively evaluate the size and extent of the impact damage in CFRP laminates.


Assuntos
Plásticos , Ultrassom , Fibra de Carbono , Ondas Ultrassônicas
20.
Sensors (Basel) ; 22(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36081105

RESUMO

Guided acoustic waves are commonly used in domestic water meters to measure the flow rate. The accuracy of this measurement method is affected by factors such as variations in temperature and limescale deposition inside of the pipe. In this work, a new approach using signals from different sound propagation paths is used to determine these quantities and allow for subsequent compensation. This method evaluates the different propagation times of guided Lamb waves in flow measurement applications. A finite element method-based model is used to identify the calibration curves for the device under test. The simulated dependencies on temperature and layer thickness are validated by experimental data. Finally, a test on simulated data with varying temperatures and limescale depositions proves that this method can be used to separate both effects. Based on these values, a flow measurement correction scheme can be derived that provides an improved resolution of guided acoustic wave-based flow meters.


Assuntos
Acústica , Ultrassom , Temperatura Corporal , Som , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA