Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34580217

RESUMO

The sudden propagation of a major preexisting rift (full-thickness crack) in late 2016 on the Larsen C Ice Shelf, Antarctica led to the calving of tabular iceberg A68 in July 2017, one of the largest icebergs on record, posing a threat for the stability of the remaining ice shelf. As with other ice shelves, the physical processes that led to the activation of the A68 rift and controlled its propagation have not been elucidated. Here, we model the response of the ice shelf stress balance to ice shelf thinning and thinning of the ice mélange encased in and around preexisting rifts. We find that ice shelf thinning does not reactivate the rifts, but heals them. In contrast, thinning of the mélange controls the opening rate of the rift, with an above-linear dependence on thinning. The simulations indicate that thinning of the ice mélange by 10 to 20 m is sufficient to reactivate the rifts and trigger a major calving event, thereby establishing a link between climate forcing and ice shelf retreat that has not been included in ice sheet models. Rift activation could initiate ice shelf retreat decades prior to hydrofracture caused by water ponding at the ice shelf surface.

2.
Biology (Basel) ; 11(12)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36552215

RESUMO

Ice shelves cover ~1.6 million km2 of the Antarctic continental shelf and are sensitive indicators of climate change. With ice-shelf retreat, aphotic marine environments transform into new open-water spaces of photo-induced primary production and associated organic matter export to the benthos. Predicting how Antarctic seafloor assemblages may develop following ice-shelf loss requires knowledge of assemblages bordering the ice-shelf margins, which are relatively undocumented. This study investigated seafloor assemblages, by taxa and functional groups, in a coastal polynya adjacent to the Larsen C Ice Shelf front, western Weddell Sea. The study area is rarely accessed, at the frontline of climate change, and located within a CCAMLR-proposed international marine protected area. Four sites, ~1 to 16 km from the ice-shelf front, were explored for megabenthic assemblages, and potential environmental drivers of assemblage structures were assessed. Faunal density increased with distance from the ice shelf, with epifaunal deposit-feeders a surrogate for overall density trends. Faunal richness did not exhibit a significant pattern with distance from the ice shelf and was most variable at sites closest to the ice-shelf front. Faunal assemblages significantly differed in composition among sites, and those nearest to the ice shelf were the most dissimilar; however, ice-shelf proximity did not emerge as a significant driver of assemblage structure. Overall, the study found a biologically-diverse and complex seafloor environment close to an ice-shelf front and provides ecological baselines for monitoring benthic ecosystem responses to environmental change, supporting marine management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA