Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 180(3): 521-535.e18, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31978320

RESUMO

Cortical layer 1 (L1) interneurons have been proposed as a hub for attentional modulation of underlying cortex, but the transformations that this circuit implements are not known. We combined genetically targeted voltage imaging with optogenetic activation and silencing to study the mechanisms underlying sensory processing in mouse barrel cortex L1. Whisker stimuli evoked precisely timed single spikes in L1 interneurons, followed by strong lateral inhibition. A mild aversive stimulus activated cholinergic inputs and evoked a bimodal distribution of spiking responses in L1. A simple conductance-based model that only contained lateral inhibition within L1 recapitulated the sensory responses and the winner-takes-all cholinergic responses, and the model correctly predicted that the network would function as a spatial and temporal high-pass filter for excitatory inputs. Our results demonstrate that all-optical electrophysiology can reveal basic principles of neural circuit function in vivo and suggest an intuitive picture for how L1 transforms sensory and modulatory inputs. VIDEO ABSTRACT.


Assuntos
Eletrofisiologia/métodos , Potenciais Somatossensoriais Evocados/fisiologia , Interneurônios/fisiologia , Inibição Neural/fisiologia , Imagem Óptica/métodos , Córtex Somatossensorial/citologia , Potenciais de Ação/fisiologia , Animais , Neurônios Colinérgicos/fisiologia , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Patch-Clamp/métodos , Potenciais Sinápticos/fisiologia , Vibrissas/fisiologia
2.
Cell ; 176(6): 1379-1392.e14, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30773315

RESUMO

Cell fate specification by lateral inhibition typically involves contact signaling through the Delta-Notch signaling pathway. However, whether this is the only signaling mode mediating lateral inhibition remains unclear. Here we show that in zebrafish oogenesis, a group of cells within the granulosa cell layer at the oocyte animal pole acquire elevated levels of the transcriptional coactivator TAZ in their nuclei. One of these cells, the future micropyle precursor cell (MPC), accumulates increasingly high levels of nuclear TAZ and grows faster than its surrounding cells, mechanically compressing those cells, which ultimately lose TAZ from their nuclei. Strikingly, relieving neighbor-cell compression by MPC ablation or aspiration restores nuclear TAZ accumulation in neighboring cells, eventually leading to MPC re-specification from these cells. Conversely, MPC specification is defective in taz-/- follicles. These findings uncover a novel mode of lateral inhibition in cell fate specification based on mechanical signals controlling TAZ activity.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Oogênese/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Comunicação Celular/fisiologia , Diferenciação Celular/fisiologia , Linhagem da Célula , Núcleo Celular/metabolismo , Feminino , Células da Granulosa/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Oócitos/metabolismo , Oócitos/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Ativação Transcricional/fisiologia , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/antagonistas & inibidores
3.
Development ; 150(4)2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36794955

RESUMO

Notch signaling is a highly conserved signaling pathway that coordinates cellular differentiation during the development and homeostasis in numerous organs and tissues across metazoans. Activation of Notch signaling relies on direct contact between neighboring cells and mechanical pulling of the Notch receptors by the Notch ligands. Notch signaling is commonly used in developmental processes to coordinate the differentiation into distinct cell fates of neighboring cells. In this Development at a Glance article, we describe the current understanding of the Notch pathway activation and the different regulatory levels that control the pathway. We then describe several developmental processes where Notch is crucial for coordinating differentiation. These examples include processes that are largely based on lateral inhibition mechanisms giving rise to alternating patterns (e.g. SOP selection, hair cell in the inner ear and neural stem cell maintenance), as well as processes where Notch activity is oscillatory (e.g. somitogenesis and neurogenesis in mammals).


Assuntos
Comunicação Celular , Transdução de Sinais , Animais , Transdução de Sinais/fisiologia , Desenvolvimento Embrionário , Diferenciação Celular , Receptores Notch/metabolismo , Homeostase , Mamíferos/metabolismo
4.
Dev Biol ; 505: 110-121, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37956923

RESUMO

The self-organization of cells during development is essential for the formation of healthy tissues and requires the coordination of cell activities at local scales. Cytonemes, or signaling filopodia, are dynamic actin-based cellular protrusions that allow cells to engage in contact mediated signaling at a distance. While signaling filopodia have been shown to support several signaling paradigms during development, less is understood about how these protrusions are regulated. We investigated the role of the plus-end directed, unconventional MyTH4-FERM myosins in regulating signaling filopodia during sensory bristle patterning on the dorsal thorax of the fruit fly Drosophila melanogaster. We found that Myosin XV is required for regulating signaling filopodia dynamics and, as a consequence, lateral inhibition more broadly throughout the patterning epithelium. We found that Myosin XV is required for limiting the length and number of signaling filopodia generated by bristle precursor cells. Cells with additional and longer signaling filopodia due to loss of Myosin XV are not signaling competent, due to altered levels of Delta ligand and Notch receptor along their lengths. We conclude that Myosin XV acts to negatively regulate signaling filopodia, as well as promote the ability of signaling filopodia to engage in long-range Notch signaling. Since Myosin XV isoforms are present across several vertebrate and invertebrate systems, this may have significance for other long-range signaling mechanisms.


Assuntos
Drosophila melanogaster , Pseudópodes , Animais , Pseudópodes/metabolismo , Drosophila melanogaster/metabolismo , Miosinas , Drosophila/metabolismo , Transdução de Sinais
5.
Development ; 148(19)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34519339

RESUMO

Notch-Delta signaling regulates many developmental processes, including tissue homeostasis and maintenance of stem cells. Upon interaction of juxtaposed cells via Notch and Delta proteins, intracellular domains of both transmembrane proteins are cleaved and translocate to the nucleus. Notch intracellular domain activates target gene expression; however, the role of the Delta intracellular domain remains elusive. Here, we show the biological function of Delta like 1 intracellular domain (D1ICD) by modulating its production. We find that the sustained production of D1ICD abrogates cell proliferation but enhances neurogenesis in the developing dorsal root ganglia (DRG), whereas inhibition of D1ICD production promotes cell proliferation and gliogenesis. D1ICD acts as an integral component of lateral inhibition mechanism by inhibiting Notch activity. In addition, D1ICD promotes neurogenesis in a Notch signaling-independent manner. We show that D1ICD binds to Erk1/2 in neural crest stem cells and inhibits the phosphorylation of Erk1/2. In summary, our results indicate that D1ICD regulates DRG development by modulating not only Notch signaling but also the MAP kinase pathway.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Sistema de Sinalização das MAP Quinases , Neurogênese , Receptores Notch/metabolismo , Animais , Sítios de Ligação , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Proliferação de Células , Células Cultivadas , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Células HEK293 , Humanos , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Células NIH 3T3 , Neurônios/citologia , Neurônios/metabolismo , Neurônios/fisiologia , Ligação Proteica
6.
Chem Senses ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39133054

RESUMO

In insects, olfactory receptor neurons (ORNs) are localized in sensilla. Within a sensillum, different ORN types are typically co-localized and exhibit non-synaptic reciprocal inhibition through ephaptic coupling. This inhibition is hypothesized to aid odour source discrimination in environments where odor molecules (odorants) are dispersed by wind, resulting in turbulent plumes. Under these conditions, odorants from a single source arrive at the ORNs synchronously, while those from separate sources arrive asynchronously. Ephaptic inhibition is expected to be weaker for asynchronous arriving odorants from separate sources, thereby enhancing their discrimination. Previous studies have focused on ephaptic inhibition of sustained ORN responses to constant odour stimuli. This begs the question of whether ephaptic inhibition also affects transient ORN responses and if this inhibition is modulated by the temporal arrival patterns of different odorants. To address this, we recorded co-localized ORNs in the fruit fly Drosophila melanogaster and exposed them to dynamic odorant mixtures. We found reciprocal inhibition, strongly suggesting the presence of ephaptic coupling. This reciprocal inhibition does indeed modulate transient ORN responses and is sensitive to the relative timing of odor stimuli. Notably, the strength of inhibition decreases as the synchrony and correlation between arriving odorants decrease. These results support the hypothesis that ephaptic inhibition aids odour source discrimination.

7.
Neuroimage ; 281: 120364, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37683810

RESUMO

Evoked neural responses to sensory stimuli have been extensively investigated in humans and animal models both to enhance our understanding of brain function and to aid in clinical diagnosis of neurological and neuropsychiatric conditions. Recording and imaging techniques such as electroencephalography (EEG), magnetoencephalography (MEG), local field potentials (LFPs), and calcium imaging provide complementary information about different aspects of brain activity at different spatial and temporal scales. Modeling and simulations provide a way to integrate these different types of information to clarify underlying neural mechanisms. In this study, we aimed to shed light on the neural dynamics underlying auditory evoked responses by fitting a rate-based model to LFPs recorded via multi-contact electrodes which simultaneously sampled neural activity across cortical laminae. Recordings included neural population responses to best-frequency (BF) and non-BF tones at four representative sites in primary auditory cortex (A1) of awake monkeys. The model considered major neural populations of excitatory, parvalbumin-expressing (PV), and somatostatin-expressing (SOM) neurons across layers 2/3, 4, and 5/6. Unknown parameters, including the connection strength between the populations, were fitted to the data. Our results revealed similar population dynamics, fitted model parameters, predicted equivalent current dipoles (ECD), tuning curves, and lateral inhibition profiles across recording sites and animals, in spite of quite different extracellular current distributions. We found that PV firing rates were higher in BF than in non-BF responses, mainly due to different strengths of tonotopic thalamic input, whereas SOM firing rates were higher in non-BF than in BF responses due to lateral inhibition. In conclusion, we demonstrate the feasibility of the model-fitting approach in identifying the contributions of cell-type specific population activity to stimulus-evoked LFPs across cortical laminae, providing a foundation for further investigations into the dynamics of neural circuits underlying cortical sensory processing.


Assuntos
Córtex Auditivo , Animais , Humanos , Córtex Auditivo/fisiologia , Potenciais Evocados Auditivos/fisiologia , Eletroencefalografia/métodos , Haplorrinos , Simulação por Computador , Estimulação Acústica/métodos
8.
Cephalalgia ; 43(10): 3331024231202240, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37795647

RESUMO

BACKGROUND: It is unclear whether cortical hyperexcitability in chronic migraine with medication overuse headache (CM-MOH) is due to increased thalamocortical drive or aberrant cortical inhibitory mechanisms. METHODS: Somatosensory evoked potentials (SSEP) were performed by electrical stimulation of the median nerve (M), ulnar nerve (U) and simultaneous stimulation of both nerves (MU) in 27 patients with CM-MOH and, for comparison, in 23 healthy volunteers (HVs) of a comparable age distribution. We calculated the degree of cortical lateral inhibition using the formula: 100 - [MU/(M + U) × 100] and the level of thalamocortical activation by analyzing the high frequency oscillations (HFOs) embedded in parietal N20 median SSEPs. RESULTS: Compared to HV, CM-MOH patients showed higher lateral inhibition (CM-MOH 52.2% ± 15.4 vs. HV 40.4% ± 13.3; p = 0.005), which positively correlated with monthly headache days, and greater amplitude of pre-synaptic HFOs (p = 0.010) but normal post-synaptic HFOs (p = 0.122). CONCLUSION: Our findings suggest that central neuronal circuits are highly sensitized in CM-MOH patients, at both thalamocortical and cortical levels. The observed changes could be due to the combination of dysfunctional central pain control mechanisms, hypersensitivity and hyperresponsiveness directly linked to the chronic intake of acute migraine drugs.


Assuntos
Transtornos da Cefaleia Secundários , Transtornos de Enxaqueca , Humanos , Sensibilização do Sistema Nervoso Central , Potenciais Somatossensoriais Evocados/fisiologia , Nervo Mediano/fisiologia
9.
Biol Cybern ; 117(4-5): 345-361, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37589728

RESUMO

The ability to sequentially learn multiple tasks without forgetting is a key skill of biological brains, whereas it represents a major challenge to the field of deep learning. To avoid catastrophic forgetting, various continual learning (CL) approaches have been devised. However, these usually require discrete task boundaries. This requirement seems biologically implausible and often limits the application of CL methods in the real world where tasks are not always well defined. Here, we take inspiration from neuroscience, where sparse, non-overlapping neuronal representations have been suggested to prevent catastrophic forgetting. As in the brain, we argue that these sparse representations should be chosen on the basis of feed forward (stimulus-specific) as well as top-down (context-specific) information. To implement such selective sparsity, we use a bio-plausible form of hierarchical credit assignment known as Deep Feedback Control (DFC) and combine it with a winner-take-all sparsity mechanism. In addition to sparsity, we introduce lateral recurrent connections within each layer to further protect previously learned representations. We evaluate the new sparse-recurrent version of DFC on the split-MNIST computer vision benchmark and show that only the combination of sparsity and intra-layer recurrent connections improves CL performance with respect to standard backpropagation. Our method achieves similar performance to well-known CL methods, such as Elastic Weight Consolidation and Synaptic Intelligence, without requiring information about task boundaries. Overall, we showcase the idea of adopting computational principles from the brain to derive new, task-free learning algorithms for CL.


Assuntos
Algoritmos , Redes Neurais de Computação , Encéfalo , Neurônios/fisiologia , Retroalimentação
10.
J Neurosci ; 41(37): 7831-7847, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34348999

RESUMO

The principal neurons of the striatum, the spiny projection neurons (SPNs), make inhibitory synaptic connections with each other via collaterals of their main axon, forming a local lateral inhibition network. Serotonin, acting via the 5-HT1B receptor, modulates neurotransmitter release from SPN terminals in striatal output nuclei, but the role of 5-HT1B receptors in lateral inhibition among SPNs in the striatum is unknown. Here, we report the effects of 5-HT1B receptor activation on lateral inhibition in the mouse striatum. Whole-cell recordings were made from SPNs in acute brain slices of either sex, while optogenetically activating presynaptic SPNs or fast-spiking interneurons (FSIs). Activation of 5-HT1B receptors significantly reduced the amplitude of IPSCs evoked by optical stimulation of both direct and indirect pathway SPNs. This reduction was blocked by application of a 5-HT1B receptor antagonist. Activation of 5-HT1B receptors did not reduce the amplitude of IPSCs evoked from FSIs. These results suggest a new role for serotonin as a modulator of lateral inhibition among striatal SPNs. The 5-HT1B receptor may, therefore, be a suitable target for future behavioral experiments investigating the currently unknown role of lateral inhibition in the function of the striatum.SIGNIFICANCE STATEMENT We show that stimulation of serotonin receptors reduces the efficacy of lateral inhibition between spiny projection neurons (SPNs), one of the biggest GABAergic sources in the striatum, by activation of the serotonin 5-HT1B receptor. The striatum receives serotonergic input from the dorsal raphe nuclei and is important in behavioral brain functions like learning and action selection. Our findings suggest a new role for serotonin in modulating the dynamics of neural interactions in the striatum, which extends current knowledge of the mechanisms of the behavioral effects of serotonin.


Assuntos
Corpo Estriado/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptor 5-HT1B de Serotonina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Corpo Estriado/metabolismo , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Camundongos , Neurônios/metabolismo , Técnicas de Patch-Clamp , Serotonina/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
11.
Bioessays ; 42(8): e2000026, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32613656

RESUMO

In numerous peripheral sense organs, external stimuli are detected by primary sensory neurons compartmentalized within specialized structures composed of cuticular or epithelial tissue. Beyond reflecting developmental constraints, such compartmentalization also provides opportunities for grouped neurons to functionally interact. Here, the authors review and illustrate the prevalence of these structural units, describe characteristics of compartmentalized neurons, and consider possible interactions between these cells. This article discusses instances of neuronal crosstalk, examples of which are observed in the vertebrate tastebuds and multiple types of arthropod chemosensory hairs. Particular attention is paid to insect olfaction, which presents especially well-characterized mechanisms of functional, cross-neuronal interactions. These examples highlight the potential impact of peripheral processing, which likely contributes more to signal integration than previously considered. In surveying a wide variety of structural units, it is hoped that this article will stimulate future research that determines whether grouped neurons in other sensory systems can also communicate to impact information processing.


Assuntos
Neurônios Aferentes , Olfato , Animais , Insetos
12.
Proc Natl Acad Sci U S A ; 116(50): 25304-25310, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31757852

RESUMO

Changes in arousal influence cortical sensory representations, but the synaptic mechanisms underlying arousal-dependent modulation of cortical processing are unclear. Here, we use 2-photon Ca2+ imaging in the auditory cortex of awake mice to show that heightened arousal, as indexed by pupil diameter, broadens frequency-tuned activity of layer 2/3 (L2/3) pyramidal cells. Sensory representations are less sparse, and the tuning of nearby cells more similar when arousal increases. Despite the reduction in selectivity, frequency discrimination by cell ensembles improves due to a decrease in shared trial-to-trial variability. In vivo whole-cell recordings reveal that mechanisms contributing to the effects of arousal on sensory representations include state-dependent modulation of membrane potential dynamics, spontaneous firing, and tone-evoked synaptic potentials. Surprisingly, changes in short-latency tone-evoked excitatory input cannot explain the effects of arousal on the broadness of frequency-tuned output. However, we show that arousal strongly modulates a slow tone-evoked suppression of recurrent excitation underlying lateral inhibition [H. K. Kato, S. K. Asinof, J. S. Isaacson, Neuron, 95, 412-423, (2017)]. This arousal-dependent "network suppression" gates the duration of tone-evoked responses and regulates the broadness of frequency tuning. Thus, arousal can shape tuning via modulation of indirect changes in recurrent network activity.


Assuntos
Nível de Alerta , Córtex Auditivo/fisiologia , Potenciais de Ação , Animais , Córtex Auditivo/química , Camundongos , Camundongos Endogâmicos C57BL , Inibição Neural , Som
13.
Nano Lett ; 21(19): 7938-7945, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34516142

RESUMO

Center-surround antagonism, a key mechanism in the retina, contributes to the encoding of edge contrast rather than of the overall information on a visual image. Here, a neuromorphic system consisting of multiple ionic devices is built, where each device has a lithium cobalt oxide channel arranged on a common lithium phosphorus oxynitride electrolyte. Because of the migration of Li ions between the channels through the electrolyte, the devices are highly interactive, as is seen with retinal neurons. On the basis of the excitation of single devices and device-to-device inhibition, the system successfully emulates the antagonistic center-surround receptive field and the Mach band effect in which perceived contrast is enhanced at the edges between dark and bright regions. Furthermore, a two-dimensional array system is simulated to implement edge detection for real images. This scheme enables computer vision tasks with simple and effective operations, owing to the intrinsic properties of the materials employed.


Assuntos
Lítio , Retina , Íons , Retina/diagnóstico por imagem , Visão Ocular
14.
Dev Biol ; 466(1-2): 1-11, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800756

RESUMO

The distal nephron and collecting duct segments of the mammalian kidney consist of intercalated cell types intermingled among principal cell types. Notch signaling ensures that a sufficient number of cells select a principal instead of an intercalated cell fate. However, the precise mechanisms by which Notch signaling patterns the distal nephron and collecting duct cell fates is unknown. Here we observed that Hes1, a direct target of Notch signaling pathway, is required within the mouse developing collecting ducts for repression of Foxi1 expression, an essential intercalated cell specific transcription factor. Interestingly, inactivation of Foxi1 in Hes1-deficient collecting ducts rescues the deficiency in principal cell fate selection, overall urine concentrating deficiency, and reduces the occurrence of hydronephrosis. However, Foxi1 inactivation does not rescue the reduction in expression of all principal cell genes in the Hes1-deficient kidney collecting duct cells that select the principal cell fate. Additionally, suppression of Notch/Hes1 signaling in mature principal cells reduces principal cell gene expression without activating Foxi1. We conclude that Hes1 is a Notch signaling target that is essential for normal patterning of the collecting ducts with intermingled cell types by repressing Foxi1, and for maintenance of principal cell gene expression independent of repressing Foxi1.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Rim/embriologia , Receptores Notch/metabolismo , Transdução de Sinais , Fatores de Transcrição HES-1/deficiência , Animais , Fatores de Transcrição Forkhead/genética , Camundongos , Camundongos Mutantes , Receptores Notch/genética , Fatores de Transcrição HES-1/metabolismo
15.
Eur J Neurosci ; 53(9): 3019-3038, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33675122

RESUMO

The CA1 area in the mammalian hippocampus is essential for spatial learning. Pyramidal cells are the hippocampus output neurons and their activities are regulated by inhibition exerted by a diversified population of interneurons. Lateral inhibition has been suggested as the mechanism enabling the reconfiguration of pyramidal cell assembly activity observed during spatial learning tasks in rodents. However, lateral inhibition in the CA1 lacks the overwhelming evidence reported in other hippocampal areas such as the CA3 and the dentate gyrus. The use of genetically encoded voltage indicators and fast optical recordings permits the construction of cell-type specific response maps of neuronal activity. Here, we labelled mouse CA1 pyramidal neurons with the genetically encoded voltage indicator ArcLight and optically recorded their response to Schaffer Collaterals stimulation in vitro. By undertaking a manifold learning approach, we report a hyperpolarization-dominated area focused in the perisomatic region of pyramidal cells receiving late excitatory synaptic input. Functional network organization metrics revealed that information transfer was higher in this area. The localized hyperpolarization disappeared when GABAA receptors were pharmacologically blocked. This is the first report where the spatiotemporal pattern of lateral inhibition is visualized in the CA1 by expressing a genetically encoded voltage indicator selectively in principal neurons. Our analysis suggests a fundamental role of lateral inhibition in CA1 information processing.


Assuntos
Hipocampo , Sinapses , Animais , Região CA1 Hipocampal , Humanos , Interneurônios , Camundongos , Neurônios , Células Piramidais
16.
Gastroenterology ; 159(4): 1328-1341.e3, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32553763

RESUMO

BACKGROUND & AIMS: Notch signaling maintains intestinal stem cells (ISCs). When ISCs exit the niche, Notch signaling among early progenitor cells at position +4/5 regulates their specification toward secretory vs enterocyte lineages (binary fate). The transcription factor ATOH1 is repressed by Notch in ISCs; its de-repression, when Notch is inactivated, drives progenitor cells to differentiate along the secretory lineage. However, it is not clear what promotes transition of ISCs to progenitors and how this fate decision is established. METHODS: We sorted cells from Lgr5-GFP knockin intestines from mice and characterized gene expression patterns. We analyzed Notch regulation by examining expression profiles (by quantitative reverse transcription polymerase chain reaction and RNAscope) of small intestinal organoids incubated with the Notch inhibitor DAPT, intestine tissues from mice given injections of the γ-secretase inhibitor dibenzazepine, and mice with intestine-specific disruption of Rbpj. We analyzed intestine tissues from mice with disruption of the RUNX1 translocation partner 1 gene (Runx1t1, also called Mtg8) or CBFA2/RUNX1 partner transcriptional co-repressor 3 (Cbfa2t3, also called Mtg16), and derived their organoids, by histology, immunohistochemistry, and RNA sequencing (RNA-seq). We performed chromatin immunoprecipitation and sequencing analyses of intestinal crypts to identify genes regulated by MTG16. RESULTS: The transcription co-repressors MTG8 and MTG16 were highly expressed by +4/5 early progenitors, compared with other cells along crypt-villus axis. Expression of MTG8 and MTG16 were repressed by Notch signaling via ATOH1 in organoids and intestine tissues from mice. MTG8- and MTG16-knockout intestines had increased crypt hyperproliferation and expansion of ISCs, but enterocyte differentiation was impaired, based on loss of enterocyte markers and functions. Chromatin immunoprecipitation and sequencing analyses showed that MTG16 bound to promoters of genes that are specifically expressed by stem cells (such as Lgr5 and Ascl2) and repressed their transcription. MTG16 also bound to previously reported enhancer regions of genes regulated by ATOH1, including genes that encode Delta-like canonical Notch ligand and other secretory-specific transcription factors. CONCLUSIONS: In intestine tissues of mice and human intestinal organoids, MTG8 and MTG16 repress transcription in the earliest progenitor cells to promote exit of ISCs from their niche (niche exit) and control the binary fate decision (secretory vs enterocyte lineage) by repressing genes regulated by ATOH1.


Assuntos
Proteínas Correpressoras/fisiologia , Proteínas de Ligação a DNA/fisiologia , Enterócitos/citologia , Enterócitos/metabolismo , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Repressoras/fisiologia , Células-Tronco/citologia , Fatores de Transcrição/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Técnicas de Cultura de Células , Diferenciação Celular , Linhagem da Célula , Camundongos , Nicho de Células-Tronco , Células-Tronco/metabolismo
17.
Development ; 145(1)2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29242285

RESUMO

During metazoan development, Notch signaling drives spatially coordinated differentiation by establishing communication between adjacent cells. This occurs through either lateral inhibition, in which adjacent cells acquire distinct fates, or lateral induction, in which all cells become equivalent. Notch signaling is commonly activated by several distinct ligands, each of which drives signaling with a different efficiency upon binding to the Notch receptor of adjacent cells. Moreover, these ligands can also be distinctly regulated by Notch signaling. Under such complex circumstances, the overall spatial coordination becomes elusive. Here, we address this issue through both mathematical and computational analyses. Our results show that when two ligands have distinct efficiencies and compete for the same Notch receptor, they cooperate to drive new signaling states, thereby conferring additional robustness and evolvability to Notch signaling. Counterintuitively, whereas antagonistically regulated ligands cooperate to drive and enhance the response that is expected from the more efficient ligand, equivalently regulated ligands coordinate emergent spatial responses that are dependent on both ligands. Our study highlights the importance of ligand efficiency in multi-ligand scenarios, and can explain previously reported complex phenotypes.


Assuntos
Modelos Biológicos , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Animais , Humanos
18.
J Neurosci ; 39(4): 651-662, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30504272

RESUMO

Lateral inhibition in the vertebrate retina depends on a negative feedback synapse between horizontal cells (HCs) and rod and cone photoreceptors. A change in pH is thought to be the signal for negative feedback, but its spatial profile in the synaptic cleft is unknown. Here we use three different membrane proteins, each fused to the same genetically-encoded pH-sensitive Green Fluorescent Protein (GFP) (pHluorin), to probe synaptic pH in retina from transgenic zebrafish (Danio rerio) of either sex. We used the cone transducin promoter to express SynaptopHluorin (pHluorin on vesicle-associated membrane protein (VAMP2)) or CalipHluorin (pHluorin on an L-type Ca2+ channel) and the HC-specific connexin-55.5 promoter to express AMPApHluorin (pHluorin on an AMPA receptor). Stimulus light led to increased fluorescence of all three probes, consistent with alkalinization of the synaptic cleft. The receptive field size, sensitivity to surround illumination, and response to activation of an alien receptor expressed exclusively in HCs, are consistent with lateral inhibition as the trigger for alkalinization. However, SynaptopHluorin and AMPApHluorin, which are displaced farther from cone synaptic ribbons than CalipHluorin, reported a smaller pH change. Hence, unlike feedforward glutamatergic transmission, which spills over to allow cross talk between terminals in the cone network, the pH change underlying HC feedback is compartmentalized to individual synaptic invaginations within a cone terminal, consistent with private line communication.SIGNIFICANCE STATEMENT Lateral inhibition (LI) is a fundamental feature of information processing in sensory systems, enhancing contrast sensitivity and enabling edge discrimination. Horizontal cells (HCs) are the first cellular substrate of LI in the vertebrate retina, but the synaptic mechanisms underlying LI are not completely understood, despite decades of study. This paper makes a significant contribution to our understanding of LI, by showing that each HC-cone synapse is a "private-line" that operates independently from other HC-cone connections. Using transgenic zebrafish expressing pHluorin, a pH-sensitive GFP variant spliced onto three different protein platforms expressed either in cones or HCs we show that the feedback pH signal is constrained to individual cone terminals, and more stringently, to individual synaptic contact sites within each terminal.


Assuntos
Retroalimentação Fisiológica/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Horizontais da Retina/fisiologia , Sinapses/fisiologia , Animais , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/fisiologia , Conexinas/metabolismo , Feminino , Glutamatos/fisiologia , Concentração de Íons de Hidrogênio , Masculino , Prótons , Receptores de AMPA/metabolismo , Células Fotorreceptoras Retinianas Cones/ultraestrutura , Células Horizontais da Retina/ultraestrutura , Sinapses/ultraestrutura , Transmissão Sináptica/fisiologia , Proteína 2 Associada à Membrana da Vesícula/genética , Proteína 2 Associada à Membrana da Vesícula/fisiologia , Peixe-Zebra
19.
Dev Biol ; 447(1): 58-70, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28969930

RESUMO

Breaking symmetry in populations of uniform cells, to induce adoption of an alternative cell fate, is an essential developmental mechanism. Similarly, domain and boundary establishment are crucial steps to forming organs during development. Notch signaling is a pathway ideally suited to mediating precise patterning cues, as both receptors and ligands are membrane-bound and can thus act as a precise switch to toggle cell fates on or off. Fine-tuning of signaling by positive or negative feedback mechanisms dictate whether signaling results in lateral induction or lateral inhibition, respectively, allowing Notch to either induce entire regions of cell specification, or dictate binary fate choices. Furthermore, pathway activity is modulated by Fringe modification of receptors or ligands, co-expression of receptors with ligands, mode of ligand presentation, and cell surface area in contact. In this review, we describe how Notch signaling is fine-tuned to mediate lateral induction or lateral inhibition cues, and discuss examples from C.elegans, D. melanogaster and M. musculus. Identifying the cellular machinery dictating the choice between lateral induction and lateral inhibition highlights the versatility of the Notch signaling pathway in development.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Diferenciação Celular/fisiologia , Proteínas de Drosophila/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Camundongos , Receptores Notch/genética
20.
J Neurophysiol ; 124(2): 375-387, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32639901

RESUMO

The first compartmental computer models of brain neurons using the Rall method predicted novel and unexpected dendrodendritic interactions between mitral and granule cells in the olfactory bulb. We review the models from a 50-year perspective on the work that has challenged, supported, and extended the original proposal that these interactions mediate both lateral inhibition and oscillatory activity, essential steps in the neural basis of olfactory processing and perception. We highlight strategies behind the neurophysiological experiments and the Rall methods that enhance the ability of detailed compartmental modeling to give counterintuitive predictions that lead to deeper insights into neural organization at the synaptic and circuit level. The application of these methods to mechanisms of neurogenesis and plasticity are exciting challenges for the future.


Assuntos
Ondas Encefálicas/fisiologia , Dendritos/fisiologia , Modelos Teóricos , Inibição Neural/fisiologia , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Bulbo Olfatório/fisiologia , Percepção Olfatória/fisiologia , Sinapses/fisiologia , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA