Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 113(5): 1021-1034, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36602036

RESUMO

Saururus chinensis, an herbaceous magnoliid without perianth, represents a clade of early-diverging angiosperms that have gone through woodiness-herbaceousness transition and pollination obstacles: the characteristic white leaves underneath inflorescence during flowering time are considered a substitute for perianth to attract insect pollinators. Here, using the newly sequenced S. chinensis genome, we revisited the phylogenetic position of magnoliids within mesangiosperms, and recovered a sister relationship for magnoliids and Chloranthales. By considering differentially expressed genes, we identified candidate genes that are involved in the morphogenesis of the white leaves in S. chinensis. Among those genes, we verified - in a transgenic experiment with Arabidopsis - that increasing the expression of the "pseudo-etiolation in light" gene (ScPEL) can inhibit the biosynthesis of chlorophyll. ScPEL is thus likely responsible for the switches between green and white leaves, suggesting that changes in gene expression may underlie the evolution of pollination strategies. Despite being an herbaceous plant, S. chinensis still has vascular cambium and maintains the potential for secondary growth as a woody plant, because the necessary machinery, i.e., the entire gene set involved in lignin biosynthesis, is well preserved. However, similar expression levels of two key genes (CCR and CAD) between the stem and other tissues in the lignin biosynthesis pathway are possibly associated with the herbaceous nature of S. chinensis. In conclusion, the S. chinensis genome provides valuable insights into the adaptive evolution of pollination in Saururaceae and reveals a possible mechanism for the evolution of herbaceousness in magnoliids.


Assuntos
Arabidopsis , Magnoliopsida , Saururaceae , Filogenia , Polinização/genética , Lignina , Magnoliopsida/genética
2.
Curr Issues Mol Biol ; 46(2): 1503-1515, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38392215

RESUMO

The diversity of leaf characteristics, particularly leaf color, underscores a pivotal area of inquiry within plant science. The synthesis and functionality of chlorophyll, crucial for photosynthesis, largely dictate leaf coloration, with varying concentrations imparting different shades of green. Complex gene interactions regulate the synthesis and degradation of chlorophyll, and disruptions in these pathways can result in abnormal chlorophyll production, thereby affecting leaf pigmentation. This study focuses on Bambusa multiplex f. silverstripe, a natural variant distinguished by a spectrum of leaf colors, such as green, white, and green-white, attributed to genetic variations influencing gene expression. By examining the physiological and molecular mechanisms underlying chlorophyll anomalies and genetic factors in Silverstripe, this research sheds light on the intricate gene interactions and regulatory networks that contribute to leaf color diversity. The investigation includes the measurement of photosynthetic pigments and nutrient concentrations across different leaf color types, alongside transcriptomic analyses for identifying differentially expressed genes. The role of key genes in pathways such as ALA biosynthesis, chlorophyll synthesis, photosynthesis, and sugar metabolism is explored, offering critical insights for advancing research and plant breeding practices.

3.
BMC Plant Biol ; 24(1): 735, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39090544

RESUMO

The purple leaves of Brassica napus are abundant in anthocyanins, which are renowned for their role in conferring distinct colors, stress tolerance, and health benefits, however the genetic basis of this trait in B. napus remains largely unelucidated. Herein, the purple leaf B. napus (PL) exhibited purple pigments in the upper epidermis and a substantial increase in anthocyanin accumulation, particularly of cyanidin, compared to green leaf B. napus (GL). The genetic control of the purple leaf trait was attributed to a semi-dominant gene, pl, which was mapped to the end of chromosome A03. However, sequencing of the fragments amplified by the markers linked to pl indicated that they were all mapped to chromosome B05 from B. juncea. Within this B05 chromosomal segment, the BjMYB113 gene-specific marker showed perfect co-segregation with the purple leaf trait in the F2 population, suggesting that the BjMYB113 introgression from B. juncea was the candidate gene for the purple leaf trait in B. napus. To further verify the function of candidate gene, CRISPR/Cas9 was performed to knock out the BjMYB113 gene in PL. The three myb113 mutants exhibited evident green leaf phenotype, absence of purple pigments in the adaxial epidermis, and a significantly reduced accumulation of anthocyanin compared to PL. Additionally, the genes involved in positive regulatory (TT8), late anthocyanin biosynthesis (DFR, ANS, UFGT), as well as transport genes (TT19) were significantly suppressed in the myb113 mutants, further confirming that BjMYB113 was response for the anthocyanin accumulation in purple leaf B. napus. This study contributes to an advanced understanding of the regulation mechanism of anthocyanin accumulation in B. napus.


Assuntos
Antocianinas , Brassica napus , Mostardeira , Pigmentação , Folhas de Planta , Brassica napus/genética , Brassica napus/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Antocianinas/metabolismo , Mostardeira/genética , Mostardeira/metabolismo , Pigmentação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fenótipo , Introgressão Genética , Genes de Plantas , Mapeamento Cromossômico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38203776

RESUMO

Leaf color is a key ornamental characteristic of cultivated caladium (Caladium × hortulanum Birdsey), a plant with diverse leaf colors. However, the genetic improvement of leaf color in cultivated caladium is hindered by the limited understanding of leaf color diversity and regulation. In this study, the chlorophyll and anthocyanin content of 137 germplasm resources were measured to explore the diversity and mechanism of leaf color formation in cultivated caladium. Association analysis of EST-SSR markers and pigment traits was performed, as well as metabolomics and transcriptomics analysis of a red leaf variety and its white leaf mutant. We found significant differences in chlorophyll and anthocyanin content among different color groups of cultivated caladium, and identified three, eight, three, and seven EST-SSR loci significantly associated with chlorophyll-a, chlorophyll-b, total chlorophyll and total anthocyanins content, respectively. The results further revealed that the white leaf mutation was caused by the down-regulation of various anthocyanins (such as cyanidin-3-O-rutinoside, quercetin-3-O-glucoside, and others). This change in concentration is likely due to the down-regulation of key genes (four PAL, four CHS, six CHI, eight F3H, one F3'H, one FLS, one LAR, four DFR, one ANS and two UFGT) involved in anthocyanin biosynthesis. Concurrently, the up-regulation of certain genes (one FLS and one LAR) that divert the anthocyanin precursors to other pathways was noted. Additionally, a significant change in the expression of numerous transcription factors (12 NAC, 12 bZIP, 23 ERF, 23 bHLH, 19 MYB_related, etc.) was observed. These results revealed the genetic and metabolic basis of leaf color diversity and change in cultivated caladium, and provided valuable information for molecular marker-assisted selection and breeding of leaf color in this ornamental plant.


Assuntos
Antocianinas , Araceae , Antocianinas/genética , Melhoramento Vegetal , Perfilação da Expressão Gênica , Transcriptoma , Clorofila/genética
5.
Plant Mol Biol ; 112(3): 119-142, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37155022

RESUMO

Perilla as herb, ornamental, oil and edible plant is widely used in East Asia. Until now, the mechanism of regulated leaf coloration is still unclear. In this study, four different kinds of leaf colors were used to measure pigment contents and do transcriptome sequence to postulate the mechanism of leaf coloration. The measurements of chlorophyll, carotenoid, flavonoid, and anthocyanin showed that higher contents of all the aforementioned four pigments were in full purple leaf 'M357', and they may be determined front and back leaf color formation with purple. Meanwhile, the content of anthocyanin was controlled back leaf coloration. The chromatic aberration analysis and correlative analysis between different pigments and L*a*b* values analysis also suggested front and back leaf color change was correlated with the above four pigments. The genes involved in leaf coloration were identified through transcriptome sequence. The expression levels of chlorophyll synthesis and degradation related genes, carotenoid synthesis related genes and anthocyanin synthesis genes showed up-/down-regulated expression in different color leaves and were consistent of accumulation of these pigments. It was suggested that they were the candidate genes regulated perilla leaf color formation, and genes including F3'H, F3H, F3',5'H, DFR, and ANS are probably important for regulating both front and back leaf purple formation. Transcription factors involved in anthocyanin accumulation, and regulating leaf coloration were also identified. Finally, the probable scheme of regulated both full green and full purple leaf coloration and back leaf coloration was postulated.


Assuntos
Perilla frutescens , Transcriptoma , Antocianinas , Perilla frutescens/genética , Perilla frutescens/metabolismo , Perfilação da Expressão Gênica , Pigmentação/genética , Folhas de Planta/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Planta ; 258(1): 19, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37314587

RESUMO

MAIN CONCLUSION: BraANS.A3 was the key gene controlling purple leaf color in pak choi, and two short fragments of promoter region in green pak choi might be interfering its normal expression. Pak choi (B. rapa L. ssp. chinensis) is an influential and important vegetable with green, yellow, or purple leaves that is cultivated worldwide. The purple leaves are rich in anthocyanins, but the underlying genetics and evolution have yet to be extensively studied. Free-hand sections of the purple leaves indicated that anthocyanins mainly accumulate throughout the adaxial and abaxial epidermal leaf cells. Segregation analyses of an F2 population of a B. rapa ssp. chinensis L. purple leaf mutant ZBC indicated that the purple trait is controlled by an incompletely dominant nuclear gene. Bulked segregant analysis (BSA) showed that the key genes controlling the trait were between 24.25 and 38.10 Mb on chromosome A03 of B. rapa. From the annotated genes, only BraA03g050560.3C, homologous to Arabidopsis AtANS, was related to the anthocyanin synthesis pathway. Genome annotation results and transcriptional sequencing analyses revealed that the BraANS.A3 gene was involved in the purple leaf trait. qRT-PCR analyses showed that BraANS.A3 was highly upregulated in ZBC but hardly expressed in the leaves of an inbred homozygous line of B. campestris ssp. chinensis L. green leaf mutant WTC, indicating that BraANS.A3 played a key role catalyzing anthocyanin synthesis in ZBC. Full-length sequence alignment of BraANS.A3 in WTC and ZBC showed that it was highly conserved in the gene region, with significant variation in the promoter region. In particular, the insertion of two short fragments of the promoter region in WTC may interfere with its normal expression. The promoter regions of ANS in six Brassica species all had multiple cis-elements involved in responses to abscisic acid, light, and stress, suggesting that ANS may be involved in multiple metabolic pathways or biological processes. Protein-protein interactions predicted that BraANS.A3 interacts with virtually all catalytic proteins in the anthocyanin synthesis pathway and has a strong relationship with Transparent Testa 8 (TT8). These results suggest that BraANS.A3 promotes anthocyanin accumulation in purple pak choi and provide new insights into the functional analysis of anthocyanin-related genes in Chinese cabbage and transcriptional regulatory networks.


Assuntos
Arabidopsis , Brassica rapa , Brassica , Brassica rapa/genética , Antocianinas , Ácido Abscísico , Arabidopsis/genética
7.
New Phytol ; 238(5): 2016-2032, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36792969

RESUMO

Quercus dentata Thunb., a dominant forest tree species in northern China, has significant ecological and ornamental value due to its adaptability and beautiful autumn coloration, with color changes from green to yellow into red resulting from the autumnal shifts in leaf pigmentation. However, the key genes and molecular regulatory mechanisms for leaf color transition remain to be investigated. First, we presented a high-quality chromosome-scale assembly for Q. dentata. This 893.54 Mb sized genome (contig N50 = 4.21 Mb, scaffold N50 = 75.55 Mb; 2n = 24) harbors 31 584 protein-coding genes. Second, our metabolome analyses uncovered pelargonidin-3-O-glucoside, cyanidin-3-O-arabinoside, and cyanidin-3-O-glucoside as the main pigments involved in leaf color transition. Third, gene co-expression further identified the MYB-bHLH-WD40 (MBW) transcription activation complex as central to anthocyanin biosynthesis regulation. Notably, transcription factor (TF) QdNAC (QD08G038820) was highly co-expressed with this MBW complex and may regulate anthocyanin accumulation and chlorophyll degradation during leaf senescence through direct interaction with another TF, QdMYB (QD01G020890), as revealed by our further protein-protein and DNA-protein interaction assays. Our high-quality genome assembly, metabolome, and transcriptome resources further enrich Quercus genomics and will facilitate upcoming exploration of ornamental values and environmental adaptability in this important genus.


Assuntos
Antocianinas , Quercus , Antocianinas/metabolismo , Quercus/genética , Quercus/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Transcriptoma/genética , Fatores de Transcrição/metabolismo , Metaboloma , Pigmentação/genética , Cromossomos , Glucosídeos , Cor
8.
Mol Breed ; 43(6): 48, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37313222

RESUMO

Leaf color-related genes play key roles in chloroplast development and photosynthetic pigment biosynthesis and affect photosynthetic efficiency and grain yield in crops. In this study, a recessive homozygous individual displaying yellow leaf color (yl1) was identified in the progeny population derived from a cross between wheat cultivars Xingmai1 (XM1) and Yunong3114 (YN3114). Phenotypic identification showed that yl1 exhibited the yellow character state over the entire growth period. Compared with XM1, yl1 plants had significantly lower chlorophyll content and net photosynthetic rate, and similar results were found between the green-type lines and yellow-type lines in the BC2F3 XM1 × yl1 population. Gene mapping via the bulked segregant exome capture sequencing (BSE-seq) method showed that the target gene TaYL1 was located within the region of 582,556,971-600,837,326 bp on chromosome 7D. Further analysis by RNA-seq suggested TraesCS7D02G469200 as a candidate gene for yellow leaf color in common wheat, which encodes a protein containing the AP2 domain. Moreover, comparative transcriptome profiling revealed that most differentially expressed genes (DEGs) were enriched in chlorophyll metabolism and photosynthesis pathways. Together, these results indicate that TaYL1 potentially affects chlorophyll synthesis and photosynthesis. This study further elucidates the biological mechanism of chlorophyll synthesis, metabolism, and photosynthesis in wheat and provides a theoretical basis for high photosynthetic efficiency in wheat breeding. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01395-z.

9.
Int J Mol Sci ; 25(1)2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38203412

RESUMO

Leaf color variations in tea plants were widely considered due to their attractive phenotypes and characteristic flavors. The molecular mechanism of color formation was extensively investigated. But few studies focused on the transformation process of leaf color change. In this study, four strains of 'Baijiguan' F1 half-sib generation with similar genetic backgrounds but different colors were used as materials, including Green (G), Yellow-Green (Y-G), Yellow (Y), and Yellow-Red (Y-R). The results of broadly targeted metabolomics showed that 47 metabolites were differentially accumulated in etiolated leaves (Y-G, Y, and Y-R) as compared with G. Among them, lipids were the main downregulated primary metabolites in etiolated leaves, which were closely linked with the thylakoid membrane and chloroplast structure. Flavones and flavonols were the dominant upregulated secondary metabolites in etiolated leaves, which might be a repair strategy for reducing the negative effects of dysfunctional chloroplasts. Further integrated analysis with the transcriptome indicated different variation mechanisms of leaf phenotype in Y-G, Y, and Y-R. The leaf color formation of Y-G and Y was largely determined by the increased content of eriodictyol-7-O-neohesperidoside and the enhanced activities of its modification process, while the color formation of Y-R depended on the increased contents of apigenin derivates and the vigorous processes of their transportation and transcription factor regulation. The key candidate genes, including UDPG, HCT, CsGSTF1, AN1/CsMYB75, and bHLH62, might play important roles in the flavonoid pathway.


Assuntos
Camellia sinensis , Camellia sinensis/genética , Camellia sinensis/metabolismo , Metaboloma , Folhas de Planta/metabolismo , Transcriptoma
10.
J Sci Food Agric ; 103(3): 1334-1341, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36153639

RESUMO

BACKGROUND: Partridge tea (Mallotus oblongifolius) is used as an important beverage and medical plant in Hainan province of China. Although some information about the morphology, cytology, and genetics of partridge tea has been reported in the literature, knowledge about this plant is still very limited. The leaves are the most important part for every tea plant, with a major role in nutrition and other functions. The leaves of different cultivars of partridge tea are different in colors and functions. The molecular mechanism of color formation of partridge tea leaf is still unclear. We reveal the molecular mechanism of the color difference between purple-red and green partridge tea leaves through metabolome and transcriptome analysis. RESULTS: We identified 665 compounds in the two partridge tea cultivars through metabolome analysis. Among these compounds, the content of 324 differed between the two cultivars. We also annotated 50 042 unigenes in the two cultivars by transcriptome analysis; 9665 unigenes were expressed differently between the two cultivars. Using an integrated analysis of the metabolome and transcriptome data, we found that the compounds and genes involved in anthocyanin biosynthesis were up-regulated in the purple-red leaves, compared with the green leaves. CONCLUSION: Our results showed that the anthocyanin biosynthesis pathway genes were up-regulated, which resulted in the up-regulation of the anthocyanin, making the leaf color purple-red. Our study reveals the molecular mechanism of the color difference between purple-red and green partridge tea, and lays a foundation for the genetic breeding of partridge tea genetic and the utilization of its volatile components. © 2022 Society of Chemical Industry.


Assuntos
Antocianinas , Melhoramento Vegetal , Antocianinas/metabolismo , Perfilação da Expressão Gênica/métodos , Transcriptoma , Folhas de Planta/genética , Folhas de Planta/metabolismo , Chá/genética , Chá/metabolismo , Extratos Vegetais/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cor
11.
BMC Plant Biol ; 22(1): 244, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585493

RESUMO

BACKGROUND: Leaf color mutants have reduced photosynthetic efficiency, which has severely negative impacts on crop growth and economic product yield. There are different chlorophyll mutants in Arabidopsis and crops that can be used for genetic control and molecular mechanism studies of chlorophyll biosynthesis, chloroplast development and photoefficiency. Chlorophyll mutants in Brassica napus are mostly used for mapping and location research but are rarely used for physiological research. The chlorophyll-deficient mutant in this experiment were both genetically mapped and physiologically analyzed. RESULTS: In this study, yellow leaf mutant of Brassica napus L. mutated by ethyl methyl sulfone (EMS) had significantly lower chlorophyll a, b and carotenoid contents than the wild type, and the net photosynthetic efficiency, stomatal conductance and transpiration rate were all significantly reduced. The mutant had sparse chloroplast distribution and weak autofluorescence. The granule stacks were reduced, and the shape was extremely irregular, with more broken stromal lamella. Transcriptome data analysis enriched the differentially expressed genes mainly in phenylpropane and sugar metabolism. The mutant was mapped to a 2.72 Mb region on A01 by using BSA-Seq, and the region was validated by SSR markers. CONCLUSIONS: The mutant chlorophyll content and photosynthetic efficiency were significantly reduced compared with those of the wild type. Abnormal chloroplasts and thylakoids less connected to the stroma lamella appeared in the mutant. This work on the mutant will facilitate the process of cloning the BnaA01.cd gene and provide more genetic and physiological information concerning chloroplast development in Brassica napus.


Assuntos
Arabidopsis , Brassica napus , Arabidopsis/genética , Brassica napus/genética , Brassica napus/metabolismo , Clorofila/metabolismo , Clorofila A/metabolismo , Mapeamento Cromossômico , Fotossíntese/genética , Folhas de Planta/genética , Folhas de Planta/metabolismo
12.
BMC Plant Biol ; 22(1): 345, 2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842592

RESUMO

BACKGROUND: Hydrangea macrophylla var. Maculata 'Yinbianxiuqiu' (YB) is an excellent plant species with beautiful flowers and leaves with silvery white edges. However, there are few reports on its leaf color characteristics and color formation mechanism. RESULTS: The present study compared the phenotypic, physiological and transcriptomic differences between YB and a full-green leaf mutant (YM) obtained from YB. The results showed that YB and YM had similar genetic backgrounds, but photosynthesis was reduced in YB. The contents of pigments were significantly decreased at the edges of YB leaves compared to YM leaves. The ultrastructure of chloroplasts in the YB leaves was irregular. Transcriptome profiling identified 7,023 differentially expressed genes between YB and YM. The expression levels of genes involved in photosynthesis, chloroplast development and division were different between YB and YM. Quantitative real-time PCR showed that the expression trends were generally consistent with the transcriptome data. CONCLUSIONS: Taken together, the formation of the silvery white leaf color of H. macrophylla var. maculata was primarily due to the abnormal development of chloroplasts. This study facilitates the molecular function analysis of key genes involved in chloroplast development and provides new insights into the molecular mechanisms involved in leaf coloration in H. macrophylla.


Assuntos
Hydrangea , Clorofila/metabolismo , Cloroplastos/metabolismo , Cor , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Hydrangea/genética , Hydrangea/metabolismo , Fisiologia Comparada , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Transcriptoma
13.
BMC Plant Biol ; 22(1): 570, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36471240

RESUMO

BACKGROUND: Leaf color mutants are ideal materials to study pigment metabolism and photosynthesis. Leaf color variations are mainly affected by chlorophylls (Chls) and carotenoid contents and chloroplast development in higher plants. However, the regulation of chlorophyll metabolism remains poorly understood in many plant species. The chloroplast signal-recognition particle system is responsible for the insertion of the light-harvesting chlorophyll a/b proteins (LHCPs) to thylakoid membranes, which controls the chloroplast development as well as the regulation of Chls biosynthesis post-translationally in higher plants. RESULTS: In this study, the yellow leaf cucumber mutant, named yl, was found in an EMS-induced mutant library, which exhibited a significantly reduced chlorophyll content, abnormal chloroplast ultrastructure and decreased photosynthetic capacity. Genetic analysis demonstrated that the phenotype of yl was controlled by a recessive nuclear gene. Using BSA-seq technology combined with the map-based cloning method, we narrowed the locus to a 100 kb interval in chromosome 3. Linkage analysis and allelism test validated the candidate SNP residing in CsaV3_3G009150 encoding one homolog of chloroplast signal-recognition particle (cpSRP) receptor in Arabidopsis, cpFtsY, could be responsible for the yellow leaf phenotype of yl. The relative expression of CscpFtsY was significantly down-regulated in different organs except for the stem, of yl compared with that in the wild type (WT). Subcellular localization result showed that CscpFtsY located in the chloroplasts of mesophyll cells. CONCLUSIONS: The yl mutant displayed Chls-deficient, impaired chloroplast ultrastructure with intermittent grana stacks and significantly decreased photosynthetic capacity. The isolation of CscpFtsY in cucumber could accelerate the progress on chloroplast development by cpSRP-dependant LHCP delivery system and regulation of Chls biosynthesis in a post-translational way.


Assuntos
Arabidopsis , Cucumis sativus , Cucumis sativus/genética , Cucumis sativus/metabolismo , Clorofila A/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/metabolismo , Cloroplastos/metabolismo , Fenótipo , Clorofila/metabolismo , Arabidopsis/genética , Complexos de Proteínas Captadores de Luz/genética , Partícula de Reconhecimento de Sinal/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação
14.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36499369

RESUMO

Leaf color is one of the key factors involved in determining the processing suitability of tea. It relates to differential accumulation of flavor compounds due to the different metabolic mechanisms. In recent years, photosensitive etiolation or albefaction is an interesting direction in tea research field. However, the molecular mechanism of color formation remains unclear since albino or etiolated mutants have different genetic backgrounds. In this study, wide-target metabolomic and transcriptomic analyses were used to reveal the biological mechanism of leaf etiolation for 'Huangyu', a bud mutant of 'Yinghong 9'. The results indicated that the reduction in the content of chlorophyll and the ratio of chlorophyll to carotenoids might be the biochemical reasons for the etiolation of 'Huangyu' tea leaves, while the content of zeaxanthin was significantly higher. The differentially expressed genes (DEGs) involved in chlorophyll and chloroplast biogenesis were the biomolecular reasons for the formation of green or yellow color in tea leaves. In addition, our results also revealed that the changes of DEGs involved in light-induced proteins and circadian rhythm promoted the adaptation of etiolated tea leaves to light stress. Variant colors of tea leaves indicated different directions in metabolic flux and accumulation of flavor compounds.


Assuntos
Camellia sinensis , Camellia sinensis/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/metabolismo , Perfilação da Expressão Gênica , Clorofila/metabolismo , Chá/química , Transcriptoma , Proteínas de Plantas/metabolismo
15.
J Sci Food Agric ; 102(9): 3730-3741, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34919290

RESUMO

BACKGROUND: Lipids are one of the most important bioactive compounds, affecting the character and quality of tea. However, the contribution of lipids to tea productions is still elusive. Here, we systematically identified the lipid profiles of green, oolong, and black teas in purple-leaf tea (Jinmingzao, JMZ) and green-leaf tea (Huangdan, HD), respectively. RESULTS: The lipids analysis showed regular accumulation in tea products with different manufacturing processes, among which the fatty acids, glycerolipids, glycerophospholipids, and sphingolipids contribute to the quality characteristics of tea products, including typical fatty acyl (FA), monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerols (DGDG), and phosphatidylcholine (PC). Compared tea materials with products, levels of fatty acids were up-regulated, while glycerolipids and glycerophospholipids were down-regulated in tea products. FA 18:3, FA 16:0, MGDG 36:6, DGDG 36:6, PC 34:3, and PC 36:6 were the negative contributors to green tea flavor formation of purple-leaf tea. The pathway analysis of significant lipids in materials and products of purple-leaf tea were enriched linolenic acid metabolism pathway and glycerolipid metabolism. CONCLUSION: This study provides insights into the lipid metabolism profiles of different tea leaf colors, and found that fatty acids are essential precursors of black tea flavor formation. © 2021 Society of Chemical Industry.


Assuntos
Lipidômica , Folhas de Planta , Ácidos Graxos/análise , Glicerofosfolipídeos/metabolismo , Folhas de Planta/química , Chá/química
16.
Physiol Mol Biol Plants ; 28(10): 1833-1848, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36484024

RESUMO

Malus spectabilis 'Duojiao' is a spontaneous delayed-green leaf color mutant of M. spectabilis 'Riversii' and has chloroplasts with irregularly arranged vesicles and indistinct stromal lamellae. The yellow leaves of mutant have less chlorophyll (Chl), carotenoids, and flavonoids. Measurement of photosynthetic gas exchange indicated that the mutant has lower photosynthetic activity than 'Riversii' plants. Transcriptome sequencing with the Illumina platform was used to characterize differences in gene expression between the leaves of plants with yellow and green colors and elucidate the molecular mechanisms responsible for variation in leaf color in ornamental crabapple. In the comparison group of mutant yellow leaves and the maternal green leaves, 1848 differentially significant expressed genes (DEGs) were annotated by transcriptomic analysis. Many DEGs and transcription factors were identified related to chloroplast development, Chl synthesis and degradation, photosynthesis, carotenoid biosynthesis, flavonoid biosynthesis and other pathways related to plant leaf color formation. Among these, the Chl biosynthesis-related coproporphyrinogen gene, oxidative decarboxylase gene, and Chl a oxygenase gene were down-regulated, indicating that Chl biosynthesis was blocked. GLK1, which regulates chloroplast development, was down-regulated in yellow leaves. Parallel experiments showed that the content of the Chl synthesis precursors, protoporphyrinogen IX, chlorophyllide a, and chlorophyllide b and the activity of chlorophyllogen III oxidase and chlorophyllide a oxygenase in the yellow leaves of 'Duojiao' were lower than those in the green leaves of 'Riversii'. Thus, leaf color formation is greatly affected by Chl metabolism and chloroplast development. The reliability of the RNA-sequencing data was confirmed by quantitative real-time PCR analysis with 12 selected DEGs. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01248-7.

17.
BMC Genomics ; 22(1): 455, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34139990

RESUMO

BACKGROUND: Anthocyanin, chlorophyll, and carotenoid pigments are widely distributed in plants, producing various colors. Ornamental kale (Brassica oleracea var. acephala DC) which has colorful inner leaves is an ideal plant to explore how these three pigments contribute to leaf color. The molecular mechanisms of the coloration in ornamental kale could provide reference for exploring the mechanisms of pigmentation in other plants. RESULTS: In this study, we sequenced the transcriptome and determined the pigment contents of an unusual cultivar of ornamental kale with three different types of leaf coloration: pink (C3), light pink (C2), and variegated pink-green (C1). A total of 23,965 differentially expressed genes were detected in pairwise comparisons among the three types of leaves. The results indicate that Bo9g058630 coding dihydroflavonol 4-reductase (DFR) and Bo3g019080 coding shikimate O-hydroxycinnamoyltransferase (HCT) acted in anthocyanin biosynthesis in pink leaves. Bo1g053420 coding pheophorbidase (PPD) and Bo3g012430 coding 15-cis-phytoene synthase (crtB) were identified as candidate genes for chlorophyll metabolism and carotenoid biosynthesis, respectively. The transcription factors TT8, MYBL2, GATA21, GLK2, and RR1 might participate in triggering the leaf color change in ornamental kale. Anthocyanin content was highest in C3 and lowest in C1. Chlorophyll and carotenoid contents were lowest in C2 and highest in C1. CONCLUSIONS: Based on these findings, we suspected that the decrease in anthocyanin biosynthesis and the increase in chlorophyll and carotenoid biosynthesis might be the reason for the leaf changing from pink to variegate pink-green in this unusual cultivar. Our research provides insight into the molecular mechanisms of leaf coloration in ornamental kale, contributing to a theoretical foundation for breeding new varieties.


Assuntos
Antocianinas , Brassica , Brassica/genética , Brassica/metabolismo , Carotenoides , Clorofila , Regulação da Expressão Gênica de Plantas , Pigmentação/genética , Melhoramento Vegetal , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
BMC Plant Biol ; 21(1): 416, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34507525

RESUMO

BACKGROUND: Leaf color variation is a common trait in plants and widely distributed in many plants. In this study, a leaf color mutation in Camellia japonica (cultivar named as Maguxianzi, M) was used as material, and the mechanism of leaf color variation was revealed by physiological, cytological, transcriptome and microbiome analyses. RESULTS: The yellowing C. japonica (M) exhibits lower pigment content than its parent (cultivar named as Huafurong, H), especially chlorophyll (Chl) and carotenoid, and leaves of M have weaker photosynthesis. Subsequently, the results of transmission electron microscopy(TEM) exhibited that M chloroplast was accompanied by broken thylakoid membrane, degraded thylakoid grana, and filled with many vesicles. Furthermore, comparative transcriptome sequencing identified 3,298 differentially expressed genes (DEGs). KEGG annotation analysis results showed that 69 significantly enriched DEGs were involved in Chl biosynthesis, carotenoid biosynthesis, photosynthesis, and plant-pathogen interaction. On this basis, we sequenced the microbial diversity of the H and M leaves. The sequencing results suggested that the abundance of Didymella in the M leaves was significantly higher than that in the H leaves, which meant that M leaves might be infected by Didymella. CONCLUSIONS: Therefore, we speculated that Didymella infected M leaves while reduced Chl and carotenoid content by damaging chloroplast structures, and altered the intensity of photosynthesis, thereby causing the leaf yellowing phenomenon of C. japonica (M). This research will provide new insights into the leaf color variation mechanism and lay a theoretical foundation for plant breeding and molecular markers.


Assuntos
Camellia/anatomia & histologia , Camellia/genética , Camellia/metabolismo , Cor , Microbiota , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Carotenoides/metabolismo , China , Clorofila/metabolismo , Produtos Agrícolas/anatomia & histologia , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Variação Genética , Genótipo , Fenótipo , Transcriptoma
19.
BMC Plant Biol ; 21(1): 301, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34187365

RESUMO

BACKGROUND: Mustard (Brassica juncea) is an important economic vegetable, and some cultivars have purple leaves and accumulate more anthocyanins than the green. The genetic and evolution of purple trait in mustard has not been well studied. RESULT: In this study, free-hand sections and metabolomics showed that the purple leaves of mustard accumulated more anthocyanins than green ones. The gene controlling purple leaves in mustard, Mustard Purple Leaves (MPL), was genetically mapped and a MYB113-like homolog was identified as the candidate gene. We identified three alleles of the MYB113-like gene, BjMYB113a from a purple cultivar, BjMYB113b and BjMYB113c from green cultivars. A total of 45 single nucleotide polymorphisms (SNPs) and 8 InDels were found between the promoter sequences of the purple allele BjMYB113a and the green allele BjMYB113b. On the other hand, the only sequence variation between the purple allele BjMYB113a and the green allele BjMYB113c is an insertion of 1,033-bp fragment in the 3'region of BjMYB113c. Transgenic assay and promoter activity studies showed that the polymorphism in the promoter region was responsible for the up-regulation of the purple allele BjMYB113a and high accumulation of anthocyanin in the purple cultivar. The up-regulation of BjMYB113a increased the expression of genes in the anthocyanin biosynthesis pathway including BjCHS, BjF3H, BjF3'H, BjDFR, BjANS and BjUGFT, and consequently led to high accumulation of anthocyanin. However, the up-regulation of BjMYB113 was compromised by the insertion of 1,033-bp in 3'region of the allele BjMYB113c. CONCLUSIONS: Our results contribute to a better understanding of the genetics and evolution of the BjMYB113 gene controlling purple leaves and provide useful information for further breeding programs of mustard.


Assuntos
Genes de Plantas/genética , Mutação com Perda de Função/genética , Mostardeira/genética , Folhas de Planta/anatomia & histologia , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Alelos , Antocianinas/metabolismo , Arabidopsis , Clonagem Molecular , Cor , Genes de Plantas/fisiologia , Mostardeira/anatomia & histologia , Mostardeira/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Fatores de Transcrição/fisiologia
20.
BMC Plant Biol ; 21(1): 438, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34583634

RESUMO

BACKGROUND: Chlorophyll (Chl) is a vital photosynthetic pigment involved in capturing light energy and energy conversion. In this study, the color conversion of inner-leaves from green to yellow in the new wucai (Brassica campestris L.) cultivar W7-2 was detected under low temperature. The W7-2 displayed a normal green leaf phenotype at the seedling stage, but the inner leaves gradually turned yellow when the temperature was decreased to 10 °C/2 °C (day/night), This study facilitates us to understand the physiological and molecular mechanisms underlying leaf color changes in response to low temperature. RESULTS: A comparative leaf transcriptome analysis of W7-2 under low temperature treatment was performed on three stages (before, during and after leaf color change) with leaves that did not change color under normal temperature at the same period as a control. A total of 67,826 differentially expressed genes (DEGs) were identified. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) analysis revealed that the DEGs were mainly enriched in porphyrin and Chl metabolism, carotenoids metabolism, photosynthesis, and circadian rhythm. In the porphyrin and chlorophyll metabolic pathways, the expression of several genes was reduced [i.e. magnesium chelatase subunit H (CHLH)] under low temperature. Almost all genes [i.e. phytoene synthase (PSY)] in the carotenoids (Car) biosynthesis pathway were downregulated under low temperature. The genes associated with photosynthesis [i.e. photosystem II oxygen-evolving enhancer protein 1 (PsbO)] were also downregulated under LT. Our study also showed that elongated hypocotyl5 (HY5), which participates in circadian rhythm, and the metabolism of Chl and Car, is responsible for the regulation of leaf color change and cold tolerance in W7-2. CONCLUSIONS: The color of inner-leaves was changed from green to yellow under low temperature in temperature-sensitive mutant W7-2. Physiological, biochemical and transcriptomic studies showed that HY5 transcription factor and the downstream genes such as CHLH and PSY, which regulate the accumulation of different pigments, are required for the modulation of leaf color change in wucai under low temperature.


Assuntos
Brassica/genética , Brassica/metabolismo , Clorofila/metabolismo , Resposta ao Choque Frio/fisiologia , Pigmentação/genética , Pigmentação/fisiologia , Folhas de Planta/metabolismo , Clorofila/genética , Regulação da Expressão Gênica de Plantas , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA