Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 410-413, 2024 Apr 15.
Artigo em Zh | MEDLINE | ID: mdl-38660906

RESUMO

The first patient, a 10-year-old girl, presented with pancytopenia and recurrent epistaxis, along with a history of repeated upper respiratory infections, café-au-lait spots, and microcephaly. Genetic testing revealed compound heterozygous mutations in the DNA ligase IV (LIG4) gene, leading to a diagnosis of LIG4 syndrome. The second patient, a 6-year-old girl, was seen for persistent thrombocytopenia lasting over two years and was noted to have short stature, hyperpigmented skin, and hand malformations. She had a positive result from chromosome breakage test. She was diagnosed with Fanconi anemia complementation group A. Despite similar clinical presentations, the two children were diagnosed with different disorders, suggesting that children with hemocytopenia and malformations should not only be evaluated for hematological diseases but also be screened for other potential underlying conditions such as immune system disorders.


Assuntos
Anormalidades Múltiplas , Humanos , Feminino , Criança , Anormalidades Múltiplas/genética , Pancitopenia/etiologia , Pancitopenia/genética , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/deficiência , Trombocitopenia/genética , Trombocitopenia/etiologia , Citopenia
2.
BMC Pediatr ; 22(1): 588, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36221079

RESUMO

BACKGROUND: Ligase IV (LIG4) dificiency is a very rare clinical syndrome with around 50 cases reported to date. This syndrome is caused by biallelic pathogenic variants in the LIG4 gene, which cause DNA damage repair disorders, mainly manifesting as severe immunodeficiency. CASE PRESENTATION: We report the case of a 15-month-old male child with pancytopenia, growth retardation, microcephaly, history of vaccine-related rubella, elevated immunoglobulin G, and decreased T- and B lymphocytes. Next-generation sequencing revealed LIG4 pathogenic genes and compound heterozygous mutations, namely the missense mutation c.833G > T (p.Arg278Leu) and deletion mutation c.1271_1275del (p.Lys424Argfs*20). CONCLUSION: This case suggests that LIG4 dificiency can manifest not only as immunodeficiency but also with increased serum IgG levels and pancytopenia, which constitutes an additional clinical phenotype. Furthermore, this case suggests that LIG4 deficiency should be considered upon differential diagnosis of myelodysplastic syndrome in children.


Assuntos
Síndromes de Imunodeficiência , Síndromes Mielodisplásicas , Pancitopenia , Vacinas , DNA Ligase Dependente de ATP/genética , DNA Ligases/genética , Humanos , Imunoglobulina G , Síndromes de Imunodeficiência/diagnóstico , Síndromes de Imunodeficiência/genética , Masculino , Mutação , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/genética , Pancitopenia/etiologia
3.
Cell Biol Toxicol ; 36(5): 493-507, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32279126

RESUMO

A percentage of colorectal cancer (CRC) patients display low sensitivity to radiotherapy, which affects its therapeutic effect. Cancer cells DNA double-strand breaks (DSBs) repair capacity is crucial for radiosensitivity, but the roles of long noncoding RNAs (lncRNAs) in this process are largely uncharacterized. This study aims to explore whether lnc-RI regulates CRC cell growth and radiosensitivity by regulating the nonhomologous end-joining (NHEJ) repair pathway. CRC cells in which lnc-RI has been silenced showed lower cell growth and higher apoptosis rates due to increased DSBs and cell cycle arrest. We found that miR-4727-5p targets both lnc-RI and LIG4 mRNA and inhibit their expression. CRC cells showed increased radiosensitivity when lnc-RI was silenced. These results reveal novel roles for lnc-RI in both DNA damage repair and radiosensitivity regulation in CRC cells. Our study revealed that lnc-RI regulates LIG4 expression through lnc-RI/miR-4727-5p/LIG4 axis and regulates NHEJ repair efficiency to participate in DNA damage repair. The level of lnc-RI was negatively correlated with the radiosensitivity of CRC cells, indicates that lnc-RI may be a potential target for CRC therapy. We also present the first report of the function of miR-4727-5p.


Assuntos
Neoplasias Colorretais/genética , Dano ao DNA/genética , Reparo do DNA por Junção de Extremidades/genética , RNA Longo não Codificante/metabolismo , Tolerância a Radiação/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Sequência de Bases , Ligação Competitiva , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Neoplasias Colorretais/patologia , Quebras de DNA de Cadeia Dupla , DNA Ligase Dependente de ATP/genética , DNA Ligase Dependente de ATP/metabolismo , Estabilidade Enzimática/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Nus , Pessoa de Meia-Idade , Modelos Biológicos , RNA Longo não Codificante/genética , Transdução de Sinais/genética
4.
J Clin Immunol ; 39(1): 99-105, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30617623

RESUMO

DNA ligase IV (LIG4) syndrome is a rare autosomal recessive disorder, manifesting with variable immune deficiency, growth failure, predisposition to malignancy, and cellular sensitivity to ionizing radiation. The facial features are subtle and variable, as well. Herein, we described an 18-year-old boy, the first child of consanguineous parents who presented with Behçet's disease (BD)-like phenotype, developmental delay, and dysembryoplastic neuroepithelial tumor (DNET). Whole-exome sequencing revealed a homozygous p.Arg871His (c.2612G > A) mutation in LIG4. To date, 35 cases have been reported with LIG4 syndrome. Peripheral blood mononuclear cells of the patient displayed notable sensitivity to ionizing radiation. Flow cytometric annexin V-propidium iodide (PI) and eFluor670 proliferation assays showed accelerated radiation-induced apoptosis and diminished proliferation, respectively. To our knowledge, this is the first case presenting with a BD-like phenotype. This case provides further evidence that rare monogenic defects could be the underlying cause of atypical presentations of some well-described disorders. Moreover, this clinical report further expands the phenotypical spectrum of LIG4 deficiency.


Assuntos
Síndrome de Behçet/genética , DNA Ligase Dependente de ATP/genética , Mutação de Sentido Incorreto/genética , Adolescente , Anormalidades Craniofaciais/genética , Transtornos do Crescimento/genética , Homozigoto , Humanos , Síndromes de Imunodeficiência/genética , Leucócitos Mononucleares , Masculino , Fenótipo , Sequenciamento do Exoma/métodos
5.
BMC Pediatr ; 19(1): 346, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31604460

RESUMO

BACKGROUND: DNA ligase IV deficiency is a rare autosomal recessive disorder caused by hypomorphic mutations in the DNA ligase IV (LIG4) gene. DNA ligase IV is an essential protein for the development of a healthy immune system as well as for the protection of genomic integrity. Apart from typical stigmata, patients with DNA ligase IV deficiency are characterized by progressive bone marrow failure and a predisposition to malignancy. To our knowledge this reported case is the first description of two brothers with ligase IV deficiency who are treated with different hematopoietic stem cell transplantation (HSCT) regimens resulting in vastly divergent outcomes. CASE PRESENTATION: The cases of two brothers suffering from severe recurrent infections and growth retardation are described. The laboratory findings showed pancytopenia with significant lymphopenia. The two boys were diagnosed with DNA ligase IV deficiency, associated with severe combined immunodeficiency (SCID). Both patients received HSCT from two different matched unrelated donors (MUD) at the age of 33 and 18 months. The older brother succumbed post-transplant due to fatal side-effects 143 days after allogeneic HSCT. The younger brother - conditioned with a different regimen - received a T cell depleted graft 4 months later. No severe side-effects occurred, neither post-transplant nor in the following years. Ten years after HSCT the patient is well off, living a normal life and attending a regular high school. His immune system is fully reconstituted, resulting in a maximum of T cell receptor (TCR) diversity, which is a prerequisite for immune competence. However, he still suffers from microcephaly, dwarfism and dystrophy. CONCLUSIONS: This case report gives an example of a successful HSCT as a treatment option in a genetic disorder such as ligase IV deficiency, using a rather mild conditioning regimen. Further studies are required to determine the viability and efficacy of this treatment option.


Assuntos
DNA Ligase Dependente de ATP/deficiência , Transplante de Células-Tronco Hematopoéticas/métodos , Imunodeficiência Combinada Severa/complicações , Irmãos , Condicionamento Pré-Transplante/métodos , Pré-Escolar , Evolução Fatal , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Lactente , Masculino , Imunodeficiência Combinada Severa/imunologia , Transplante Homólogo
6.
Clin Immunol ; 163: 75-83, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26762768

RESUMO

DNA ligase IV (LIG4) deficiency is an extremely rare autosomal recessive primary immunodeficiency disease caused by the LIG4 mutation. To date, fewer than 30 cases of patients have been reported worldwide. No reversion mutations have been previously identified in LIG4. This study enrolled seven Chinese patients with LIG4 deficiency who presented with combined immunodeficiency, microcephaly, and growth retardation. One patient (P1) acquired non-Hodgkin lymphoma. Four patients had impaired T cell proliferation function and skewed T cell receptor diversity. Five novel mutations in LIG4 and a potential hotspot mutation (c.833G>T; p.R278L) in the Chinese population were identified. TA cloning analysis of T cells, NK cells, granulocytes, and oral mucosa cells in P6 revealed wild-type clones and clones that contained both maternally and paternally inherited mutations, indicating possible somatic reversion which need further investigation since no functional or protein assays were possible for all the patients died and no cell lines were available.


Assuntos
DNA Ligases/genética , Transtornos do Crescimento/genética , Síndromes de Imunodeficiência/genética , Linfoma não Hodgkin/genética , Microcefalia/genética , Linfócitos T/imunologia , Povo Asiático , Proliferação de Células/genética , Pré-Escolar , China , DNA Ligase Dependente de ATP , DNA Ligases/deficiência , Feminino , Genótipo , Granulócitos/imunologia , Granulócitos/metabolismo , Transtornos do Crescimento/imunologia , Humanos , Síndromes de Imunodeficiência/imunologia , Lactente , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Linfoma não Hodgkin/imunologia , Masculino , Microcefalia/imunologia , Mutação , Fenótipo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Síndrome , Linfócitos T/metabolismo
7.
Clin Immunol ; 163: 108-10, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26774591

RESUMO

INTRODUCTION: Here we present an unusual case of DNA ligase IV deficiency syndrome without dysmorphic facial findings and microcephaly complicated with Epstein-Barr virus-associated large B-cell lymphoma with the right lung involvement and a massive brain tumor lesion in a two-year-old female. METHODS: PID panel was used for sequencing 55 genes. Most genes have >98% exon coverage including splicing sites. LIG4 gene has 100% exon and splicing site coverage. This was used in Ion Torrent PGM system, the library kit was made by Agilent with Haloplex technology. The sequence analysis software was Alamut, direct sequencing of LIG4 gene was performed after NGS results. RESULT: We identified three heterozygous mutations in LIG4 gene c.2736+3delC and c.8 C>T (p.A3V) inherited from mother and c.26C>T (p.T9I) - from father after PID panel sequencing and some additional polymorphisms in ATM, NOD2 and NLRP3 genes. CONCLUSION: This case broadens the clinical spectrum of DNA ligase IV deficiency.


Assuntos
Neoplasias Encefálicas/imunologia , DNA Ligases/deficiência , Infecções por Vírus Epstein-Barr/imunologia , Síndromes de Imunodeficiência/imunologia , Neoplasias Pulmonares/imunologia , Linfoma Difuso de Grandes Células B/imunologia , Neoplasias Primárias Múltiplas/imunologia , Neoplasias Encefálicas/virologia , Pré-Escolar , DNA Ligase Dependente de ATP , DNA Ligases/genética , Feminino , Herpesvirus Humano 4 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Síndromes de Imunodeficiência/genética , Neoplasias Pulmonares/virologia , Linfoma Difuso de Grandes Células B/virologia , Mutação , Neoplasias Primárias Múltiplas/virologia , Análise de Sequência de DNA
8.
Biochem Biophys Res Commun ; 476(4): 420-425, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27237972

RESUMO

The evidence suggests that transforming growth factor-beta (TGF-ß) regulates the DNA-damage response (DDR) upon irradiation, and we previously reported that TGF-ß1 induced DNA ligase IV (Lig4) expression and enhanced the nonhomologous end-joining repair pathway in irradiated cells. In the present study, we investigated the effects of TGF-ß1 on the irradiation-induced DDRs of A431 and HaCaT cells. Cells were pretreated with or without TGF-ß1 and irradiated. At 30 min post-irradiation, DDRs were detected by immunoblotting of phospho-ATM, phospho-Chk2, and the presence of histone foci (γH2AX). The levels of all three factors were similar right after irradiation regardless of TGF-ß1 pretreatment. However, they soon thereafter exhibited downregulation in TGF-ß1-pretreated cells, indicating the acceleration of the DDR. Treatment with a TGF-ß type I receptor inhibitor (SB431542) or transfections with siRNAs against Smad2/3 or DNA ligase IV (Lig4) reversed this acceleration of the DDR. Furthermore, the frequency of irradiation-induced apoptosis was decreased by TGF-ß1 pretreatment in vivo, but this effect was abrogated by SB431542. These results collectively suggest that TGF-ß1 could enhance cell survival by accelerating the DDR via Smad signaling and Lig4 expression.


Assuntos
Dano ao DNA , Células Epiteliais/efeitos da radiação , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Animais , Linhagem Celular , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , DNA Ligase Dependente de ATP/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Raios gama , Humanos , Camundongos Nus , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Proteínas Smad/genética , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
BMC Med Genet ; 17(1): 84, 2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-27855655

RESUMO

BACKGROUND: Ligase IV syndrome, a hereditary disease associated with compromised DNA damage response mechanisms, and Urofacial syndrome, caused by an impairment of neural cell signaling, are both rare genetic disorders, whose reports in literature are limited. We describe the first case combining both disorders in a specific phenotype. CASE PRESENTATION: We report a case of a 7-year old girl presenting with a complex phenotype characterized by multiple congenital abnormalities and dysmorphic features, microcephaly, short stature, combined immunodeficiency and severe vesicoureteral reflux. Whole Genome Sequencing was performed and a novel ligase IV homozygous missense c.T1312C/p.Y438H mutation was detected, and is believed to be responsible for most of the clinical features of the child, except vesicoureteral reflux which has not been previously described for ligase IV deficiency. However, we observed a second rare damaging (nonsense) homozygous mutation (c.C2125T/p.R709X) in the leucine-rich repeats and immunoglobulin-like domains 2 gene that encodes a protein implicated in neural cell signaling and oncogenesis. Interestingly, this mutation has recently been reported as pathogenic and causing urofacial syndrome, typically displaying vesicoureteral reflux. Thus, this second mutation completes the missing genetic explanation for this intriguing clinical puzzle. We verified that both mutations fit an autosomal recessive inheritance model due to extensive consanguinity. CONCLUSIONS: We successfully identified a novel ligase IV mutation, causing ligase IV syndrome, and an additional rare leucine-rich repeats and immunoglobulin-like domains 2 gene nonsense mutation, in the context of multiple autosomal recessive conditions due to extensive consanguinity. This work demonstrates the utility of Whole Genome Sequencing data in clinical diagnosis in such cases where the combination of multiple rare phenotypes results in very intricate clinical pictures. It also reports a novel causative mutation and a clinical phenotype, which will help in better defining the essential features of both ligase IV and leucine-rich repeats and immunoglobulin-like domains 2 deficiency syndromes.


Assuntos
Anormalidades Craniofaciais/genética , DNA Ligase Dependente de ATP/genética , Genoma/genética , Transtornos do Crescimento/genética , Síndromes de Imunodeficiência/genética , Doenças Urológicas/genética , Anormalidades Múltiplas/genética , Encéfalo/diagnóstico por imagem , Criança , Anormalidades Craniofaciais/patologia , Fácies , Feminino , Transtornos do Crescimento/patologia , Homozigoto , Humanos , Síndromes de Imunodeficiência/patologia , Imunofenotipagem , Imageamento por Ressonância Magnética , Glicoproteínas de Membrana/genética , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Doenças Urológicas/patologia
10.
J Allergy Clin Immunol ; 136(4): 1007-17, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26255102

RESUMO

BACKGROUND: Nonhomologous end-joining (NHEJ) is the major DNA double-strand break (DSB) repair mechanism in human cells. The final rejoining step requires DNA ligase IV (LIG4) together with the partner proteins X-ray repair cross-complementing protein 4 (XRCC4) and XRCC4-like factor. Patients with mutations in genes encoding LIG4, XRCC4-like factor, or the other NHEJ proteins DNA-dependent protein kinase catalytic subunit and Artemis are DSB repair defective and immunodeficient because of the requirement for NHEJ during V(D)J recombination. OBJECTIVE: We found a patient displaying microcephaly and progressive ataxia but a normal immune response. We sought to determine pathogenic mutations and to describe the molecular pathogenesis of the patient. METHODS: We performed next-generation exome sequencing. We evaluated the DSB repair activities and V(D)J recombination capacity of the patient's cells, as well as performing a standard blood immunologic characterization. RESULTS: We identified causal mutations in the XRCC4 gene. The patient's cells are radiosensitive and display the most severe DSB repair defect we have encountered using patient-derived cell lines. In marked contrast, a V(D)J recombination plasmid assay revealed that the patient's cells did not display the junction abnormalities that are characteristic of other NHEJ-defective cell lines. The mutant protein can interact efficiently with LIG4 and functions normally in in vitro assays and when transiently expressed in vivo. However, the mutation makes the protein unstable, and it undergoes proteasome-mediated degradation. CONCLUSION: Our findings reveal a novel separation of impact phenotype: there is a pronounced DSB repair defect and marked clinical neurological manifestation but no clinical immunodeficiency.


Assuntos
Ataxia/genética , Proteínas de Ligação a DNA/genética , Síndromes de Imunodeficiência/genética , Microcefalia/genética , Estabilidade Proteica , Ataxia/imunologia , DNA Ligase Dependente de ATP , DNA Ligases/metabolismo , Análise Mutacional de DNA , Reparo do DNA/genética , Feminino , Células HEK293 , Humanos , Síndromes de Imunodeficiência/imunologia , Microcefalia/imunologia , Mutação/genética , Ligação Proteica/genética , Tolerância a Radiação/genética , Recombinação V(D)J/genética , Adulto Jovem
11.
Clin Immunol ; 160(2): 255-60, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26172957

RESUMO

We herein describe a case of a 17-year-old boy with intractable common warts, short stature, microcephaly and slowly-progressing pancytopenia. Simultaneous quantification of T-cell receptor recombination excision circles (TREC) and immunoglobulin κ-deleting recombination excision circles (KREC) suggested very poor generation of both T-cells and B-cells. By whole exome sequencing, novel compound heterozygous mutations were identified in the patient's DNA ligase IV (LIG4) gene. The diagnosis of LIG4 syndrome was confirmed by delayed DNA double-strand break repair kinetics in γ-irradiated fibroblasts from the patient and their restoration by an introduction of wild-type LIG4. Although the patient received allogeneic hematopoietic stem cell transplantation from his haploidentical mother, he unfortunately expired due to an insufficiently reconstructed immune system. An earlier definitive diagnosis using TREC/KREC quantification and whole exome sequencing would thereby allow earlier intervention, which would be essential for improving long-term survival in similar cases with slowly-progressing LIG4 syndrome masked in adolescents.


Assuntos
Anormalidades Craniofaciais/genética , DNA Ligases/genética , Transtornos do Crescimento/genética , Síndromes de Imunodeficiência/genética , Microcefalia/genética , Pancitopenia/genética , Imunodeficiência Combinada Severa/genética , Adolescente , DNA Ligase Dependente de ATP , Humanos , Masculino
12.
Hum Mutat ; 35(1): 76-85, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24123394

RESUMO

Ligase IV syndrome is a rare differential diagnosis for Nijmegen breakage syndrome owing to a shared predisposition to lympho-reticular malignancies, significant microcephaly, and radiation hypersensitivity. Only 16 cases with mutations in LIG4 have been described to date with phenotypes varying from malignancy in developmentally normal individuals, to severe combined immunodeficiency and early mortality. Here, we report the identification of biallelic truncating LIG4 mutations in 11 patients with microcephalic primordial dwarfism presenting with restricted prenatal growth and extreme postnatal global growth failure (average OFC -10.1 s.d., height -5.1 s.d.). Subsequently, most patients developed thrombocytopenia and leucopenia later in childhood and many were found to have previously unrecognized immunodeficiency following molecular diagnosis. None have yet developed malignancy, though all patients tested had cellular radiosensitivity. A genotype-phenotype correlation was also noted with position of truncating mutations corresponding to disease severity. This work extends the phenotypic spectrum associated with LIG4 mutations, establishing that extreme growth retardation with microcephaly is a common presentation of bilallelic truncating mutations. Such growth failure is therefore sufficient to consider a diagnosis of LIG4 deficiency and early recognition of such cases is important as bone marrow failure, immunodeficiency, and sometimes malignancy are long term sequelae of this disorder.


Assuntos
DNA Ligases/deficiência , DNA Ligases/genética , Nanismo/genética , Retardo do Crescimento Fetal/genética , Leucopenia/genética , Trombocitopenia/genética , Anormalidades Múltiplas/genética , Imunidade Adaptativa , Adolescente , Linhagem Celular , Criança , Pré-Escolar , DNA Ligase Dependente de ATP , Exoma , Feminino , Retardo do Crescimento Fetal/etiologia , Variação Genética , Genótipo , Heterozigoto , Humanos , Lactente , Masculino , Microcefalia/genética , Neoplasias/genética , Síndrome de Quebra de Nijmegen/genética , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , Síndrome
13.
Curr Pediatr Rev ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38591195

RESUMO

BACKGROUND: LIG4 syndrome, characterized by immunodeficiency, sensitivity to ionizing radiations, intrauterine growth retardation, postnatal growth retardation, and microcephaly, is a rare genetic disorder caused by pathogenic variants of the LIG4 gene. Few patients are presented with no immune dysregulation as well. CASE STUDY: We present here a male child of 2 years and 4 months of age with severe microcephaly and short stature. His birth weight was 1.9 Kg, and his current height, weight, and head circumference are 83.2 cm (z score = -2.37), 9.5 Kg (z score = -2.76), and 36 cm (z score = -9.24), respectively. Possible causative pathogenic compound heterozygous variants of the LIG4 gene, which were inherited from the parents, were identified by whole exome sequencing of the DNA of the patient and his parents. A systematic review of the literature is also performed to summarize the patients of LIG4 syndrome reported worldwide and summarize the associated genetic mutations of the LIG4 gene. Compound heterozygous variants (c.597_600delTCAG/ c.342del) of LIG4 gene were identified. The parents were found to be heterozygous carriers of one variant each. CONCLUSION: The in-silico analysis of identified variants explains their effect on the structure and function of the LIG4 protein hence explaining the genotype-phenotype correlation.

14.
Biotechnol J ; 19(1): e2300425, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37970758

RESUMO

Chinese hamster ovary (CHO) cells are essential to biopharmaceutical manufacturing and production instability, the loss of productivity over time, is a long-standing challenge in the industry. Accurate prediction of cell line stability could enable efficient screening to identify clones suitable for manufacturing saving significant time and costs. DNA repair genes may offer biomarkers to address this need. In this study, over 40 cell lines representing various host lineages from three companies/organizations were evaluated for expression of five DNA repair genes (Fam35a, Lig4, Palb2, Pari, and Xrcc6). Expression measured in cells with less than 30 population doubling levels (PDLs) was correlated to stability profiles at 60+ PDL. Principal component analysis identified markers which separate stable and unstable CHO-DG44 cell lines. Notably, two genes, Lig4 and Xrcc6, showed higher expression in unstable CHO-DG44 cell lines with copy number loss identified as the mechanism of production instability. Expression levels across all cell ages showed lower DNA repair gene expression was associated with increased cell age. Collectively, DNA repair genes provide critical insight into long-term behavior of CHO cells and their expression levels have potential to predict cell line stability in certain cases.


Assuntos
Reparo do DNA , Cricetinae , Animais , Cricetulus , Células CHO , Células Clonais , Reparo do DNA/genética
15.
Lung Cancer ; 192: 107831, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38805902

RESUMO

OBJECTIVES: This study aims to investigate the association between DNA double-strand breaks (DSBs) repair capacity, variations in DSBs-related genes, and the occurrence and prognosis of lung cancer in the Chinese population. METHODS: Peripheral blood mononuclear cells (PBMC) were collected from 98 lung cancer patients and 60 healthy individuals. The individual DSBs repair capacity was assessed by measuring changes in γ-H2AX levels after treatment with etoposide. Exonic sequencing of 45 DSBs-related genes was performed on PBMC DNA. Logistic regression analysis was conducted to examine the relationship between lung cancer risk and DSBs repair capacity as well as germlines gene variations. Survival analysis employed the Cox proportional hazards regression model, Kaplan-Meier method, and Log-rank test. RESULTS: Lower DSBs repair capacity predicted an increased risk of developing lung cancer (OR = 0.94, 95 %CI = 0.917-0.964, P<0.001). Among lung cancer patients, higher DSBs repair capacity was associated with shorter progression-free survival (PFS) during first-line treatment (HR = 1.80, 95 %CI = 1.10-3.00, P = 0.031). Patients with BRCA1 mutations had shorter overall survival (OS) (HR = 1.92, 95 %CI = 1.12-3.28, P = 0.018). Patients with FOXO3 mutations had shorter PFS (HR = 4.23, 95 %CI = 1.44-12.36, P = 0.009). Analysis of patients treated with immune checkpoint inhibitors (ICIs) indicated that LIG4 mutations were associated with shorter PFS (HR = 2.90, 95 %CI = 1.00-8.10, P = 0.041). CONCLUSIONS: This study concludes that assessing DSBs repair capacity holds promise for predicting both lung cancer risk and prognosis in the Chinese population. Further large-scale studies and functional validation of specific gene mutations related to double-strand breaks are necessary for confirmation.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Feminino , Masculino , Prognóstico , Pessoa de Meia-Idade , Reparo do DNA/genética , Idoso , Biomarcadores Tumorais/genética , Predisposição Genética para Doença , Leucócitos Mononucleares/metabolismo , Fatores de Risco
16.
Hum Mutat ; 34(12): 1611-4, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24027040

RESUMO

DNA double-strand break repair via non-homologous end joining (NHEJ) is involved in recombination of immunoglobulin and T-cell receptor genes. Mutations in NHEJ components result in syndromes that are characterized by microcephaly and immunodeficiency. We present a patient with lymphopenia, extreme radiosensitivity, severe dysmaturity, corpus callosum agenesis, polysyndactily, dysmorphic appearance, and erythema, which are suggestive of a new type of NHEJ deficiency. We identified two heterozygous mutations in LIG4. The p.S205LfsX29 mutation results in lack of the nuclear localization signal and appears to be a null mutation. The second mutation p.K635RfsX10 lacks the C-terminal region responsible for XRCC4 binding and LIG4 stability and activity, and therefore this mutant might be a null mutation as well or have very low residual activity. This is remarkable since Lig4 knockout mice are embryonic lethal and so far in humans no complete LIG4 deficiencies have been described. This case broadens the clinical spectrum of LIG4 deficiencies.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , DNA Ligases/deficiência , Fenótipo , Nucléolo Celular/metabolismo , DNA Ligase Dependente de ATP , DNA Ligases/genética , DNA Ligases/metabolismo , Fácies , Expressão Gênica , Ordem dos Genes , Humanos , Lactente , Masculino , Mutação , Ligação Proteica , Transporte Proteico , Síndrome
17.
Biochem Biophys Res Commun ; 439(2): 173-8, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-23994631

RESUMO

DNA ligase IV (LIG4) and XRCC4 form a complex to ligate two DNA ends at the final step of DNA double-strand break (DSB) repair through non-homologous end-joining (NHEJ). It is not fully understood how these proteins are recruited to DSBs. We recently demonstrated radiation-induced chromatin binding of XRCC4 by biochemical fractionation using detergent Nonidet P-40. In the present study, we examined the role of LIG4 in the recruitment of XRCC4/LIG4 complex to chromatin. The chromatin binding of XRCC4 was dependent on the presence of LIG4. The mutations in two BRCT domains (W725R and W893R, respectively) of LIG4 reduced the chromatin binding of LIG4 and XRCC4. The C-terminal fragment of LIG4 (LIG4-CT) without N-terminal catalytic domains could bind to chromatin with XRCC4. LIG4-CT with W725R or W893R mutation could bind to chromatin but could not support the chromatin binding of XRCC4. The ability of C-terminal region of LIG4 to interact with chromatin might provide us with an insight into the mechanisms of DSB repair through NHEJ.


Assuntos
Cromatina/metabolismo , DNA Ligases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , DNA Ligase Dependente de ATP , DNA Ligases/química , DNA Ligases/genética , Humanos , Dados de Sequência Molecular , Mutação , Ligação Proteica , Estrutura Terciária de Proteína
18.
Transpl Immunol ; 80: 101897, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37437665

RESUMO

BACKGROUND: Mutations in the DNA ligase IV (LIG4) gene cause a rare autosomal recessive disorder called LIG4 deficiency syndrome. The LIG4 deficiency is featured by severe disorders, including combined immunodeficiency disease, special face ("bird-head-like" face), developmental delays, pancytopenia, and radiosensitivity. Currently there are no curative treatment options except potentially by performing a hematopoietic stem cell transplantation (HSCT). CASE PRESENTATION: Here we reported the clinical course of a 4 and 1/2-year-old Chinese female with LIG4-deficiency featured with pancytopenia, severe growth retardation (weight of 13.5 kg, < 3rd percentile), length of 100 cm (<2d percentile), head circumference of 46 cm (<3rd percentile), and mild microcephaly. Despite regular IVIG administrations (5 g, once a month), the patient's thrombocytopenia had progressed. Eventually, the patient received HSCT that successfully normalized the LIG4 syndrome associated pancytopenia and corrected the LIG4 mutation. Despite progress the patient succumbed to thrombotic microangiopathy more than 3 months after HSCT. CONCLUSIONS: This case reports an example of partially successful HSCT as a treatment option for LIG4 syndrome. It is possible that individual factors influence the therapeutic effect of HSCT in LIG4 deficiency.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Síndromes de Imunodeficiência , Pancitopenia , Feminino , Humanos , Pancitopenia/terapia , Síndromes de Imunodeficiência/genética , Transtornos do Crescimento/genética
19.
J Fungi (Basel) ; 9(5)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37233261

RESUMO

Gene targeting is a commonly used method to reveal the function of genes. Although it is an attractive tool for molecular studies, it can frequently be a challenge because its efficiency can be low and it requires the screening of a large number of transformants. Generally, these problems originate from the elevated level of ectopic integration caused by non-homologous DNA end joining (NHEJ). To eliminate this problem, NHEJ-related genes are frequently deleted or disrupted. Although these manipulations can improve gene targeting, the phenotype of the mutant strains raised the question of whether mutations have side effects. The aim of this study was to disrupt the lig4 gene in the dimorphic fission yeast, S. japonicus, and investigate the phenotypic changes of the mutant strain. The mutant cells have shown various phenotypic changes, such as increased sporulation on complete medium, decreased hyphal growth, faster chronological aging, and higher sensitivity to heat shock, UV light, and caffeine. In addition, higher flocculation capacity has been observed, especially at lower sugar concentrations. These changes were supported by transcriptional profiling. Many genes belonging to metabolic and transport processes, cell division, or signaling had altered mRNA levels compared to the control strain. Although the disruption improved the gene targeting, we assume that the lig4 inactivation can cause unexpected physiological side effects, and we have to be very careful with the manipulations of the NHEJ-related genes. To reveal the exact mechanisms behind these changes, further investigations are required.

20.
Cancers (Basel) ; 15(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894339

RESUMO

Radiotherapy and cisplatin-based chemotherapy belong to the main treatment modalities for head and neck squamous cell carcinoma (HNSCC) and induce cancer cell death by generating DNA damage, including the most severe double-strand breaks (DSBs). Alterations in DSB response and repair genes may affect individual DNA repair capacity and treatment sensitivity, contributing to the therapy resistance and poor prognosis often observed in HNSCC. In this study, we investigated the association of a panel of single-nucleotide polymorphisms (SNPs) in 20 DSB signaling and repair genes with therapy results and prognosis in 505 HNSCC patients treated non-surgically with DNA damage-inducing therapies. In the multivariate analysis, there were a total of 14 variants associated with overall, locoregional recurrence-free or metastasis-free survival. Moreover, we identified 10 of these SNPs as independent predictors of therapy failure and unfavorable prognosis in the whole group or in two treatment subgroups. These were MRE11 rs2155209, XRCC5 rs828907, RAD51 rs1801321, rs12593359, LIG4 rs1805388, CHEK1 rs558351, TP53 rs1042522, ATM rs1801516, XRCC6 rs2267437 and NBN rs2735383. Only CHEK1 rs558351 remained statistically significant after correcting for multiple testing. These results suggest that specific germline variants related to DSB response and repair may be potential genetic modifiers of therapy effects and disease progression in HNSCC treated with radiotherapy and cisplatin-based chemoradiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA