Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 24(26): 7953-7961, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38888317

RESUMO

The physical properties of nanoscale cell-extracellular matrix (ECM) ligands profoundly impact biological processes, such as adhesion, motility, and differentiation. While the mechanoresponse of cells to static ligands is well-studied, the effect of dynamic ligand presentation with "adaptive" properties on cell mechanotransduction remains less understood. Utilizing a controllable diffusible ligand interface, we demonstrated that cells on surfaces with rapid ligand mobility could recruit ligands through activating integrin α5ß1, leading to faster focal adhesion growth and spreading at the early adhesion stage. By leveraging UV-light-sensitive anchor molecules to trigger a "dynamic to static" transformation of ligands, we sequentially activated α5ß1 and αvß3 integrins, significantly promoting osteogenic differentiation of mesenchymal stem cells. This study illustrates how manipulating molecular dynamics can directly influence stem cell fate, suggesting the potential of "sequentially" controlled mobile surfaces as adaptable platforms for engineering smart biomaterial coatings.


Assuntos
Adesão Celular , Diferenciação Celular , Mecanotransdução Celular , Células-Tronco Mesenquimais , Propriedades de Superfície , Células-Tronco Mesenquimais/citologia , Humanos , Integrina alfa5beta1/metabolismo , Osteogênese , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Integrina alfaVbeta3/metabolismo , Ligantes , Adesões Focais
2.
Angew Chem Int Ed Engl ; 62(49): e202312581, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37853512

RESUMO

In nature, regulation of the spatiotemporal distribution of interfacial receptors and ligands leads to optimum binding kinetics and thermodynamics of receptor-ligand binding reactions within interfaces. Inspired by this, we report a hierarchical fluid interface (HieFluidFace) to regulate the spatiotemporal distribution of interfacial ligands to increase the rate and thermodynamic favorability of interfacial binding reactions. Each aptamer-functionalized gold nanoparticle, termed spherical aptamer (SAPT), is anchored on a supported lipid bilayer without fluidity, like an "island", and is surrounded by many fluorescent aptamers (FAPTs) with free fluidity, like "rafts". Such ligand "island-rafts" model provides a large reactive cross-section for rapid binding to cellular receptors. The synergistic multivalency of SAPTs and FAPTs improves interfacial affinity for tight capture. Moreover, FAPTs accumulate at binding sites to bind to cellular receptors with clustered fluorescence to "lighten" cells for direct identification. Thus, HieFluidFace in a microfluidic chip achieves high-performance capture and identification of circulating tumor cells from clinical samples, providing a new paradigm to optimize the kinetics and thermodynamics of interfacial binding reactions.


Assuntos
Ouro , Nanopartículas Metálicas , Ligantes , Sítios de Ligação , Termodinâmica , Receptores de Superfície Celular , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA