Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Cell Biol ; 101(4): 284-293, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36821837

RESUMO

Studies in the past decade have shown that lipid droplets stored in liver cells under starvation are encapsulated by autophagosomes and fused to lysosomes via the endocytic system. Autophagy responds to a variety of environmental factors inside and outside the cell, so it has a complex signal regulation network. To this end, we first explored the role of Hedgehog (Hh) in autophagy and lipid metabolism. Treatment of normal mouse liver cells with SAG and GDC-0449 revealed elevated phosphorylation of AMP-activated protein kinase (AMPK) and increased lipidation of LC3. SAG, and GDC-0449 were agonist and antagonist of Smoothened (Smo) in canonical Hh pathway, respectively, but they played a consistent role in the regulation of autophagy in hepatocytes. Moreover, SAG and GDC-0449 did not affect the expression of glioma-associated oncogene (Gli1) and patched 1, suggesting the absence of canonical Hh signaling in hepatocytes. We further knocked down the Smo and found that the effects of SAG and GDC-0449 disappeared, indicating that the non-canonical Smo pathway was involved in the regulation of autophagy in hepatocytes. In addition, SAG and GDC-0449 promoted lipid degradation and inhibited lipid production signals. Knockdown of Smo slowed down the rate of lipid degradation rather than Sufu or Gli1, indicating that Hh signaling regulated the lipid metabolism via Smo. In summary, activates AMPK via Smo to promote autophagy and lipid degradation.


Assuntos
Proteínas Quinases Ativadas por AMP , Proteínas Hedgehog , Camundongos , Animais , Proteínas Hedgehog/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Hepatócitos/metabolismo , Autofagia , Lipídeos , Receptores Acoplados a Proteínas G/metabolismo
2.
Appl Microbiol Biotechnol ; 107(4): 1491-1501, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36633623

RESUMO

Enhancing the lipid production of oleaginous yeasts is conducive to cutting the cost of feedstock for biodiesel. To increase the lipid productivity of Rhodotorula sp. U13N3, genes involving lipid degradation were knocked out and fermentation conditions were investigated. Results of transcription analysis demonstrated that genes encoding the ATG15-like lipase (ATG15) and peroxisomal acyl-CoA oxidase (ACOX2) were upregulated significantly at the lipogenesis stage. When ATG15 and ACOX2 were knocked out separately from the genome by the CRISPR/Cas9 method, both ΔATG15 and ΔACOX2 mutants showed better lipid production ability than the parent strain. Flow cytometry and confocal microscopic analyses indicated that simultaneous the knockout of ATG15 and ACOX2 did not impact the cell viability, whereas the lipid production was enhanced markedly as the lipid yield increased by 67.03% in shake flasks. Afterward, the ΔATG15ΔACOX2 transformant (TO2) was cultivated in shake flasks in the fed-batch mode; the highest biomass and lipid yield reached 45.76 g/L and 27.14 g/L at 216 h, respectively. Better performance was achieved when TO2 was cultivated in the 1-L bioreactor. At the end of fermentation (180 h), lipid content, yield, yield coefficient, and productivity reached 65.53%, 27.35 g/L, 0.277 g/g glycerol, and 0.152 g/L/h, respectively. These values were at the high level in comparison with Rhodotorula strains cultivated in glycerol media. Besides, fermentation modes did not affect the fatty acid composition of TO2 significantly. In conclusion, blocking the lipid degradation was an applicable strategy to increase the lipid production of Rhodotorula strains without compromising their cell viability. KEY POINTS: • ATG15-like lipase and acyl-CoA oxidase (ACOX2) participated in lipid degradation. • Knockout of ATG15 and ACOX2 increased lipid productivity, and lipid yield coefficient. • Cell viability maintained at high level in the knockout mutants during fermentation.


Assuntos
Rhodotorula , Rhodotorula/genética , Rhodotorula/metabolismo , Glicerol/metabolismo , Ácidos Graxos/metabolismo , Leveduras/metabolismo , Biocombustíveis , Lipase/metabolismo , Biomassa , Triglicerídeos/metabolismo
3.
Molecules ; 28(24)2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38138626

RESUMO

With increasing environmental awareness and consumer demand for high-quality food products, industries are strongly required for technical innovations. The use of various emerging techniques in food processing indeed brings many economic and environmental benefits compared to conventional processes. However, lipid oxidation induced by some "innovative" processes is often "an inconvenient truth", which is scarcely mentioned in most studies but should not be ignored for the further improvement and optimization of existing processes. Lipid oxidation poses a risk to consumer health, as a result of the possible ingestion of secondary oxidation products. From this point of view, this review summarizes the advance of lipid oxidation mechanism studies and mainly discloses the shade of innovative food processing concerning lipid degradation. Sections involving a revisit of classic three-stage chain reaction, the advances of polar paradox and cut-off theories, and potential lipid oxidation factors from emerging techniques are described, which might help in developing more robust guidelines to ensure a good practice of these innovative food processing techniques in future.


Assuntos
Manipulação de Alimentos , Lipólise , Manipulação de Alimentos/métodos , Oxirredução , Lipídeos
4.
Electrophoresis ; 43(9-10): 1091-1100, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34784061

RESUMO

For many years, lipid nanoparticles (LNPs) have been used as delivery vehicles for various payloads (especially various oligonucleotides and mRNA), finding numerous applications in drug and vaccine development. LNP stability and bilayer fluidity are determined by the identities and the amounts of the various lipids employed in the formulation and LNP efficacy is determined in large part by the lipid composition which usually contains a cationic lipid, a PEG-lipid conjugate, cholesterol, and a zwitterionic helper phospholipid. Analytical methods developed for LNP characterization must be able to determine not only the identity and content of each individual lipid component (i.e., the parent lipids), but also the associated impurities and degradants. In this work, we describe an efficient and sensitive reversed-phase chromatographic method with charged aerosol detection (CAD) suitable for this purpose. Sample preparation diluent and mobile phase pH conditions are critical and have been optimized for the lipids of interest. This method was validated for its linearity, accuracy, precision, and specificity for lipid analysis to support process and formulation development for new drugs and vaccines.


Assuntos
Lipídeos , Nanopartículas , Aerossóis , Cromatografia Líquida de Alta Pressão , Lipídeos/química , Lipossomos , Nanopartículas/química , RNA Interferente Pequeno
5.
J Sci Food Agric ; 102(5): 1978-1986, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34519034

RESUMO

BACKGROUND: Oyster's lipid degradation leads to a decrease in edible and nutritional value. Curcumin-mediated photodynamic treatment (PDT) is an innovative non-thermal technology, although evaluation of the oyster's lipid degradation has been scarce. In the present study, we investigated peroxide value, thiobarbituric acid reactive substance, triacylglycerol and free fatty acids to evaluate the effect of curcumin-mediated PDT on lipid degradation of oysters during refrigerated storage. RESULTS: The results showed that curcumin-mediated PDT could delay oyster's lipid degradation. Next, the activities of enzymes were detected to determine the mechanisms behind the effects of curcumin-mediated PDT. It was revealed that the activities of lipase, phospholipase A2 (PLA2 ), phospholipase C (PLC), phospholipase D (PLD) and lipoxygenase (LOX) were significantly inhibited after curcumin-mediated PDT (P < 0.05). Furthermore, 16 s rRNA analysis established that the relative abundances of Pseudoalteromonas and Psychrilyobacter were reduced by 51.58% and 43.82%, respectively, after curcumin-mediated PDT. CONCLUSION: Curcumin-mediated PDT could delay oyster's lipid degradation by inhibiting the activities of lipase, PLA2 , PLC, PLD and LOX, as well as by changing the oyster's microbial composition, reducing the relative abundance of Pseudoalteromonas and Psychrilyobacter. © 2021 Society of Chemical Industry.


Assuntos
Curcumina , Conservação de Alimentos , Lipídeos , Ostreidae , Fármacos Fotossensibilizantes , Animais , Curcumina/química , Conservação de Alimentos/métodos , Lipídeos/química , Ostreidae/química , Ostreidae/microbiologia , Ostreidae/efeitos da radiação , Fosfolipases A2/análise , Fármacos Fotossensibilizantes/química , Refrigeração
6.
BMC Plant Biol ; 21(1): 6, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407143

RESUMO

BACKGROUND: Rapeseed (Brassica napus L.) is an important oil crop world-widely cultivated, and seed oil content (SOC) is one of the most important traits for rapeseed. To increase SOC, many efforts for promoting the function of genes on lipid biosynthesis pathway have been previously made. However, seed oil formation is a dynamic balance between lipid synthesis and breakdown. It is, therefore, also reasonable to weaken or eliminate the function of genes involved in lipid degradation for a higher final SOC. RESULTS: We applied a genome-wide association study (GWAS) on SOC in a collection of 290 core germplasm accessions. A total of 2,705,480 high-quality SNPs were used in the GWAS, and we identified BnaC07g30920D, a patatin-like lipase (PTL) gene, that was associated with SOC. In particular, six single-nucleotide-polymorphisms (SNPs) in the promoter region of BnaC07g30920D were associated with the significant reduction of SOC, leading to a 4.7-6.2% reduction of SOCs. We performed in silico analysis to show a total of 40 PTLs, which were divided into four clades, evenly distributed on the A and C subgenomes of Brassica napus. RNA-seq analysis unveiled that BnPTLs were preferentially expressed in reproductive tissues especially maturing seeds. CONCLUSIONS: We identified BnaC07g30920D, a BnPTL gene, that was associated with SOC using GWAS and performed in silico analysis of 40 PTLs in Brassica napus. The results enrich our knowledge about the SOC formation in rapeseed and facilitate the future study in functional characterization of BnPTL genes.


Assuntos
Brassica napus/genética , Brassica napus/metabolismo , Lipase/genética , Lipase/metabolismo , Óleos de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , China , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Genes de Plantas , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Fenótipo
7.
Inhal Toxicol ; 33(6-8): 275-284, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34662252

RESUMO

CONTEXT: Cigarette smokers develop structural modification in hemoglobin (Hb) and this modification enable Hb to undergo higher rate of auto-oxidation, leading to generation of further intracellular ROS. OBJECTIVE: In this study, we exhibited the possible cause and consequences of Hb modification in cigarette smokers. METHODS: Twenty-two smokers and 16 nonsmokers, aged 25 to 35 years, having a smoking history of 7-10 years were recruited in this study. Carbonyl content, ferryl form, peroxidase-like and esterase-like activities of Hb were assayed. Free iron release by Hb, erythrocyte membrane-bound Hb and plasma Hb were also measured along with assessment of important biomolecular degradations by Hb. RESULTS AND DISCUSSION: Increase in carbonyl content in Hb indicates its oxidative degradation. Increase in ferryl Hb formation, peroxidase-like activity and decrease in esterase like activity of Hb along with increased release of nonheme iron (from Hb) clearly indicates alteration in physico-chemical properties of Hb in smokers. Moreover, increase in erythrocyte membrane-bound Hb and plasma-free Hb provide further evidences for higher rate of Hb oxidation in smokers' erythrocyte. The rates of protein, lipid, sugar and DNA degradation were noticed to be higher by smokers' Hb; and were further attenuated by desferrioxamine as well as mannitol. CONCLUSION: We conclude that in cigarette smokers, there is oxidative degradation of Hb and the degradation causes alteration in its physico-chemical properties, which in turn may degrade different biomolecules in its close vicinity by releasing more iron and production of more superoxide as well as hydroxyl radical.


Assuntos
Hemoglobinas/química , Estresse Oxidativo/efeitos dos fármacos , Fumantes , Adulto , Esterases/metabolismo , Humanos , Masculino , Peroxidase/metabolismo
8.
Int J Mol Sci ; 22(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34768898

RESUMO

Although engineered cyanobacteria for the production of lipids and fatty acids (FAs) are intelligently used as sustainable biofuel resources, intracellularly overproduced FAs disturb cellular homeostasis and eventually generate lethal toxicity. In order to improve their production by enhancing FFAs secretion into a medium, we constructed three engineered Synechocystis 6803 strains including KA (a mutant lacking the aas gene), KAOL (KA overexpressing lipA, encoding lipase A in membrane lipid hydrolysis), and KAOGR (KA overexpressing quadruple glpD/rbcLXS, related to the CBB cycle). Certain contents of intracellular lipids and secreted FFAs of all engineered strains were higher than those of the wild type. Remarkably, the KAOL strain attained the highest level of secreted FFAs by about 21.9%w/DCW at day 5 of normal BG11 cultivation, with a higher growth rate and shorter doubling time. TEM images provided crucial evidence on the morphological changes of the KAOL strain, which accumulated abundant droplets on regions of thylakoid membranes throughout the cell when compared with wild type. On the other hand, BG11-N condition significantly induced contents of both intracellular lipids and secreted FFAs of the KAOL strain up to 37.2 and 24.5%w/DCW, respectively, within 5 days. Then, for the first time, we shone a spotlight onto the overexpression of lipA in the aas mutant of Synechocystis as another potential strategy to achieve higher FFAs secretion with sustainable growth.


Assuntos
Proteínas de Bactérias/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Lipogênese , Lipídeos de Membrana/metabolismo , Mutação , Synechocystis/metabolismo , Proteínas de Bactérias/genética , Synechocystis/genética , Synechocystis/crescimento & desenvolvimento
9.
J Exp Bot ; 71(3): 1078-1091, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31626291

RESUMO

Phospholipids constitute the main component of biomembranes. During low-temperature storage and transportation of harvested bell peppers (Capsicum annuum), chilling injury participates in their decay. A primary cause of this chilling injury is phospholipid degradation. In this study, three genes encoding phospholipase D (PLD) were identified from bell peppers and their activities were examined under cold stress. Low temperature (4 °C) induced strong accumulation of the CaPLDα4 transcript, suggesting that it is associated with the phenomenon of phospholipid degradation and destruction of cell membranes. Low temperature also significantly induced increased amounts of NAM-ATAF1/2-CUC2 (NAC) domain transcription factors. CaNAC1 was found to interact with the promoter of CaPLD4 in a yeast one-hybrid screen. Electrophoretic mobility shift and ß-glucuronidase reporter assays demonstrated that CaNAC1 binds to the CTGCAG motif in the CaPLDα4 promoter, thereby activating its transcription and controlling phospholipid degradation. The ubiquitination sites of the CaNAC1 protein were characterized by liquid chromatography-tandem mass spectrometry. We conclude that CaNAC1 is a transcriptional activator of CaPLDα4 and suggested that it participates in the degradation of membrane lipids in bell peppers when they are stored at low temperature.


Assuntos
Capsicum/metabolismo , Regulação da Expressão Gênica de Plantas , Fosfolipase D/metabolismo , Fosfolipídeos/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Capsicum/ultraestrutura , Resposta ao Choque Frio , Frutas/ultraestrutura , Ubiquitinação
10.
Biochem Biophys Res Commun ; 508(4): 997-1003, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30545638

RESUMO

The synthesis, storage, and degradation of lipids are highly regulated processes. Impaired lipid metabolism is implicated in inflammation and cell death. Although ferroptosis is a recently described form of regulated cell death driven by lipid peroxidation, the impact of lipid droplets on ferroptosis remains unidentified. Here, we demonstrate that lipophagy, the autophagic degradation of intracellular lipid droplets, promotes RSL3-induced ferroptotic cell death in hepatocytes. Lipid droplet accumulation is increased at the early stage but decreased at the late stage of ferroptosis in mouse or human hepatocytes. Importantly, either genetically enhancing TPD52-dependent lipid storage or blocking ATG5-and RAB7A-dependent lipid degradation prevents RSL3-induced lipid peroxidation and subsequent ferroptosis in vitro and in vivo. These studies support an antioxidant role for lipid droplets in cell death and suggest novel strategies for the inhibition of ferroptosis by targeting the lipophagy pathway.


Assuntos
Autofagia , Metabolismo dos Lipídeos , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteína 5 Relacionada à Autofagia/metabolismo , Carbolinas/farmacologia , Células Hep G2 , Humanos , Ferro/metabolismo , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Proteínas de Neoplasias/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
11.
Biol Chem ; 401(1): 31-46, 2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31408430

RESUMO

Drug-induced phospholipidosis is a lysosomal storage disorder characterized by excessive accumulation of phospholipids. Its cellular mechanism is still not well understood, but it is known that cationic amphiphilic drugs can induce it. These drugs have a hydrophilic amine head group that can be protonated in the endolysosomal compartment. As cationic amphiphiles, they are trapped in lysosomes, where they interfere with negatively charged intralysosomal vesicles, the major platforms of cellular sphingolipid degradation. Metabolic principles observed in sphingolipid and phospholipid catabolism and inherited sphingolipidoses are of great importance for lysosomal function and physiological lipid turnover at large. Therefore, we also propose intralysosomal vesicles as major platforms for degradation of lipids and phospholipids reaching them by intracellular pathways like autophagy and endocytosis. Phospholipids are catabolized as components of vesicle surfaces by protonated, positively charged phospholipases, electrostatically attracted to the negatively charged vesicles. Model experiments suggest that progressively accumulating cationic amphiphilic drugs inserting into the vesicle membrane with their hydrophobic molecular moieties disturb and attenuate the main mechanism of lipid degradation as discussed here. By compensating the negative surface charge, cationic enzymes are released from the surface of vesicles and proteolytically degraded, triggering a progressive lipid storage and the formation of inactive lamellar bodies.


Assuntos
Metabolismo dos Lipídeos/genética , Doenças por Armazenamento dos Lisossomos/genética , Fosfolipídeos/metabolismo , Esfingolipidoses/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipídeos/química , Lipídeos/genética , Doenças por Armazenamento dos Lisossomos/induzido quimicamente , Doenças por Armazenamento dos Lisossomos/metabolismo , Doenças por Armazenamento dos Lisossomos/patologia , Lisossomos/genética , Lisossomos/metabolismo , Organelas/metabolismo , Fosfolipídeos/genética , Esfingolipidoses/induzido quimicamente , Esfingolipidoses/metabolismo , Esfingolipidoses/patologia
12.
FEMS Yeast Res ; 19(5)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31247640

RESUMO

The biosynthesis of yeast phosphatidylglycerol (PG) takes place in the inner mitochondrial membrane. Outside mitochondria, the abundance of PG is low. Here, we present evidence that the subcellular distribution of PG is maintained by the locally controlled enzymatic activity of the PG-specific phospholipase, Pgc1. A fluorescently labeled Pgc1 protein accumulates on the surface of lipid droplets (LD). We show, however, that LD are not only dispensable for Pgc1-mediated PG degradation, but do not even host any phospholipase activity of Pgc1. Our in vitro assays document the capability of LD-accumulated Pgc1 to degrade PG upon entry to the membranes of the endoplasmic reticulum, mitochondria and even of artificial phospholipid vesicles. Fluorescence recovery after photobleaching analysis confirms the continuous exchange of GFP-Pgc1 within the individual LD in situ, suggesting that a steady-state equilibrium exists between LD and membranes to regulate the immediate phospholipase activity of Pgc1. In this model, LD serve as a storage place and shelter Pgc1, preventing its untimely degradation, while both phospholipase activity and degradation of the enzyme occur in the membranes.


Assuntos
Gotículas Lipídicas/química , Fosfatidilgliceróis/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Fosfolipases Tipo C/metabolismo , Retículo Endoplasmático/metabolismo , Homeostase , Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
13.
Appl Microbiol Biotechnol ; 102(6): 2509-2523, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29423634

RESUMO

Oleaginous microorganisms are able to convert numerous agro-industrial and municipal wastes into storage lipids (single cell oil (SCO)) and are therefore considered as potential biofuel producers. While from an environmental and technological point of view the idea to convert waste materials into fuels is very attractive, the production cost of SCO is not currently competitive to that of conventional oils due to the low productivity of oleaginous microorganisms in combination with the high fermentation cost. Current strategies used to optimize the lipid-accumulating capacity of oleaginous microorganisms include the overexpression of genes encoding for key enzymes implicated in fatty acid and triacylglycerol synthesis, such as ATP-dependent citrate lyase, acetyl-CoA carboxylase, malic enzyme, proteins of the fatty acid synthase complex, glycerol 3-phosphate dehydrogenase and various acyltransferases, and/or the inactivation of genes encoding for enzymes implicated in storage lipid catabolism, such as lipases and acyl-CoA oxidases. Furthermore, blocking, even partially, pathways competitive to lipid biosynthesis (e.g., those involved in the accumulation of storage polysaccharide or organic acid and polyol excretion) can also increase lipid-accumulating ability in oleaginous microorganisms. Methodologies, such as adaptive laboratory evolution, can be included in existing workflows for the generation of strains with improved lipid accumulation capacity. In our opinion, efforts should be focused in the construction of strains with high carbon uptake rates and a reprogrammed coordination of the individual parts of the oleaginous machinery that maximizes carbon flux towards lipogenesis.


Assuntos
Bactérias/metabolismo , Biocombustíveis , Carbono/metabolismo , Fungos/metabolismo , Resíduos Industriais , Metabolismo dos Lipídeos , Bactérias/genética , Fungos/genética , Engenharia Metabólica/métodos , Redes e Vias Metabólicas/genética
14.
New Phytol ; 216(4): 1181-1190, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28800167

RESUMO

Germination, the process whereby a dry, quiescent seed springs to life, has been a focus of plant biologist for many years, yet the early events following water uptake, during which metabolism of the embryo is restarted, remain enigmatic. Here, the nature of the cues required for this restarting in oilseed rape (Brassica napus) seed has been investigated. A holistic in vivo approach was designed to display the link between the entry and allocation of water, metabolic events and structural changes occurring during germination. For this, we combined functional magnetic resonance imaging with Fourier transform infrared microscopy, fluorescence-based respiration mapping, computer-aided seed modeling and biochemical tools. We uncovered an endospermal lipid gap, which channels water to the radicle tip, from whence it is distributed via embryonic vasculature toward cotyledon tissues. The resumption of respiration is initiated first in the endosperm, only later spreading to the embryo. Sugar metabolism and lipid utilization are linked to the spatiotemporal sequence of tissue rehydration. Together, this imaging study provides insights into the spatial aspects of key events in oilseed rape seeds leading to germination. It demonstrates how seed architecture predetermines the pattern of water intake, which sets the stage for the orchestrated restart of life.


Assuntos
Brassica napus/fisiologia , Germinação , Sementes/fisiologia , Carbono/metabolismo , Endosperma/fisiologia , Metabolismo dos Lipídeos , Imageamento por Ressonância Magnética , Consumo de Oxigênio , Água/fisiologia
15.
J Proteome Res ; 15(12): 4277-4289, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27669742

RESUMO

Peanut seeds have a high oil content making them an important oil crop. During development and germination, seeds undergo complex dynamic and physiological changes. Changes in lipid metabolism and underlying mechanisms during seed development have been studied extensively by DNA and RNA sequencing; however, there are few studies on dynamic changes of proteomics during peanut seed development and germination. In this study, proteomic analyses were carried out 20, 40, 60, and 80 days after pollination and 5, 10, 20, and 30 days after germination using isobaric tags for relative and absolute quantitation (iTRAQ) technology to determine the protein profiles of lipid dynamics during peanut seed development and postgermination. A total of 5712 of 8505 proteins were identified, quantified, and divided into 23 functional groups, the largest of which was metabolism-related. Further analyses of the proteins and their pathways revealed initiation of fatty acid accumulation at early stages after flowering, while lipid degradation occurred largely through the lipoxygenase-dependent pathway. Protein expression patterns related to lipid accumulation and degradation were also verified at transcript levels using quantitative real-time polymerase chain reaction. The proteome profiles determined here will significantly enrich our understanding of the process of lipid accumulation and degradation and the dynamic changes in metabolic networks during peanut development.


Assuntos
Arachis/embriologia , Metabolismo dos Lipídeos , Proteômica/métodos , Sementes/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Germinação , Redes e Vias Metabólicas , Polinização , Fatores de Tempo , Transcriptoma
16.
Bioprocess Biosyst Eng ; 38(12): 2349-60, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26376817

RESUMO

Anaerobic digestion of cattle offal was investigated in batch reactors at 35 °C to determine the feasibility of using cattle offal as a feedstock. The organic content [i.e., volatile solids (VS)] of the cattle offal was mainly composed of protein (33.9%) and lipids (46.1%). Hydrolysis along with acidogenesis was monitored to investigate the substrate degradation and generation of intermediate products (e.g., volatile fatty acids, ammonia). Acetate (2.03 g/L), propionate (0.60 g/L), n-butyrate (0.39 g/L), and iso-valerate (0.37 g/L) were major acidogenesis products (91% of total volatile fatty acid concentration). Overall protein and lipid degradation were 82.9 and 81.8%, respectively. Protein degraded first, and four times faster (0.28 day(-1)) than lipid (0.07 day(-1)). Methane yields were 0.52 L CH4/g VSadded and 0.65 L CH4/g VSremoved, indicating that anaerobic digestion of the offal was feasible. A quantitative QPCR assay was conducted to understand the microbial dynamics. The variation patt erns in the gene concentrations successfully indicated the population dynamics of proteolytic and lipolytic acidogens. A fourth-order Runge-Kutta approximation was used to determine the kinetics of the acidogens. The molecular biotechnology approach was appropriate for the evaluation of the acidogenic biokinetics. The maximum growth rate, µ m, halfsaturation coefficients, K s, microbial yield coefficient, Y, cell mass decay rate coefficient, k d, of the proteolytic acidogens were 9.9 day(-1), 37.8 g protein/L, 1.1 × 10(10) copies/g protein, and 3.8 × 10(-1), respectively. Those for the lipolytic acidogens were 1.2 × 10(-1) day(-1), 8.3 g lipid/L, 1.5 × 10(9) copies/g lipid, and 9.9 × 10(-3) day(-1), respectively.


Assuntos
Archaea/metabolismo , Bactérias Anaeróbias/metabolismo , Metabolismo dos Lipídeos , Proteínas/metabolismo , Matadouros , Anaerobiose , Animais , Archaea/genética , Bactérias Anaeróbias/genética , Reatores Biológicos , Bovinos , RNA Ribossômico 16S/genética
17.
Bioresour Technol ; 406: 131000, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38909870

RESUMO

This study investigated how glucose, starch, and rapeseed oil, three common food waste components with diverse molecular and physicochemical characteristics, influenced hydrogen production and microbial communities in dark fermentation under varying carbon/nitrogen (C/N) ratios. The results indicated that glucose and starch groups, significantly increased hydrogen yields to 235 mL H2/gVS (C/N = 40) and 234 mL H2/gVS (C/N = 40), respectively, while rapeseed oil, with a lower yield of 30 mL H2/gVS (C/N = 20), demonstrated a negative impact. Additionally, an accumulation of propionate was observed with increasing carbon source complexity, suggesting that simpler carbon sources favored hydrogen production and bacterial growth. Conversely, lipid-based materials required rigorous pre-treatment to mitigate their inhibitory effects on hydrogen generation. Overall, this study underscores the importance of carbon source selection, especially glucose and starch, for enhancing hydrogen production and microbial growth in dark fermentation, while highlighting the challenges posed by lipid-rich substrates that require intensive pre-treatment to optimize yields.


Assuntos
Carbono , Fermentação , Glucose , Hidrogênio , Amido , Hidrogênio/metabolismo , Carbono/farmacologia , Amido/metabolismo , Glucose/metabolismo , Nitrogênio , Óleo de Brassica napus , Biocombustíveis , Óleos de Plantas/metabolismo , Bactérias/metabolismo
18.
Bioresour Technol ; 408: 131223, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39111402

RESUMO

This study investigated the effects of varying lipid ratios on the anaerobic co-digestion of high-lipid food waste (FW) in a mesophilic anaerobic membrane bioreactor (AnMBR). At a lipid concentration of 5 %, optimal biogas production (3.84 L/L/d) and lipid removal efficiency (78 %) were achieved; however, increasing lipid concentrations resulted in significant accumulations of long-chain fatty acids (LCFAs) and volatile fatty acids (VFAs). Batch tests further demonstrated the impact of various types of LCFAs, with stearic acid showing the slowest microbial growth rate (0.033d-1), confirming its role in the accumulation of acetate-dominated VFAs, potentially limiting the methanogenesis process at elevated lipid levels. Furthermore, at 8 % lipid content, the downregulation of key LCFA degradation enzymes and dominance of hydrogenotrophic methanogens indicated adverse conditions. The importance of the intricate interplay between LCFA degradation kinetics and microbial community for the system efficiency was evidenced, offering insights for optimizing and managing high-lipidic wastes.


Assuntos
Biodegradação Ambiental , Reatores Biológicos , Ácidos Graxos , Perda e Desperdício de Alimentos , Membranas Artificiais , Anaerobiose , Biocombustíveis , Ácidos Graxos/metabolismo , Ácidos Graxos Voláteis/metabolismo , Cinética , Metabolismo dos Lipídeos , Lipídeos , Metano/metabolismo
19.
Food Chem ; 460(Pt 1): 140492, 2024 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-39032289

RESUMO

Currently, there are no commercially available plant-based products that replicate the flavor profile of roasted fish. As the increasing demand of plant-based meat in the recent years, the exploration of plant-based meat flavors holds significant importance. This study revealed that a blend of lysine, leucine, glutamic acid, alanine, cysteine, glucose, and algae oil (rich in docosahexaenoic acid, DHA), when subjected to heating in low pH, generated the distinct flavor like roasted mackerel. The precursor, mechanism and flavor note were investigated. Key aromatic compounds such as isovaleric acid, octanoic acid, 1,5-octadien-3-one, 2,4-octadienal, 2-octenal, furaneol, 2,5-furandicarboxaldehyde, and 2-pentenylfuran were found as important contributors in the reaction flavor model. These compounds primarily derived from heat-induced lipid oxidation, lipid degradation, and Maillard reaction of these plant-based ingredients. The development of plant-based meat flavors is crucial for promoting the substantial progress of plant-based meat products.


Assuntos
Culinária , Aromatizantes , Temperatura Alta , Reação de Maillard , Paladar , Aromatizantes/química , Animais , Peixes
20.
Bioresour Technol ; 413: 131529, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39321934

RESUMO

Acclimating mesophilic biomass to low temperatures have been used to start-up psychrophilic anaerobic reactors, but limited microbial information is available during the acclimation. To investigate microbial responses to temperature reductions, duplicate lab-scale anaerobic digestion (AD) reactors were operated for 166 days, with the temperature being reduced from 37°C to 15°C, using synthetic long chain fatty acid (LCFA)-containing wastewater as the feedstock. The acclimated biomass at 15°C exhibited efficient removal of organic matter (total COD>75%, soluble COD>88%, and LCFA>99%). Temperature reductions lead to significant reductions in microbiome diversity. Fermentative bacteria were highly dynamic and functional redundant during temperature reductions. Smithella was the dominant syntrophic bacteria involved in LCFA degradation coupled with Methanothrix and Methanocorpusculum at 15°C. Membrane modifications and compatible cellular solutes production were triggered by temperature reductions as microbial response to cold stress. This study provided molecular insights in microbial acclimation to low temperatures for psychrophilic AD.


Assuntos
Reatores Biológicos , Ácidos Graxos , Temperatura , Águas Residuárias , Águas Residuárias/microbiologia , Águas Residuárias/química , Anaerobiose , Ácidos Graxos/metabolismo , Bactérias/metabolismo , Purificação da Água/métodos , Biomassa , Microbiota/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA