Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
BMC Oral Health ; 24(1): 729, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918827

RESUMO

BACKGROUND: Despite the better prognosis associated with human papillomavirus (HPV)-positive oropharyngeal squamous cell carcinoma (OPSCC), some patients experience relapse and succumb to the disease; thus, there is a need for biomarkers identifying these patients for intensified treatment. Leucine-rich repeats and immunoglobulin-like domain (LRIG) protein 1 is a negative regulator of receptor tyrosine kinase signaling and a positive prognostic factor in OPSCC. Studies indicate that LRIG1 interacts with the LIM domain 7 protein (LMO7), a stabilizer of adherence junctions. Its role in OPSCC has not been studied before. METHODS: A total of 145 patients diagnosed with OPSCC were enrolled. Immunohistochemical LMO7 expression and staining intensity were evaluated in the tumors and correlated with known clinical and pathological prognostic factors, such as HPV status and LRIG1, CD44, Ki67, and p53 expression. RESULTS: Our results show that high LMO7 expression is associated with significantly longer overall survival (OS) (p = 0.044). LMO7 was a positive prognostic factor for OS in univariate analysis (HR 0.515, 95% CI: 0.267-0.994, p = 0.048) but not in multivariate analysis. The LMO7 expression correlated with LRIG1 expression (p = 0.048), consistent with previous findings. Interestingly, strong LRIG1 staining intensity was an independent negative prognostic factor in the HPV-driven group of tumors (HR 2.847, 95% Cl: 1.036-7.825, p = 0.043). CONCLUSIONS: We show for the first time that high LMO7 expression is a positive prognostic factor in OPSCC, and we propose that LMO7 should be further explored as a biomarker. In contrast to previous reports, LRIG1 expression was shown to be an independent negative prognostic factor in HPV-driven OPSCC.


Assuntos
Biomarcadores Tumorais , Carcinoma de Células Escamosas , Proteínas com Domínio LIM , Neoplasias Orofaríngeas , Humanos , Neoplasias Orofaríngeas/virologia , Neoplasias Orofaríngeas/metabolismo , Neoplasias Orofaríngeas/patologia , Neoplasias Orofaríngeas/mortalidade , Masculino , Feminino , Pessoa de Meia-Idade , Prognóstico , Proteínas com Domínio LIM/metabolismo , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/análise , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/virologia , Idoso , Fatores de Transcrição/metabolismo , Glicoproteínas de Membrana/metabolismo , Adulto , Antígeno Ki-67/metabolismo , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/análise , Proteína Supressora de Tumor p53/metabolismo , Infecções por Papillomavirus/complicações , Imuno-Histoquímica , Idoso de 80 Anos ou mais , Taxa de Sobrevida
2.
Semin Cancer Biol ; 82: 120-133, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33476721

RESUMO

LRIG1, leucine-rich repeats and immunoglobulin-like domains protein 1, was discovered more than 20 years ago and has been shown to be downregulated or lost, and to function as a tumor suppressor in several cancers. Another well-reported biological function of LRIG1 is to regulate and help enforce the quiescence of adult stem cells (SCs). In both contexts, LRIG1 regulates SC quiescence and represses tumor growth via, primarily, antagonizing the expression and activities of ERBB and other receptor tyrosine kinases (RTKs). We have recently reported that in treatment-naïve human prostate cancer (PCa), LRIG1 is primarily regulated by androgen receptor (AR) and is prominently overexpressed. In castration-resistant PCa (CRPC), both LRIG1 and AR expression becomes heterogeneous and, frequently, discordant. Importantly, in both androgen-dependent PCa and CRPC models, LRIG1 exhibits tumor-suppressive functions. Moreover, LRIG1 induction inhibits the growth of pre-established AR+ and AR- PCa. Here, upon a brief introduction of the LRIG1 and the LRIG family, we provide an updated overview on LRIG1 functions in regulating SC quiescence and repressing tumor development. We further highlight the expression, regulation and functions of LRIG1 in treatment-naïve PCa and CRPC. We conclude by offering the perspectives of identifying novel cancer-specific LRIG1-interacting signaling partners and developing LRIG1-based anti-cancer therapeutics and diagnostic/prognostic biomarkers.


Assuntos
Glicoproteínas de Membrana , Neoplasias de Próstata Resistentes à Castração , Linhagem Celular Tumoral , Retroalimentação , Genes Supressores de Tumor , Humanos , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Células-Tronco/metabolismo
3.
Cancer Sci ; 114(9): 3636-3648, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37357017

RESUMO

The bone morphogenetic protein (BMP) pathway promotes differentiation and induces apoptosis in normal colorectal epithelial cells. However, its role in colorectal cancer (CRC) is controversial, where it can act as context-dependent tumor promoter or tumor suppressor. Here we have found that CRC cells reside in a BMP-rich environment based on curation of two publicly available RNA-sequencing databases. Suppression of BMP using a specific BMP inhibitor, LDN193189, suppresses the growth of select CRC organoids. Colorectal cancer organoids treated with LDN193189 showed a decrease in epidermal growth factor receptor, which was mediated by protein degradation induced by leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1) expression. Among 18 molecularly characterized CRC organoids, suppression of growth by BMP inhibition correlated with induction of LRIG1 gene expression. Notably, knockdown of LRIG1 in organoids diminished the growth-suppressive effect of LDN193189. Furthermore, in CRC organoids, which are susceptible to growth suppression by LDN193189, simultaneous treatment with LDN193189 and trametinib, an FDA-approved MEK inhibitor, resulted in cooperative growth inhibition both in vitro and in vivo. Taken together, the simultaneous inhibition of BMP and MEK could be a novel treatment option in CRC cases, and evaluating in vitro growth suppression and LRIG1 induction by BMP inhibition using patient-derived organoids could offer functional biomarkers for predicting potential responders to this regimen.


Assuntos
Neoplasias Colorretais , Receptores ErbB , Humanos , Regulação para Baixo , Receptores ErbB/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Linhagem Celular Tumoral
4.
Am J Physiol Gastrointest Liver Physiol ; 325(6): G570-G581, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37873577

RESUMO

Growth and specification of the mouse intestine occurs in utero and concludes after birth. Although numerous studies have examined this developmental process in the small intestine, far less is known about the cellular and molecular cues required for colon development. In this study, we examine the morphological events leading to crypt formation, epithelial cell differentiation, proliferation, and the emergence and expression of a stem and progenitor cell marker Lrig1. Through multicolor lineage tracing, we show Lrig1-expressing cells are present at birth and behave as stem cells to establish clonal crypts within 3 wk of life. In addition, we use an inducible knockout mouse to eliminate Lrig1 and show Lrig1 restrains proliferation within a critical developmental time window, without impacting colonic epithelial cell differentiation. Our study illustrates morphological changes during crypt development and the importance of Lrig1 in the developing colon.NEW & NOTEWORTHY Our studies define the importance of studying Lrig1 in colon development. We address a critical gap in the intestinal development literature and provide new information about the molecular cues that guide colon development. Using a novel, inducible knockout of Lrig1, we show Lrig1 is required for appropriate colon epithelial growth and illustrate the importance of Lrig1-expressing cells in the establishment of colonic crypts.


Assuntos
Neoplasias do Colo , Proteínas do Tecido Nervoso , Camundongos , Animais , Proteínas do Tecido Nervoso/metabolismo , Colo/metabolismo , Intestino Delgado/metabolismo , Neoplasias do Colo/metabolismo , Camundongos Knockout , Proliferação de Células , Mucosa Intestinal/metabolismo , Glicoproteínas de Membrana/metabolismo
5.
Acta Oncol ; 61(11): 1425-1433, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36326616

RESUMO

BACKGROUND: Ovarian carcinoma is the eighth most common cause of cancer death in women worldwide. The disease is predominantly diagnosed at a late stage. This contributes to high recurrence rates, eventually leading to the development of treatment-resistant disease. Leucine-rich repeats and immunoglobulin-like domains protein 1 (LRIG1) is a transmembrane protein that functions as a tumor suppressor and regulator of growth factor signaling. LRIG1 levels have not been investigated in human plasma previously. MATERIALS AND METHODS: A quantitative LRIG1-specific single molecule array assay was developed and validated. LRIG1 levels were quantified in plasma samples from 486 patients with suspicious ovarian masses. RESULTS: Among women with ovarian carcinoma, LRIG1 levels were significantly elevated compared to women with benign or borderline type tumors. High LRIG1 plasma levels were associated with worse overall survival and shorter disease-free survival both in the group of all malignant cases and among the stage 3 cases only. LRIG1 was an independent prognostic factor in patients with stage 3 ovarian carcinoma. CONCLUSION: LRIG1 plasma levels were elevated in patients with ovarian carcinoma, and high levels were associated with poor prognosis, suggesting that LRIG1 might be an etiologic factor and a potentially useful biomarker in ovarian carcinoma.


Assuntos
Carcinoma , Glicoproteínas de Membrana , Neoplasias Ovarianas , Feminino , Humanos , Glicoproteínas de Membrana/sangue , Neoplasias Ovarianas/diagnóstico , Prognóstico
6.
Proc Natl Acad Sci U S A ; 116(39): 19652-19658, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31488717

RESUMO

Helicobacter pylori-induced gastritis is the strongest risk factor for gastric adenocarcinoma, a malignancy preceded by a series of well-defined histological stages, including metaplasia. One microbial constituent that augments cancer risk is the cag type 4 secretion system (T4SS), which translocates the oncoprotein CagA into host cells. Aberrant stem cell activation is linked to carcinogenesis, and Lrig1 (leucine-rich repeats and Ig-like domains 1) marks a distinct population of progenitor cells. We investigated whether microbial effectors with carcinogenic potential influence Lrig1 progenitor cells ex vivo and via lineage expansion within H. pylori-infected gastric mucosa. Lineage tracing was induced in Lrig1-CreERT2/+;R26R-YFP/+ (Lrig1/YFP) mice that were uninfected or subsequently infected with cag+H. pylori or an isogenic cagE- mutant (nonfunctional T4SS). In contrast to infection with wild-type (WT) H. pylori for 2 wk, infection for 8 wk resulted in significantly increased inflammation and proliferation in the corpus and antrum compared with uninfected or mice infected with the cagE- mutant. WT H. pylori-infected mice harbored significantly higher numbers of Lrig1/YFP epithelial cells that coexpressed UEA1 (surface cell marker). The number of cells coexpressing intrinsic factor (chief cell marker), YFP (lineage marker), and GSII lectin (spasmolytic polypeptide-expressing metaplasia marker) were increased only by WT H. pylori In human samples, Lrig1 expression was significantly increased in lesions with premalignant potential compared with normal mucosa or nonatrophic gastritis. In conclusion, chronic H. pylori infection stimulates Lrig1-expressing progenitor cells in a cag-dependent manner, and these reprogrammed cells give rise to a full spectrum of differentiated cells.


Assuntos
Helicobacter pylori/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sistemas de Secreção Tipo IV/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/microbiologia , Animais , Carcinogênese/patologia , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Feminino , Mucosa Gástrica/metabolismo , Gastrite/metabolismo , Gastrite/patologia , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/patologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/microbiologia , Lesões Pré-Cancerosas/patologia , Cultura Primária de Células , Fatores de Risco , Células-Tronco/metabolismo , Estômago/microbiologia , Estômago/patologia , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/microbiologia , Neoplasias Gástricas/patologia
7.
Int J Mol Sci ; 22(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34576152

RESUMO

Aryl hydrocarbon receptor (AHR) genomic pathway has been well-characterized in a number of respiratory diseases. In addition, the cytoplasmic AHR protein may act as an adaptor of E3 ubiquitin ligase. In this study, the physiological functions of AHR that regulate cell proliferation were explored using the CRISPR/Cas9 system. The doubling-time of the AHR-KO clones of A549 and BEAS-2B was observed to be prolonged. The attenuation of proliferation potential was strongly associated with either the induction of p27Kip1 or the impairment in mitogenic signal transduction driven by the epidermal growth factor (EGF) and EGF receptor (EGFR). We found that the leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1), a repressor of EGFR, was induced in the absence of AHR in vitro and in vivo. The LRIG1 tends to degrade via a proteasome dependent manner by interacting with AHR in wild-type cells. Either LRIG1 or a disintegrin and metalloprotease 17 (ADAM17) were accumulated in AHR-defective cells, consequently accelerating the degradation of EGFR, and attenuating the response to mitogenic stimulation. We also affirmed low AHR but high LRIG1 levels in lung tissues of chronic obstructive pulmonary disease (COPD) patients. This might partially elucidate the sluggish tissue repairment and developing inflammation in COPD patients.


Assuntos
Receptores ErbB/metabolismo , Glicoproteínas de Membrana/metabolismo , Mitógenos/metabolismo , Proteólise , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais , Células A549 , Proteína ADAM17/metabolismo , Animais , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Clonais , Fator de Crescimento Epidérmico/farmacologia , Humanos , Pulmão/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteólise/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Regulação para Cima/efeitos dos fármacos
8.
BMC Cancer ; 20(1): 459, 2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32448168

RESUMO

BACKGROUND: Leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) copy number alterations and unbalanced gene recombination events have been reported to occur in breast cancer. Importantly, LRIG1 loss was recently shown to predict early and late relapse in stage I-II breast cancer. METHODS: We developed droplet digital PCR (ddPCR) assays for the determination of relative LRIG1 copy numbers and used these assays to analyze LRIG1 in twelve healthy individuals, 34 breast tumor samples previously analyzed by fluorescence in situ hybridization (FISH), and 423 breast tumor cytosols. RESULTS: Four of the LRIG1/reference gene assays were found to be precise and robust, showing copy number ratios close to 1 (mean, 0.984; standard deviation, +/- 0.031) among the healthy control population. The correlation between the ddPCR assays and previous FISH results was low, possibly because of the different normalization strategies used. One in 34 breast tumors (2.9%) showed an unbalanced LRIG1 recombination event. LRIG1 copy number ratios were associated with the breast cancer subtype, steroid receptor status, ERBB2 status, tumor grade, and nodal status. Both LRIG1 loss and gain were associated with unfavorable metastasis-free survival; however, they did not remain significant prognostic factors after adjustment for common risk factors in the Cox regression analysis. Furthermore, LRIG1 loss was not significantly associated with survival in stage I and II cases. CONCLUSIONS: Although LRIG1 gene aberrations may be important determinants of breast cancer biology, and prognostic markers, the results of this study do not verify an important role for LRIG1 copy number analyses in predicting the risk of relapse in early-stage breast cancer.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/patologia , Dosagem de Genes , Glicoproteínas de Membrana/genética , Recidiva Local de Neoplasia/patologia , Reação em Cadeia da Polimerase/métodos , Receptor ErbB-2/genética , Neoplasias da Mama/genética , Neoplasias da Mama/cirurgia , Estudos de Casos e Controles , Feminino , Seguimentos , Humanos , Hibridização in Situ Fluorescente , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/cirurgia , Prognóstico , Taxa de Sobrevida
9.
BMC Cancer ; 20(1): 126, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32059662

RESUMO

BACKGROUND: The loss of a single copy of adenomatous polyposis coli (Apc) in leucine-rich repeats and immunoglobulin-like domains 1 (Lrig1)-expressing colonic progenitor cells induces rapid growth of adenomas in mice with high penetrance and multiplicity. The tumors lack functional APC, and a genetic loss of heterozygosity of Apc was previously observed. METHODS: To identify genomic features of early tumorigenesis, and to profile intertumoral genetic heterogeneity, tumor exome DNA (n = 9 tumors) and mRNA (n = 5 tumors) sequences were compared with matched nontumoral colon tissue. Putative somatic mutations were called after stringent variant filtering. Somatic signatures of mutational processes were determined and splicing patterns were observed. RESULTS: The adenomas were found to be genetically heterogeneous and unexpectedly hypermutated, displaying a strong bias toward G:C > A:T mutations. A genetic loss of heterozygosity of Apc was not observed, however, an epigenetic loss of heterozygosity was apparent in the tumor transcriptomes. Complex splicing patterns characterized by a loss of intron retention were observed uniformly across tumors. CONCLUSION: This study demonstrates that early tumors originating from intestinal stem cells with reduced Lrig1 and Apc expression are highly mutated and genetically heterogeneous, with an inflammation-associated mutational signature and complex splicing patterns that are uniform across tumors.


Assuntos
Neoplasias do Colo/genética , Epigênese Genética , Genes APC , Perda de Heterozigosidade , Glicoproteínas de Membrana/genética , Mutação , Proteínas do Tecido Nervoso/genética , Animais , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Exoma , Perfilação da Expressão Gênica , Inativação Gênica , Humanos , Camundongos , Transcriptoma
10.
RNA Biol ; 17(6): 784-793, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32174258

RESUMO

The presence or absence of cytogenetic mutations is proposed to be responsible for the pathogenesis of acute myeloid leukaemia (AML). However, the current classification system is inadequate to elucidate the molecular heterogeneity of the disease, and therapy failures frequently occur. Leukaemia stem cells (LSCs) initiate and maintain the clonal hierarchy of AML and exhibit properties of self-renewal remaining recalcitrant to conventional chemotherapy. In this study, we identified a novel long non-coding RNA (lncRNA) MAGI2 antisense RNA 3 (MAGI2-AS3) in AML and investigated its functional role in regulating LSCs self-renewal. LSCs were identified by immunoprofiling of CD34+ CD123+ in AML patients' marrow. MAGI2-AS3 exhibited a poor expression level in LSCs than the normal human haematopoietic stem cells. Lentivirus-mediated upregulation of MAGI2-AS3 or leucine-rich repeats and Ig-like domains 1 (LRIG1) impaired LSCs self-renewal. MAGI2-AS3-overexpressed LSCs acquired the ability of self-renewal following lentivirus-mediated knockdown of LRIG1. Methylation-dependent inhibition of LRIG1 was evident in LSCs. MAGI2-AS3 was found to induce occupancy of TET2 at the LRIG1 promoter. Lentivirus-mediated downregulation of TET2 could impair MAGI2-AS3-mediated elevation of LRIG1 and neutralize the inhibitory effect of MAGI2-AS3 on LSCs self-renewal. In vivo analysis indicated an elevated overall survival of NOD/SCID mice injected with LSCs in the presence of MAGI2-AS3. Altogether, the key findings support the potential of lncRNA MAGI2-AS3 to serve as a novel candidate for the improvement of AML treatment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Autorrenovação Celular/genética , Desmetilação do DNA , Proteínas de Ligação a DNA/metabolismo , Guanilato Quinases/genética , Leucemia Mieloide Aguda/genética , Glicoproteínas de Membrana/genética , Células-Tronco Neoplásicas/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/metabolismo , RNA Longo não Codificante , Linhagem Celular Tumoral , Dioxigenases , Regulação Leucêmica da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/patologia , Ligação Proteica , Interferência de RNA , RNA Antissenso
11.
Int J Mol Sci ; 21(8)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316543

RESUMO

MicroRNAs (miRNAs) have a critical role in regulating stem cells (SCs) during development, and because aberrant expression of miRNAs occurs in various cancers, our goal was to determine if dysregulation of miRNAs is involved in the SC origin of colorectal cancer (CRC). We previously reported that aldehyde dehydrogenase (ALDH) is a marker for normal and malignant human colonic SCs and tracks SC overpopulation during colon tumorigenesis. MicroRNA expression was studied in ALDH-positive SCs from normal and malignant human colon tissues by Nanostring miRNA profiling. Our findings show that: (1) A unique miRNA signature distinguishes ALDH-positive CRC cells from ALDH-positive normal colonic epithelial cells, (2) Expression of four miRNAs (miRNA200c, miRNA92a, miRNA20a, miRNA93) are significantly altered in CRC SCs compared to normal colonic SCs, (3) miRNA92a expression is also upregulated in ALDH-positive HT29 CRC SCs as compared to ALDH-negative SCs, (4) miRNA92a targets the 3'UTR of LRIG1 SC gene, and (5) miRNA92a modulates proliferation of HT29 CRC cells. Thus, our findings indicate that overexpression of miRNA92a contributes to the SC origin of CRC. Strategies designed to modulate miRNA expression, such as miRNA92a, may provide ways to target malignant SCs and to develop more effective therapies against CRC.


Assuntos
Neoplasias Colorretais/genética , Perfilação da Expressão Gênica/métodos , Glicoproteínas de Membrana/genética , MicroRNAs/genética , Células-Tronco Neoplásicas/metabolismo , Regiões 3' não Traduzidas , Estudos de Casos e Controles , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HT29 , Humanos , Glicoproteínas de Membrana/metabolismo , Regulação para Cima
12.
J Biol Chem ; 293(9): 3421-3435, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29317492

RESUMO

Leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) is a tumor suppressor and a negative regulator of several receptor tyrosine kinases. The molecular mechanisms by which LRIG1 mediates its tumor suppressor effects and regulates receptor tyrosine kinases remain incompletely understood. Here, we performed a yeast two-hybrid screen to identify novel LRIG1-interacting proteins and mined data from the BioPlex (biophysical interactions of ORFeome-based complexes) protein interaction data repository. The putative LRIG1 interactors identified in the screen were functionally evaluated using a triple co-transfection system in which HEK293 cells were co-transfected with platelet-derived growth factor receptor α, LRIG1, and shRNAs against the identified LRIG1 interactors. The effects of the shRNAs on the ability of LRIG1 to down-regulate platelet-derived growth factor receptor α expression were evaluated. On the basis of these results, we present an LRIG1 protein interaction network with many newly identified components. The network contains the apparently functionally important LRIG1-interacting proteins RAB4A, PON2, GAL3ST1, ZBTB16, LRIG2, CNPY3, HLA-DRA, GML, CNPY4, LRRC40, and LRIG3, together with GLRX3, PTPRK, and other proteins. In silico analyses of The Cancer Genome Atlas data sets revealed consistent correlations between the expression of the transcripts encoding LRIG1 and its interactors ZBTB16 and PTPRK and inverse correlations between the transcripts encoding LRIG1 and GLRX3. We further studied the LRIG1 function-promoting paraoxonase PON2 and found that it co-localized with LRIG1 in LRIG1-transfected cells. The proposed LRIG1 protein interaction network will provide leads for future studies aiming to understand the molecular functions of LRIG1 and the regulation of growth factor signaling.


Assuntos
Glicoproteínas de Membrana/metabolismo , Mapas de Interação de Proteínas , Receptores de Fatores de Crescimento/metabolismo , Humanos , Espaço Intracelular/metabolismo , Transporte Proteico
13.
Adv Exp Med Biol ; 1164: 199-206, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31576550

RESUMO

Cancer cell heterogeneity is a universal feature of human tumors and represents a significant barrier to the efficacy and duration of anticancer therapies, especially targeted therapeutics. Among the heterogeneous cancer cell populations is a subpopulation of relatively quiescent cancer cells, which are in the G0/G1 cell-cycle phase and refractory to anti-mitotic drugs that target proliferative cells. These slow-cycling cells (SCCs) preexist in untreated tumors and frequently become enriched in treatment-failed tumors, raising the possibility that these cells may mediate therapy resistance and tumor relapse. Here we review several general concepts on tumor cell heterogeneity, quiescence, and tumor dormancy. We discuss the potential relationship between SCCs and cancer stem cells (CSCs). We also present our current understanding of how SCCs and cancer dormancy might be regulated. Increasing knowledge of SCCs and tumor dormancy should lead to identification of novel molecular regulators and therapeutic targets of tumor relapse, residual diseases, and metastasis.


Assuntos
Ciclo Celular , Neoplasias , Ciclo Celular/fisiologia , Humanos , Neoplasias/fisiopatologia , Células-Tronco Neoplásicas/citologia
14.
Gut ; 67(9): 1595-1605, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-28814482

RESUMO

OBJECTIVE: Lrig1 is a marker of proliferative and quiescent stem cells in the skin and intestine. We examined whether Lrig1-expressing cells are long-lived gastric progenitors in gastric glands in the mouse stomach. We also investigated how the Lrig1-expressing progenitor cells contribute to the regeneration of normal gastric mucosa by lineage commitment to parietal cells after acute gastric injury in mice. DESIGN: We performed lineage labelling using Lrig1-CreERT2/+;R26R-YFP/+ (Lrig1/YFP) or R26R-LacZ/+ (Lrig1/LacZ) mice to examine whether the Lrig1-YFP-marked cells are gastric progenitor cells. We studied whether Lrig1-YFP-marked cells give rise to normal gastric lineage cells in damaged mucosa using Lrig1/YFP mice after treatment with DMP-777 to induce acute injury. We also studied Lrig1-CreERT2/CreERT2 (Lrig1 knockout) mice to examine whether the Lrig1 protein is required for regeneration of gastric corpus mucosa after acute injury. RESULTS: Lrig1-YFP-marked cells give rise to gastric lineage epithelial cells both in the gastric corpus and antrum, in contrast to published results that Lgr5 only marks progenitor cells within the gastric antrum. Lrig1-YFP-marked cells contribute to replacement of damaged gastric oxyntic glands during the recovery phase after acute oxyntic atrophy in the gastric corpus. Lrig1 null mice recovered normally from acute gastric mucosal injury indicating that Lrig1 protein is not required for lineage differentiation. Lrig1+ isthmal progenitor cells did not contribute to transdifferentiating chief cell lineages after acute oxyntic atrophy. CONCLUSIONS: Lrig1 marks gastric corpus epithelial progenitor cells capable of repopulating the damaged oxyntic mucosa by differentiating into normal gastric lineage cells in mouse stomach.


Assuntos
Mucosa Gástrica/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco/metabolismo , Úlcera Gástrica/metabolismo , Animais , Biomarcadores/metabolismo , Linhagem da Célula , Modelos Animais de Doenças , Mucosa Gástrica/efeitos dos fármacos , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Valor Preditivo dos Testes , Sensibilidade e Especificidade , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/genética , Cicatrização
15.
Biochem Biophys Res Commun ; 505(4): 1027-1031, 2018 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-30314701

RESUMO

In non-small lung cancer, the expression of the transcription factor TTF-1/Nkx2.1 correlates with the presence of EGFR mutations, therefore TTF-1/Nkx2.1 expression is used to optimize an EGFR testing strategy and to guide clinical treatment. We investigate the molecular mechanisms underlying the functional connection between EGFR and TTF-1/Nkx2.1 gene expression in lung adenocarcinoma. Using the H1975 cell line as a non-small cell lung cancer model system and short hairpin RNA, we have selected clones with TTF-1/Nkx2.1 silenced expression. We have found that Leucine-rich immunoglobulin repeats-1 (LRIG1) gene is a direct target of TTF-1/Nkx2.1 and the transcription factor binding to the LRIG1 genomic sequence inhibits its gene expression. In TTF-1/Nkx2.1 depleted clones, we have found high levels of LRIG1 and decreased presence of EGFR protein. Furthermore, in TTF-1/Nkx2.1 depleted clones we detected a reduced ß-catenin level and we provide experimental evidence indicating that TTF-1/Nkx2.1 gene expression is regulated by ß-catenin. Published studies indicate that LRIG1 triggers EGFR degradation and that mutated EGFR induces ß-catenin activity. Hence, with the present study we show that mutated EGFR, enhancing ß-catenin, stimulates TTF-1/Nkx2.1 gene expression and, at the same time, TTF-1/Nkx2.1, down-regulating LRIG1, sustains EGFR pathway. Therefore, LRIG1 and ß-catenin mediate the functional connection between TTF-1/Nkx2.1 and mutated EGFR.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Neoplasias Pulmonares/metabolismo , Glicoproteínas de Membrana/metabolismo , Fator Nuclear 1 de Tireoide/metabolismo , Fatores de Transcrição/metabolismo , beta Catenina/metabolismo , Proteínas de Ligação a DNA/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Mutação , Fator Nuclear 1 de Tireoide/genética , Fatores de Transcrição/genética , Células Tumorais Cultivadas
16.
EMBO Rep ; 17(4): 601-16, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26935556

RESUMO

Even though many extracellular factors have been identified as promoters of general dendritic growth and branching, little is known about the cell-intrinsic modulators that allow neurons to sculpt distinctive patterns of dendrite arborization. Here, we identify Lrig1, a nervous system-enriched LRR protein, as a key physiological regulator of dendrite complexity of hippocampal pyramidal neurons. Lrig1-deficient mice display morphological changes in proximal dendrite arborization and defects in social interaction. Specifically, knockdown of Lrig1 enhances both primary dendrite formation and proximal dendritic branching of hippocampal neurons, two phenotypes that resemble the effect of BDNF on these neurons. In addition, we show that Lrig1 physically interacts with TrkB and attenuates BDNF signaling. Gain and loss of function assays indicate that Lrig1 restricts BDNF-induced dendrite morphology. Together, our findings reveal a novel and essential role of Lrig1 in regulating morphogenic events that shape the hippocampal circuits and establish that the assembly of TrkB with Lrig1 represents a key mechanism for understanding how specific neuronal populations expand the repertoire of responses to BDNF during brain development.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dendritos/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Hipocampo/fisiologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Técnicas de Inativação de Genes , Células HEK293 , Hipocampo/citologia , Humanos , Glicoproteínas de Membrana/deficiência , Camundongos , Morfogênese , Proteínas do Tecido Nervoso/deficiência , Neurônios/metabolismo , Polissacarídeos , Transdução de Sinais
17.
Biochem Biophys Res Commun ; 464(2): 519-25, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26159916

RESUMO

Downregulation of LRIG1 was found in many types of cancer. However, data concerning the possible mechanism of LRIG1 reduction in cancers were not reported yet. To analyze the regulation and function of LRIG1 in colorectal cancer (CRC), 6 cell lines, 46 paired tissues from primary CRC cases were employed in this study. In CRC cell lines, under-expression of LRIG1 was correlated with promoter region hypermethylation, and restoration of LRIG1 was induced by 5-Aza-2'-deoxyazacytidine treatment. Subsequently, we ectopically expressed LRIG1 in LRIG1 low-expressing HCT-116 cells and suppressed LRIG1 in LRIG1 high-expressing LoVo cells. We found that over-expression of LRIG1 inhibits cell proliferation and colony formation and tumor growth, while knockdown of LRIG1 promotes cell proliferation and colony formation. Decreased and increased EGFR/AKT signaling pathway may partially explain the lower and higher rates of proliferation in CRC cells transfected with LRIG1 cDNA or shRNA. In clinical samples, we compared the methylation, mRNA and protein expression of LRIG1 in samples of CRC tissues. A significant increase in LRIG1 methylation was identified in CRC specimens compared to adjacent normal tissues and that it was negatively correlated with its mRNA and protein expression. In conclusion, LRIG1 is frequently methylated in human CRC and consequent mRNA and protein downregulation may contribute to tumor growth by activating EGFR/AKT signaling.


Assuntos
Cromossomos Humanos Par 3 , Neoplasias Colorretais/genética , Epigênese Genética , Receptores ErbB/metabolismo , Glicoproteínas de Membrana/fisiologia , Transdução de Sinais/fisiologia , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Metilação de DNA , Humanos , Glicoproteínas de Membrana/genética , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/metabolismo
18.
J Biol Chem ; 288(30): 21593-605, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23723069

RESUMO

Lrig1 is the founding member of the Lrig family of transmembrane leucine-rich repeat proteins, which also includes Lrig2 and Lrig3. Lrig1 is a negative regulator of oncogenic receptor tyrosine kinases, including ErbB and Met receptors, and promotes receptor degradation. Lrig1 has recently emerged as both a tumor suppressor and a key regulator of epidermal and epithelial stem cell quiescence. Despite this, little is known of the mechanisms by which Lrig1 is regulated. Lrig3 was recently reported to increase ErbB receptor expression suggesting that it may function in a manner opposite to Lrig1. In this study, we explore the interaction between Lrig1 and Lrig3 and demonstrate that Lrig1 and Lrig3 functionally oppose one another. Lrig3 opposes Lrig1 negative regulatory activity and stabilizes ErbB receptors. Conversely, Lrig1 destabilizes Lrig3, limiting Lrig3's positive effects on receptors and identifying Lrig3 as a new target of Lrig1. These studies provide new insight into the regulation of Lrig1 and uncover a complex cross-talk between Lrig1 and Lrig3.


Assuntos
Receptores ErbB/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Animais , Western Blotting , Células CHO , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Endocitose , Receptores ErbB/genética , Células HEK293 , Humanos , Células MCF-7 , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Mutação , Ligação Proteica , Estabilidade Proteica , Interferência de RNA , Receptor ErbB-2/genética , Receptor ErbB-3/genética , Receptor ErbB-4
19.
Pathol Res Pract ; 260: 155410, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38955119

RESUMO

Exosomes derived from neighboring v-raf murine sarcoma viral oncogene homolog B1 inhibitor (BRAFi)-resistant melanoma cells mediate the formation of resistance in melanoma cells sensitive to BRAFi. The function and molecular mechanisms of exosomal miRNA in BRAFi resistance of melanoma have not been studied. We found that the expression of miR-19a in BRAFi resistant melanoma cells was significantly higher than that in sensitive cells, and miR-19a contributes to the resistance of melanoma cells to BRAFi by targeting immunoglobulin-like domains protein 1 (LRIG1). miR-19a was highly enriched in exosomes secreted from BRAFi resistant melanoma cells, and these exosomal miR-19a promote the spread of BRAFi resistant. The reactivation of Protein kinase B (AKT) and mitogen-activated protein kinase (MAPK) pathways is the main reason for the BRAFi resistant of melanoma cells. We demonstrated that exosomal miR-19a derived from melanoma cell promotes the formation and spread of BRAFi resistant in melanoma through targeting LRIG1 to reactivate AKT and MAPK pathway. Therefore, miR-19a may serve as a potential therapeutic target in melanoma patients with acquired drug resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Exossomos , Sistema de Sinalização das MAP Quinases , Melanoma , MicroRNAs , Proteínas Proto-Oncogênicas c-akt , Vemurafenib , MicroRNAs/genética , MicroRNAs/metabolismo , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Melanoma/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Exossomos/metabolismo , Exossomos/efeitos dos fármacos , Vemurafenib/farmacologia , Vemurafenib/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
20.
Biol Direct ; 19(1): 20, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454507

RESUMO

CircLRIG1, a newly discovered circRNA, has yet to have its potential function and biological processes reported. This study explored the role of circLRIG1 in the development and progression of bladder carcinoma and its potential molecular mechanisms. Techniques such as qRT-PCR, Western blot, various cellular assays, and in vivo models were used to investigate mRNA and protein levels, cell behavior, molecular interactions, and tumor growth. The results showed that both circLRIG1 and LRIG1 were significantly reduced in bladder carcinoma tissues and cell lines. Low circLRIG1 expression was associated with poor patient prognosis. Overexpressing circLRIG1 inhibited bladder carcinoma cell growth, migration, and invasion, promoted apoptosis, and decreased tumor growth and metastasis in vivo. Importantly, circLRIG1 was found to sponge miR-214-3p, enhancing LRIG1 expression, and its overexpression also modulated protein levels of E-cadherin, N-cadherin, Vimentin, and LRIG1. Similar effects were observed with LRIG1 overexpression. Notably, a positive correlation was found between circLRIG1 and LRIG1 expression in bladder carcinoma tissues. Additionally, the tumor-suppressing effect of circLRIG1 was reversed by overexpressing miR-214-3p or silencing LRIG1. The study concludes that circLRIG1 suppresses bladder carcinoma progression by enhancing LRIG1 expression via sponging miR-214-3p, providing a potential strategy for early diagnosis and treatment of bladder carcinoma.


Assuntos
Carcinoma , MicroRNAs , Neoplasias da Bexiga Urinária , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Carcinoma/genética , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Glicoproteínas de Membrana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA