Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Diabetologia ; 67(2): 327-332, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38051360

RESUMO

AIMS/HYPOTHESIS: GLIS3 encodes a transcription factor involved in pancreatic beta cell development and function. Rare pathogenic, bi-allelic mutations in GLIS3 cause syndromic neonatal diabetes whereas frequent SNPs at this locus associate with common type 2 diabetes risk. Because rare, functional variants located in other susceptibility genes for type 2 diabetes have already been shown to strongly increase individual risk for common type 2 diabetes, we aimed to investigate the contribution of rare pathogenic GLIS3 variants to type 2 diabetes. METHODS: GLIS3 was sequenced in 5471 individuals from the Rare Variants Involved in Diabetes and Obesity (RaDiO) study. Variant pathogenicity was assessed following the criteria established by the American College of Medical Genetics and Genomics (ACMG). To address the pathogenic strong criterion number 3 (PS3), we conducted functional investigations of these variants using luciferase assays, focusing on capacity of GLIS family zinc finger 3 (GLIS3) to bind to and activate the INS promoter. The association between rare pathogenic or likely pathogenic (P/LP) variants and type 2 diabetes risk (and other metabolic traits) was then evaluated. A meta-analysis combining association results from RaDiO, the 52K study (43,125 individuals) and the TOPMed study (44,083 individuals) was finally performed. RESULTS: Through targeted resequencing of GLIS3, we identified 105 rare variants that were carried by 395 participants from RaDiO. Among them, 49 variants decreased the activation of the INS promoter. Following ACMG criteria, 18 rare variants were classified as P/LP, showing an enrichment in the last two exons compared with the remaining exons (p<5×10-6; OR>3.5). The burden of these P/LP variants was strongly higher in individuals with type 2 diabetes (p=3.0×10-3; OR 3.9 [95% CI 1.4, 12]), whereas adiposity, age at type 2 diabetes diagnosis and cholesterol levels were similar between variant carriers and non-carriers with type 2 diabetes. Interestingly, all carriers with type 2 diabetes were sensitive to oral sulfonylureas. A total of 7 P/LP variants were identified in both 52K and TOPMed studies. The meta-analysis of association studies obtained from RaDiO, 52K and TOPMed showed an enrichment of P/LP GLIS3 variants in individuals with type 2 diabetes (p=5.6×10-5; OR 2.1 [95% CI 1.4, 2.9]). CONCLUSIONS/INTERPRETATION: Rare P/LP GLIS3 variants do contribute to type 2 diabetes risk. The variants located in the distal part of the protein could have a direct effect on its functional activity by impacting its transactivation domain, by homology with the mouse GLIS3 protein. Furthermore, rare P/LP GLIS3 variants seem to have a direct clinical effect on beta cell function, which could be improved by increasing insulin secretion via the use of sulfonylureas.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Camundongos , Animais , Recém-Nascido , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Células Secretoras de Insulina/metabolismo , Mutação , Proteínas de Ligação a DNA/metabolismo , Proteínas Repressoras/metabolismo , Transativadores/metabolismo
2.
Genomics ; 114(3): 110332, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35283196

RESUMO

Systemic lupus erythematosus (SLE, OMIM 152700) is a rare autoimmune disease with high heritability that affects ~0.1% of the population. Previous studies have revealed several common variants with small effects in European and East Asian SLE patients. However, there is still no rare variant study on Chinese SLE patients using the whole-genome sequencing technology (WGS). Here, we designed a family based WGS study to identify novel rare variants with large effects. Based on large-scale allele frequency data from the gnomAD database, we identified rare protein-coding gene variants with disruptive and sequence-altering impacts in SLE patients. We found that the burden of rare variants was significantly higher than that of common variants in patients, suggesting a larger effect of rare variants on the SLE pathogenesis. We identified the pathogenic risk of rare missense variants with significant odds ratios (p < 0.05) in two genes, including WNT16 (NC_000007.14:g.121329757G > C, NP_057171.2:p.(Ala86Pro) and 7 g.121329760G > C, NP_057171.2:p.(Ala87Pro)), which explains five out of seven patients covering all three families but are absent from all controls, and ERVW-1 (NC_000007.14:g.92469882A > G, NP_001124397.1:p.(Leu167Pro), rs74545114; NC_000007.14:g.92469907G > A, NP_001124397.1:p.(Arg159Cys), rs201142302; NC_000007.14:g.92469919G > A, NP_001124397.1:p.(His155Tyr), rs199552228), which explains the other two patients. None of these variants were identified in any of the controls. These associations are supported by known gene expression studies in SLE patients based on literature review. We further tested the wild and mutant types using the luciferase assays and qPCR in cells. We found that WNT16 can activate the canonical Wnt/ß-catenin pathway while the mutant cannot. Additionally, the wild ERVW-1 expression can be significantly up-regulated by cAMP while the mutant cannot. Our study provides the first direct genetic and in vitro evidence for the pathogenic risk of mutant WNT16 and ERVW-1, which may facilitate the design of precision therapy for SLE.


Assuntos
Lúpus Eritematoso Sistêmico , Humanos , Frequência do Gene , Predisposição Genética para Doença , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/epidemiologia , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma , Proteínas Wnt/genética
3.
J Lipid Res ; 62: 100102, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34384787

RESUMO

Forkhead box transcription factors have been shown to be involved in various developmental and differentiation processes. In particular, members of the FoxP family have been previously characterized in depth for their participation in the regulation of lung and neuronal cell differentiation and T-cell development and function; however, their role in adipocyte functionality has not yet been investigated. Here, we report for the first time that Forkhead box P4 (FoxP4) is expressed at high levels in subcutaneous fat depots and mature thermogenic adipocytes. Through molecular and gene expression analyses, we revealed that FoxP4 is induced in response to thermogenic stimuli, both in vivo and in isolated cells, and is regulated directly by the heat shock factor protein 1 through a heat shock response element identified in the proximal promoter region of FoxP4. Further detailed analysis involving chromatin immunoprecipitation and luciferase assays demonstrated that FoxP4 directly controls the levels of uncoupling protein 1, a key regulator of thermogenesis that uncouples fatty acid oxidation from ATP production. In addition, through our gain-of-function and loss-of-function studies, we showed that FoxP4 regulates the expression of a number of classic brown and beige fat genes and affects oxygen consumption in isolated adipocytes. Overall, our data demonstrate for the first time the novel role of FoxP4 in the regulation of thermogenic adipocyte functionality.


Assuntos
Adipócitos/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Animais , Células Cultivadas , Feminino , Fatores de Transcrição Forkhead/genética , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Termogênese/genética
4.
Breast Cancer Res Treat ; 171(1): 53-63, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29766361

RESUMO

PURPOSE: Promoter mutations may affect transcription and can be associated with human diseases. However, the promoters of the breast cancer (BC) genes are not regularly screened. Our goal was to investigate the BRCA2 promoter in order to study a possible correlation between impaired transcription and disease. METHODS: The proximal and core promoter of the BRCA2 gene was sequenced in 95 high-risk BC patients. A BRCA2-promoter insert [- 938 to + 312 from the transcription start site (TSS)] was generated and cloned into the firefly luciferase vector pGL4.10. Promoter variants and deletions were introduced by site-directed mutagenesis and quantified by Dual-Luciferase assays and semi-quantitative RT-PCR. RESULTS: Three different variants were detected in high-risk BC patients: rs3092989, rs206118, and rs563971900. Functional mapping of 13 overlapping deletions revealed four down-regulating segments (TSS positions): -59_-10del/µdel3 (16% of activity of the wild-type construct), -104_-55del/µdel4 (62%), -239_-190del/µdel7 (39%), -464_-415/µdel12 (78%), suggesting the presence therein of putative transcriptional activator motifs. Additionally, six microdeletions rendered luciferase overexpression: +32_+81del/µdel1 (356%), -14_+36del/µdel2 (180%), -194_-145del/µdel6 (154%), -284_-235del/µdel8 (168%), -329_-280del/µdel9 (111%), and -509_-460del/µdel13 (139%), which is indicative of repressor elements. Functional assays of 15 promoter variants (including those detected in patients) showed that ten of them significantly altered expression with seven up-regulating (113-163%) and three down-regulating (rs551887850_G, rs570548398_T, rs55880202_T; 72-83%) SNPs. Eight of them were located in an ENCODE-DNase Hypersensitive Cluster (TSS - 185 to + 105) where most active transcriptional motifs are known to be placed. CONCLUSIONS: BRCA2 expression is highly sensitive to promoter variations as most of them induced relevant changes. Moreover, we mapped critical regions of the BRCA2 promoter that may constitute potential targets for regulatory variants. Three SNPs moderately decreased luciferase activity, but confirmation of its potential pathogenicity requires further analysis. These data reinforce the need to screen the promoter regions of breast cancer genes with a view to discovering novel deleterious mutations.


Assuntos
Proteína BRCA2/genética , Variação Genética , Regiões Promotoras Genéticas , Alelos , Feminino , Regulação da Expressão Gênica , Ordem dos Genes , Genes Reporter , Predisposição Genética para Doença , Vetores Genéticos , Humanos , Mutação , Polimorfismo de Nucleotídeo Único , Transcrição Gênica
5.
J Cell Biochem ; 116(1): 115-23, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25160502

RESUMO

Zinc finger E-box binding homeobox 1 (ZEB1) is a transcription factor that plays a central role in the epithelial to mesenchymal transition (EMT) of cancer cell lines. Studies on its regulation have mostly focused on the negative 3'UTR binding of miR200c. Interestingly, it has been previously reported that androgen receptor (AR) regulates ZEB1 expression in breast and prostate cancers. In order to validate this, various ZEB1 promoter deletions were cloned into a luciferase reporter system to elucidate the contribution of two putative androgen response elements (AREs). The in vivo contribution of AR was also assessed in cell lines after R1881 treatment using qPCR with prostate specific antigen (PSA) as the positive control. We discovered that AR upregulates the levels of expression of ZEB1 10-fold on a luciferase promoter that only contains the distal ARE. However, when the proximal ARE is included, no additional activation is apparent with AR or its hormone independent variant, AR-V7. Furthermore, we demonstrate here that a promoter construct containing both AREs activates transcription of ZEB1 even in the AR-null cell lines DU145 and PC3. Incubation of the AR-positive cell line, LNCaP with R1881, failed to substantially increase the expression levels of ZEB1. Despite the presence of AREs in the promoter region, it appears that ZEB1 expression can be induced even without AR. In addition, the region around the distal ARE is a potent repressor in AR-null cell lines.


Assuntos
Proteínas de Homeodomínio/metabolismo , Receptores Androgênicos/metabolismo , Fatores de Transcrição/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/fisiologia , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Humanos , Masculino , Regiões Promotoras Genéticas/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/genética , Fatores de Transcrição/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco
6.
Mol Carcinog ; 53 Suppl 1: E92-5, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23776069

RESUMO

Up-regulation of cyclooxygenase-2 (COX-2) is an early and key event in human colorectal carcinogenesis (CRC). Nevertheless, the molecular mechanisms leading to this over-expression are largely unknown. We previously reported an association between the -1195G allele and higher predisposition for CRC in a Caucasian population. The biological explanation for the involvement of this polymorphism in CRC remains elusive. We aimed to functionally characterize the influence of the -1195A>G promoter region polymorphism on COX-2 transcription activity in colon cancer cell lines. Luciferase reporter assays were performed to assess whether the -1195A/G alleles influenced COX-2 transcription. The COX-2 promoter's region containing either the -1195A or -1195G alleles was cloned into pGL3-basic reporter vector. The reporter vectors were transiently co-transfected with the pGL4.73 control plasmid to HCT-116 and HCA-7 colon cancer cell lines. The levels of reporter gene expression driven by the -1195G allele-containing COX-2 promoter were significantly higher in both colon cancer cell lines. A 2.2-fold increase in promoter activity was observed in the HCT-116 cell line (P < 0.001), and this over-expression was even more noticeable in the HCA-7 COX-2 expressing cell line with a threefold higher transcriptional activity (P = 0.001). The -1195G allele appeared to enhance COX-2 transcription, providing a molecular basis underlying the increased susceptibility for CRC and potentially a new mechanism for COX-2 overexpression.


Assuntos
Neoplasias do Colo/enzimologia , Ciclo-Oxigenase 2/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Polimorfismo Genético/genética , Regiões Promotoras Genéticas/genética , Alelos , Vetores Genéticos , Genótipo , Humanos , Luciferases/metabolismo , Células Tumorais Cultivadas
7.
Liver Int ; 34(10): 1560-5, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24351124

RESUMO

BACKGROUND & AIMS: Our previous study found that rs4845384 in ADAR1 gene to be associated with HBeAg seroconversion. However, the effect of rs4845384 on HBsAg seroclearance is unknown. To assess the relationship between rs4845384 and HBsAg seroclearance. METHODS: Two independent case-control studies were conducted to test whether rs4845384 in ADAR1 was associated with HBsAg clearance. Reporter gene assays and quantitative PCR experiments were also carried out to verify the functional significances of this polymorphism. RESULTS AND CONCLUSIONS: The rs4845384 polymorphism was associated with HBsAg seroclearance both spontaneously (P = 0.028, OR = 1.36, 95% CI = 1.03-1.78) and interferon induced (P = 0.013, OR = 1.83, 95% CI = 1.13-2.96), in a total of 725 subjects. Luciferase assays showed that pGL3-rs4845384G constructs had higher expression level than pGL3-rs4845384A constructs, especially in HepG2. 2.15 cell line. Quantitative real-time RT-PCR showed that chronic hepatitis B (CHB) patients had lower ADAR1 mRNA level than healthy individuals. The AA carriers of rs4845384 had lower ADAR1 mRNA expression than non-AA carriers. The non-response susceptible allele rs4845384A was functional for regulation of ADAR1 expression, so as to influence HBsAg seroclearance of CHB patients.


Assuntos
Adenosina Desaminase/genética , Antígenos de Superfície da Hepatite B/sangue , Hepatite B Crônica/genética , Hepatite B Crônica/imunologia , Interferons/imunologia , Polimorfismo de Nucleotídeo Único/genética , Proteínas de Ligação a RNA/genética , Adulto , Alanina Transaminase/sangue , Aspartato Aminotransferases/sangue , Estudos de Casos e Controles , Feminino , Genes Reporter/genética , Estudo de Associação Genômica Ampla , Células Hep G2 , Humanos , Luciferases , Masculino , Razão de Chances , Reação em Cadeia da Polimerase em Tempo Real
8.
Dis Model Mech ; 17(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38967226

RESUMO

Robinow syndrome is a rare disease caused by variants of seven WNT pathway genes. Craniofacial features include widening of the nasal bridge and jaw hypoplasia. We used the chicken embryo to test whether two missense human FZD2 variants (1301G>T, p.Gly434Val; 425C>T, p.Pro142Lys) were sufficient to change frontonasal mass development. In vivo, the overexpression of retroviruses with wild-type or variant human FZD2 inhibited upper beak ossification. In primary cultures, wild-type and variant human FZD2 significantly inhibited chondrogenesis, with the 425C>T variant significantly decreasing activity of a SOX9 luciferase reporter compared to that for the wild type or 1301G>T. Both variants also increased nuclear shuttling of ß-catenin (CTNNB1) and increased the expression of TWIST1, which are inhibitory to chondrogenesis. In canonical WNT luciferase assays using frontonasal mass cells, the variants had dominant-negative effects on wild-type FZD2. In non-canonical assays, the 425C>T variant failed to activate the reporter above control levels and was unresponsive to exogenous WNT5A. This is the first single amino acid change to selectively alter ligand binding in a FZD receptor. Therefore, FZD2 missense variants are pathogenic and could lead to the altered craniofacial morphogenesis seen in Robinow syndrome.


Assuntos
Condrogênese , Anormalidades Craniofaciais , Receptores Frizzled , Animais , Embrião de Galinha , Humanos , Bico , beta Catenina/metabolismo , Núcleo Celular/metabolismo , Condrogênese/genética , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/patologia , Nanismo , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Deformidades Congênitas dos Membros , Crânio/patologia , Crânio/embriologia , Proteína 1 Relacionada a Twist/metabolismo , Proteína 1 Relacionada a Twist/genética , Anormalidades Urogenitais , Via de Sinalização Wnt
9.
Front Immunol ; 14: 1250942, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781386

RESUMO

C-reactive protein (CRP) is an evolutionary highly conserved protein. Like humans, CRP acts as a major acute phase protein in pigs. While CRP regulatory mechanisms have been extensively studied in humans, little is known about the molecular mechanisms that control pig CRP gene expression. The main goal of the present work was to study the regulatory mechanisms and identify functional genetic variants regulating CRP gene expression and CRP blood levels in pigs. The characterization of the porcine CRP proximal promoter region revealed a high level of conservation with both cow and human promoters, sharing binding sites for transcription factors required for CRP expression. Through genome-wide association studies and fine mapping, the most associated variants with both mRNA and protein CRP levels were localized in a genomic region 39.3 kb upstream of CRP. Further study of the region revealed a highly conserved putative enhancer that contains binding sites for several transcriptional regulators such as STAT3, NF-kB or C/EBP-ß. Luciferase reporter assays showed the necessity of this enhancer-promoter interaction for the acute phase induction of CRP expression in liver, where differences in the enhancer sequences significantly modified CRP activity. The associated polymorphisms disrupted the putative binding sites for HNF4α and FOXA2 transcription factors. The high correlation between HNF4α and CRP expression levels suggest the participation of HNF4α in the regulatory mechanism of porcine CRP expression through the modification of its binding site in liver. Our findings determine, for the first time, the relevance of a distal regulatory element essential for the acute phase induction of porcine CRP in liver and identify functional polymorphisms that can be included in pig breeding programs to improve immunocompetence.


Assuntos
Proteína C-Reativa , Transcrição Gênica , Feminino , Bovinos , Humanos , Animais , Suínos , Proteína C-Reativa/genética , Proteína C-Reativa/metabolismo , Estudo de Associação Genômica Ampla , Fígado/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Mutação
10.
Methods Mol Biol ; 2398: 89-97, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34674170

RESUMO

One of the most powerful methods to identify loci controlling complex quantitative traits has been the quantitative trait locus (QTL) mapping. The QTL mapping approach has proven immensely useful to improve our understanding of key pathways such as flowering time, growth, and disease resistance. Since major circadian clock parameters such as period, phase, and amplitude are quantitative in nature, the QTL mapping approach could also be used to study the complex genetic architecture of the circadian clock. Here, we describe a simple QTL mapping method to identify components controlling clock parameters in natural populations of Arabidopsis thaliana.


Assuntos
Relógios Circadianos , Arabidopsis/genética , Mapeamento Cromossômico , Relógios Circadianos/genética , Fenótipo , Locos de Características Quantitativas
11.
Methods Mol Biol ; 2472: 67-82, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35674893

RESUMO

The NOTCH signaling pathway is one of the highly conserved key pathways involved in most cell differentiation and proliferation processes during both developmental and adult stages in most animals. The NOTCH signaling pathway appears to be very simple but the existence of several receptors and ligands, their posttranslational modifications, their activation in the cell surface and its migration to the cell nucleus, as well as their interaction with multiple signaling pathways in the cytoplasm and the nucleus of cells, make the study of its function very complex.To determine the activation of NOTCH signaling in animal cells, several complementary approaches can be performed. One of them is the analysis of the transcription of NOTCH receptor target genes HES/HEY by qRT-PCR and Western blot. This approach would give us an idea of the global NOTCH activation and signaling. We can also analyze the NOTCH transcriptional activity by luciferase assays to determine the global or specific activation of NOTCH receptors under a given treatment or in response to the modification of gene expression. On the other hand, we can determine the specific activation of each NOTCH receptor by Western blot with antibodies that recognize the active forms of each NOTCH receptor. For this assay will be very important to collect the cells to be analyzed under the appropriate conditions. Finally, we can detect the intracellular domain of each NOTCH receptor into the cell nucleus by confocal microscopy using the appropriate antibodies that recognize the intracellular domain of the receptors.


Assuntos
Receptores Notch , Transdução de Sinais , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular , Núcleo Celular/metabolismo , Mamíferos/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia
12.
Cancer Biother Radiopharm ; 36(5): 433-440, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32343601

RESUMO

Background: The incidence of thyroid cancer has increased dramatically in recent decades due, in large part, to identifications of subclinical diseases. Literature on thyroid cancer has examined the pathogenesis of high invasive papillary thyroid cancer (PTC) and has improved the prevention and treatment of PTC. This study aims to investigate the effects of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) on PTC migration and invasion, and clarify the regulatory mechanisms between miR-146b-5p and MALAT1. Materials and Methods: In this study, we examined the differential expression of MALAT1, miR-146b-5p, and DNA methyltransferases 3A (DNMT3A) in PTC tissues. The effect of MALAT1 on the proliferation and invasion ability of PTC cells was verified by constructing a sh-MALAT1 knockdown cell model. Correlations between MALAT1, miR-146b-5p, and DNMT3A were analyzed by the Pearson correlation method. Finally, we verified the regulatory relationship between miR-146b-5p and MALAT1 by the luciferase assay and rescue assay. Results: The expression of MALAT1 was upregulated in PTC tissues and cells, while a MALAT1 knockdown counteracted cellular activity, migration, and invasion of B-CPAP and K1 cells. The relationship between miR-146b-5p and DNMT3A was negative, while the relationship between miR-146b-5p and MALAT1 was positive. Both genes were separately detected using the Pearson correlation method. The luciferase assay and rescue assay demonstrated that a binding site in miR-146b-5p was existent in the 3' untranslated region of DNMT3A, while a knockdown of DNMT3A partially rescued si-miR-146b-5p induced proliferation, migration, and invasion effects on PTC cells. Conclusions: The MALAT1 gene is highly expressed in PTC, while the knockdown MALAT1 gene attenuates the cellular activity and invasive ability of PTC cells. The microRNA miR-146b-5p can promote a MALAT1 expression by negatively regulating DNMT3A in PTC.


Assuntos
MicroRNAs/genética , RNA Longo não Codificante/genética , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Invasividade Neoplásica/genética , Regulação para Cima
13.
Methods Cell Biol ; 151: 323-334, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30948016

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs that repress the translation and reduce the stability of target mRNAs in animal cells. Post-transcriptional regulation mediated by miRNAs is a highly conserved mechanism utilized by organisms throughout phylogeny to fine tune gene expression. We document the approaches used to study the function of a single miRNA and miRNA regulation of biological pathways in the sea urchin embryo. The protocols that are described include selection of miRNA inhibitors, test of miRNA direct targets, and the use of target protector morpholinos to evaluate the impact of miRNA inhibition on its targets. Using the described techniques and strategies, the sea urchin researcher will be able to validate a miRNA's direct targets and evaluate how inhibition of the miRNA affects developmental processes. These results will contribute to our understanding of the regulatory roles of miRNAs in development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , MicroRNAs/genética , Ouriços-do-Mar/genética , Animais , Desenvolvimento Embrionário/efeitos dos fármacos , Desenvolvimento Embrionário/genética , Morfolinos/genética , RNA Mensageiro/genética , Ouriços-do-Mar/crescimento & desenvolvimento , Transdução de Sinais/genética , Fatores de Transcrição/genética
14.
Neural Regen Res ; 14(9): 1603-1609, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31089060

RESUMO

Curcumin exerts a neuroprotective effect on Alzheimer's disease; however, it is not known whether microRNAs are involved in this protective effect. This study was conducted using swAPP695-HEK293 cells as an Alzheimer's disease cell model. swAPP695-HEK293 cells were treated with 0, 0.5, 1, 2, 5, and 10 µM curcumin for 24 hours. The changes in miR-15b-5p, miR-19a-3p, miR-195-5p, miR-101-3p, miR-216b-5p, miR-16-5p and miR-185-5p expression were assessed by real-time quantitative polymerase chain reaction. The mRNA and protein levels of amyloid precursor protein, amyloid-ß40 and amyloid-ß42 were evaluated by quantitative real-time polymerase chain reaction, western blot assays and enzyme-linked immunosorbent assays. swAPP695-HEK293 cells were transfected with miR-15b-5p mimic, or treated with 1 µM curcumin 24 hours before miR-15b-5p inhibitor transfection. The effects of curcumin on amyloid precursor protein, amyloid-ß40 and amyloid-ß42 levels were evaluated by western blot assays and enzyme-linked immunosorbent assay. Luciferase assays were used to analyze the interaction between miR-15b-5p and the 3'-untranslated region of amyloid precursor protein. The results show that amyloid precursor protein and amyloid-ß expression were enhanced in swAPP695-HEK293 cells compared with HEK293 parental cells. Curcumin suppressed the expression of amyloid precursor protein and amyloid-ß and up-regulated the expression of miR-15b-5p in swAPP695-HEK293 cells. In addition, we found a negative association of miR-15b-5p expression with amyloid precursor protein and amyloid-ß levels in the curcumin-treated cells. Luciferase assays revealed that miR-15b-5p impaired the luciferase activity of the plasmid harboring the 3'-untranslated region of amyloid precursor protein. These findings indicate that curcumin down-regulates the expression of amyloid precursor protein and amyloid-ß in swAPP695-HEK293 cells, which was partially mediated by miR-15b-5p via targeting of the 3'-untranslated region of amyloid precursor protein.

15.
Bone ; 57(1): 237-41, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23948678

RESUMO

INTRODUCTION: Human synpolydactyly (SPD), belonging to syndactyly (SD) II, is caused by mutations in homeobox d13 (HOXD13). Here, we describe the study of a two-generation Chinese family with a variant form of synpolydactyly. MATERIALS AND METHODS: The sequence of the HOXD13 gene was analyzed. Luciferase assays were conducted to determine whether the mutation affected the function of the HOXD13 protein. RESULTS: We identified a novel c.659G>C (p.Gly220Ala) mutation outside the HOXD13 homeodomain responsible for the disease in this family. This mutation was not found in any of the unaffected family members and healthy control. Luciferase assays demonstrated that this mutation affected the transcriptional activation ability of HOXD13 (only approximately 84.7% of wild type, p<0.05). CONCLUSION: Phenotypes displayed by individuals carrying the novel mutation present additional features, such as the fifth finger clinodactyly, which is not always associated with canonical SPD. This finding enhances our understanding about the phenotypic spectrum associated with HOXD13 mutations and advances our understanding of human limb development.


Assuntos
Proteínas de Homeodomínio/genética , Sindactilia/genética , Fatores de Transcrição/genética , Feminino , Humanos , Masculino , Mutagênese Sítio-Dirigida , Mutação , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA