Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Comput Methods Programs Biomed ; 244: 107988, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171168

RESUMO

BACKGROUND AND OBJECTIVE: Recruitment maneuvers with subsequent positive-end-expiratory-pressure (PEEP) have proven effective in recruiting lung volume and preventing alveoli collapse. However, determining a safe, effective, and patient-specific PEEP is not standardized, and this more optimal PEEP level evolves with patient condition, requiring personalised monitoring and care approaches to maintain optimal ventilation settings. METHODS: This research examines 3 physiologically relevant basis function sets (exponential, parabolic, cumulative) to enable better prediction of elastance evolution for a virtual patient or digital twin model of MV lung mechanics, including novel elements to model and predict distension elastance. Prediction accuracy and robustness are validated against recruitment maneuver data from 18 volume-controlled ventilation (VCV) patients at 7 different baseline PEEP levels (0 to 12 cmH2O) and 14 pressure-controlled ventilation (PCV) patients at 4 different baseline PEEP levels (6 to 12 cmH2O), yielding 623 and 294 prediction cases, respectively. Predictions were made up to 12 cmH2O of added PEEP ahead, covering 6 × 2 cmH2O PEEP steps. RESULTS: The 3 basis function sets yield median absolute peak inspiratory pressure (PIP) prediction error of 1.63 cmH2O for VCV patients, and median peak inspiratory volume (PIV) prediction error of 0.028 L for PCV patients. The exponential basis function set yields a better trade-off of overall performance across VCV and PCV prediction than parabolic and cumulative basis function sets from other studies. Comparing predicted and clinically measured distension prediction in VCV demonstrated consistent, robust high accuracy with R2 = 0.90-0.95. CONCLUSIONS: The results demonstrate recruitment mechanics are best captured by an exponential basis function across different mechanical ventilation modes, matching physiological expectations, and accurately capture, for the first time, distension mechanics to within 5-10 % accuracy. Enabling the risk of lung injury to be predicted before changing ventilator settings. The overall outcomes significantly extend and more fully validate this digital twin or virtual mechanical ventilation patient model.


Assuntos
Pulmão , Mecânica Respiratória , Humanos , Mecânica Respiratória/fisiologia , Respiração Artificial/métodos , Respiração com Pressão Positiva/métodos , Respiração
2.
Comput Biol Med ; 141: 105022, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34801244

RESUMO

BACKGROUND AND OBJECTIVE: Recruitment maneuvers (RMs) with subsequent positive-end-expiratory-pressure (PEEP) have proven effective in recruiting lung volume and preventing alveolar collapse. However, a suboptimal PEEP could induce undesired injury in lungs by insufficient or excessive breath support. Thus, a predictive model for patient response under PEEP changes could improve clinical care and lower risks. METHODS: This research adds novel elements to a virtual patient model to identify and predict patient-specific lung distension to optimise and personalise care. Model validity and accuracy are validated using data from 18 volume-controlled ventilation (VCV) patients at 7 different baseline PEEP levels (0-12cmH2O), yielding 623 prediction cases. Predictions were made up to ΔPEEP = 12cmH2O ahead covering 6x2cmH2O PEEP steps. RESULTS: Using the proposed lung distension model, 90% of absolute peak inspiratory pressure (PIP) prediction errors compared to clinical measurement are within 3.95cmH2O, compared with 4.76cmH2O without this distension term. Comparing model-predicted and clinically measured distension had high correlation increasing to R2 = 0.93-0.95 if maximum ΔPEEP ≤ 6cmH2O. Predicted dynamic functional residual capacity (Vfrc) changes as PEEP rises yield 0.013L median prediction error for both prediction groups and overall R2 of 0.84. CONCLUSIONS: Overall results demonstrate nonlinear distension mechanics are accurately captured in virtual lung mechanics patients for mechanical ventilation, for the first time. This result can minimise the risk of lung injury by predicting its potential occurrence of distension before changing ventilator settings. The overall outcomes significantly extend and more fully validate this virtual mechanical ventilation patient model.


Assuntos
Pulmão , Modelos Biológicos , Respiração com Pressão Positiva , Mecânica Respiratória , Humanos , Respiração com Pressão Positiva/métodos , Pressão , Mecânica Respiratória/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA